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Abstract—Human factors and ergonomics are the essential
constituents of teleoperation interfaces, which can significantly
affect the human operator’s performance. Thus, a quantitative
evaluation of these elements and the ability to establish reliable
comparison bases for different teleoperation interfaces are the
keys to select the most suitable one for a particular application.
However, most of the works on teleoperation have so far focused
on the stability analysis and the transparency improvement of
these systems, and do not cover the important usability aspects. In
this work, we propose a foundation to build a general framework
for the analysis of human factors and ergonomics in employing
diverse teleoperation interfaces. The proposed framework will
go beyond the traditional subjective analyses of usability by
complementing it with online measurements of the human body
configurations. As a result, multiple quantitative metrics such
as joints’ usage, range of motion comfort, center of mass diver-
gence, and posture comfort are introduced. To demonstrate the
potential of the proposed framework, two different teleoperation
interfaces are considered, and real-world experiments with eleven
participants performing a simulated industrial remote pick-and-
place task are conducted. The quantitative results of this analysis
are provided, and compared with subjective questionnaires,
illustrating the effectiveness of the proposed framework.

I. INTRODUCTION

TELEROBOTICS is of significant importance in applica-
tions where the tasks are dangerous or even inaccessible

to humans. So far, the related theoretical and experimental
research studies have mainly focused on the overall system’s
safety (e.g., stability [1]), tracking problem (e.g., transparency
[2]), interaction uncertainties (e.g., tele-impedance regulation
[3]), and shared autonomy [4].

As a result, numerous teleoperation user-interfaces (UIs)
have been presented [5], [6]. This diversity, however, makes it
difficult for the system designers to adopt a suitable UI for a
specific application, which optimises the requirements of the
target tasks. Hence, supportive metrics to evaluate and com-
pare the advantages and disadvantages of these UIs become
necessary. Nevertheless, to the best of our knowledge, this
problem has received very little attention in the literature. To
respond to this need, the usability aspects of the teleoperation
systems must be analysed through the definition of a set of
ergonomic and performance indexes.

In telerobotics, ergonomics is investigated within the phys-
ical and cognitive aspects, which may influence each other
as well [7]. Roughly speaking, the user’s motion generation
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Fig. 1: The conceptual illustration of a user teleoperating a remote
collaborative robot with two different user-interfaces: (i) standing
interface with a whole-body motion capture system and (ii) seated
interface with a 3D mouse.

interface contributes more to the physical-related factors while
the perception feedback plays a significant role in the cognitive
ones. Ergonomics, however, is not the only design factor for
teleoperation systems. A trade-off must be made between er-
gonomic aspects and performance measures such as execution
time, learning-curve status, success rate, and the similarity
between the human and robot motions.

In this work, we propose a set of quantitative metrics to
assess the teleoperation UIs in terms of human factors and
ergonomics. In developing such metrics, we inspire from the
“postures and movement” section of the Ergonomic Assess-
ment Work-Sheet (EAWS) [8], [9]. To be consistent with
EAWS, we adopt a systematic process to appraise both the
upper and lower parts of the human musculoskeletal system.
The scoring system is based on the pre-defined standard
body postures, accepted joints’ Range of Motion (RoM),
body features and dimensions, and the workstation layout.
In addition, the qualitative subjective analyses on time and
cost efficiencies, and usability are carried out. These enable
the designers to choose an appropriate teleoperation UI for a
specific application, regarding the body kinematic information
and the task’s performance metrics. Another use-case of the
developed framework is the optimization of the teleoperation
workstation layout by reorganizing the geometrical properties
of a UI such as the monitor-display height.

The proposed framework is evaluated through quantitative
and qualitative experimental analyses on eleven healthy sub-
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jects. Two popular teleoperation interfaces are considered here:
(i) standing and (ii) seated. The latter uses a 3D mouse device
while, in the former, a Motion Capture system (MoCap) is
employed. Another role of this MoCap system is to capture the
human kinematic data needed by the introduced ergonomics
indexes during the investigation of the afore-mentioned teleop-
eration UIs. For the follower system, the MObile Collaborative
Robotic Assistant (MOCA) [10] is utilised as the follower
robot, controlled in two sepaprate control modes, i.e., loco-
motion and manipulation modes. Conceptual illustration of a
user teleoperating the MOCA with the afore-mentioned UIs is
shown in Fig. 1.

The choice for the two studied teleoperation interfaces was
made based on their inherently different characteristics, in
terms of dexterity and comfort. Hence, if the proposed indexes
can be quantified in these two “extreme” settings, several
existing UIs that implement a trade off between teleoperation
dexterity and user comfort (e.g., UIs based on haptic devices)
are also likely to be quantified using the proposed approach.

II. RELATED WORK

Most of the research studies about the ergonomics assess-
ment of teleoperation systems have been devoted to the effects
of time delays on the human cognitive (mental) workload.
For instance, the relation between the time delays and human
factors, situational awareness, and cognitive load was analysed
for both local and remote assembly tasks in [11]. A similar
approach was presented in [12] to study the outcomes of
latency on the performance, subjective workload, trust, and
usability measures for manual multi-robot teleoperated tasks.
Moreover, a qualitative usability evaluation was carried out in
[13], for a scenario in which an agricultural robotic sprayer
was used in a teleoperation setup. The authors considered three
factors in their experiments: (i) input devices (PC keyboard
and SONY PlayStation® game-pad), (ii) output devices (PC
screen and head-mounted display), and (iii) number of camera
views (single and multiple viewpoints). They studied the ef-
fects of these factors on the operator’s workload and awareness
status. However, the evaluation was performed by means of the
so-called subjective questionnaires only.

On the other hand, less attention has been paid to the physi-
cal ergonomic aspects. For instance, in [14], the authors carried
out a user study to investigate the physical fatigue of the
operators, while they teleoperated a mobile humanoid robot.
Nevertheless, just one motion generation interface (whole-
body optical MoCap system) was considered. In addition,
the proposed assessment technique was based on surface
ElectroMyoGraphy (sEMG) sensors. As it is well known,
the sEMG signals are highly contaminated with noises and
artifacts and thus their interpretation is questionable, especially
in the case of dynamic and rapid motions. Besides, an inverse
kinematic model of the human arm and the Rapid Upper
Limb Assessment (RULA) metric were utilised in a haptic-
enabled shared control teleoperation approach to estimate the
current user’s comfort online in [15]. They reported a 30%
perceived reduction of the workload with respect to the pure
teleoperation case. Nonetheless, the whole-body ergonomics

evaluation was not considered and the authors just used one
particular teleoperation UI in their study.

For the local direct Human-Robot Interaction and Col-
laboration (HRI/C), however, the problem of the physical
ergonomics assessment has been widely studied in the lit-
erature. As an example, the authors in [16] developed a
framework to realise a reconfigurable HRI/C system, which
aimed at improving the workers’ ergonomics and productivity
in manufacturing environments. This was accomplished by the
online perception of the human states (body kinematics and
dynamics), tools, and the environment. Consequently, the robot
adapted itself based on the optimality of the introduced metrics
for human factors. A set of required mental and physical
factors for human comfort during the cooperation with robotic
systems in a shared area was also investigated in [17].

Moreover, some efforts have been made in an attempt to de-
fine performance metrics for the HRI/C setups. Still, the com-
parison aspects for evaluation purposes of the teleoperation
UIs were missed. For example, in [18], the authors proposed
the surgeons’ kinaesthetic perception and the position-tracking
ability of leader-follower system as performance metrics.
These were utilised to enhance the kinaesthetic perception
condition of the task while maintaining the system’s stability
and tracking requirements. Indeed, this trade-off was solved
by means of a multi-constrained optimisation approach. Apart
from kinematic metrics, a set of quantitative physiological
and task performance metrics were introduced in [19]. They
studied the effects of teleoperation motion mappings (joint-
space control etc.) on these metrics in a robotic needle
steering scenario. Nonetheless, these were just evaluated with
one teleoperation UI, i.e., the haptic device. Besides, some
quantitative performance and awareness metrics were proposed
in [20] for the multiple mobile-robot scenarios. This work
aimed to enhance the situational awareness of human operators
in the remote outdoor navigational tasks, and the manipulation
mode was not studied. Moreover, in [21], the authors utilised a
novel biomimetic impedance modulation controller to improve
the task-execution accuracy in a virtual targeting task. Conse-
quently, they showed an increase in the users’ performance in
terms of positional error and overshoots from the targets. This
was done by introducing multiple quantitative performance
indexes based on the sEMG signals without evaluating the
effects of different interface setups.

III. FRAMEWORK DEFINITION

The general structure of the proposed framework is illus-
trated in Fig. 2. In the “input” block, the task’s parameters such
as workstation layout and properties, human body dimensions,
ergonomic body posture definition, joints’ RoM values, and
the metrics’ acceptable thresholds are defined. The “hardware”
block includes the MoCap’s physical entities such as sensors
and signal transmitter/receiver modules. The only requirement
for this part is the capability of online measurement of the
body joints’ states. The corresponding measurements are, then,
analysed in the “software” block. Indeed, the received raw
data is processed, and the relative human body kinematic
information is generated in the related Software Development



Fig. 2: The block diagram of the proposed physical ergonomics
assessment framework for teleoperation UIs. Regarding the per-
centage values in the “output (scores)” block, these are symbolic
representations based on the defined acceptable thresholds and the
values of equations (8), (6), (9), and (3) at each time instant.

Kit (SDK) of the employed MoCap system. As a result, the
processed data is read in the “evaluation” block to calculate
the proposed kinematic metrics through equations (8), (6), (9),
and (3). After this step, the normalized values are utilised in
the “output (scores)” panel to score the essential body links
and joints.

Moreover, a set of offline measures is introduced in Section
III-B, as the complementary qualitative measures to the quan-
titative ones (Section III-A). In particular, the National Aero-
nautics and Space Administration Task Load Index (NASA-
TLX) tool [22] is selected to estimate the perceived workload
of each studied teleoperation UI. This can also be used as a
verification tool for the developed quantitative metrics.

A. Kinematics-related ergonomics metrics

The musculoskeletal system of the human body can be mod-
elled by n articulations (joints) and n body segments (links)
[23]. The conceptual illustration of this parent-child structure
with the definition of the joints’ frames Σi (i ∈ {1, . . . , n})
and the world frame ΣW is shown in Fig. 3-a. The i-th joint’s
position (angle), velocity, and acceleration with respect to
(w.r.t.) its parent link are denoted with θi ∈ Rni , θ̇i, and
θ̈i, respectively. ni ≤ 3 is the number of i-th joint’s Degrees-
of-Freedom (DoFs). Each DoF imposes a set of constraints
on its subsequent link’s motion patterns, which leads to the
definition of the following joint’s RoM:

θj
i min < θj

i < θj
i max, i ∈ {1, . . . , n}, j ∈ {1, . . . , ni}. (1)

Besides, the pose (position pi = [xi, yi, zi]
T ∈ R3 and

orientation εi = [q1, q2, q3, q4]
T ∈ R4) of each link w.r.t. the

world frame is defined with xi = [pTi , ε
T
i ]
T ∈ R7. It should

be noted that the orientation is represented by the quaternions.
In what follows, the proposed kinematics-related er-

gonomics metrics, which are defined for the simplified mus-
culoskeletal system (Fig. 3-b), are introduced.

1) Posture comfort
Assume that xi = [pi, εi]

T is the current pose of Σi
w.r.t. ΣW . Also, the comfortable (ergonomic) pose of each
link is denoted by x?i = [p?i , ε

?
i ]
T . So, the link’s position

displacement ρi and its quaternion displacement ηi w.r.t. to
the comfortable pose are defined as follows:

ρi(k) =
∥∥∥pTi (k)− p?i

T
∥∥∥
L2

, ηi(k) = d (εi(k), ε?i ) , (2)

where d(ε̂1, ε̂2) , 1 − 〈ε̂1, ε̂2〉2, with 〈ε̂1, ε̂2〉 being the
inner product of two unit quaternions ε̂1 and ε̂2. This quantity
becomes 0 whenever the unit quaternions represent the same
orientation. Equation (2) leads to definition of the following
metric ζi for checking the posture status at time instant k:

ζi(k) , ρi(k) + wη ηi(k), (3)

where wη ∈ R is the orientation scaling factor and is set to π
(it maps the values from [0, 1] to [0, π]).

Regarding the ergonomic body posture, it is the one with
the least generated muscular efforts. Up to now, several ideal
postures are defined for different workstation layout. For
instance, one can refer to the neutral body posture, the posture
the human body naturally assumes in micro-gravity [24], or
the standard ergonomic postures presented as guidelines for
different workstations [25]–[27]. In this work, the latter is used
as our standard reference posture. Hence, adopting any other
posture requires a non-optimal amount of muscular efforts that
can cause fatigue or even musculoskeletal disorders during a
prolonged task.

2) RoM comfort
Based on the joints’ RoM values (1), the following comfort

quantity ξji can be defined for the j-th DoF of the i-th joint
at time instant k, similar to the approach suggested in [28]:

ξji (k) , min
{
|θji (k)− θji min|, |θ

j
i (k)− θji max|

}
, (4)

which can be normalized to the interval of [0, 1] by:

ξji
†
(k) =

2 ξji (k)

|θji max − θ
j
i min|

. (5)

The more closer ξji
†

is to 1.0, the more comfortable posture
the user experiences. After summing up the effects of ni DoFs
of the i-th joint, we have:

ξ̄†i (k) =

ni∑
j=1

ξji
†
(k). (6)



Fig. 3: (a) Musculoskeletal system of the human body in Neutral
pose (N-pose). (b) Simplified model considering the essential joints
(side-view). CoM stands for Center of Mass. Joints and links are rep-
resented by ⊗ symbol and dashed lines, respectively. The numbered
dotted arrows show the chains’ directions. To avoid clutter, the joint’s
number is also used to show the joints’ frames Σi.

3) Joints’ usage
For this metric we assume that the more variations in

the joints’ position values in time, the more complex, thus
demanding, the task can be classified. To track the changes
of the position of j-th DoF of the i-th joint at time instant
k, we define two metrics: (i) ψ̄ji - absolute divergence from
the average value and (ii) ψji - absolute divergence from the
previous value. These are:

ψ̄ji (k) =
∣∣∣θji (k)− θ̄ji

∣∣∣, ψji (k) =
∣∣∣θji (k)− θji (k − 1)

∣∣∣, (7)

where, θ̄ji is the average value of θji in the duration of interest.
So, for each joint we have:

ψ̄i(k) =

ni∑
j=1

ψ̄ji (k), ψi(k) =

ni∑
j=1

ψji (k). (8)

4) CoM divergence
Changes in the position of the body CoM (Fig. 3-b)

pTCoM = [pxCoM , p
y
CoM , p

z
CoM ] reveal the body translational

motions indicating the engagement level of the user’s whole-
body in the task. Proposed method in [29] can be used for
CoM estimation. Regarding this quantity, we use the L2-norm
measure to calculate the divergence of pTCoM from its average
point p̄TCoM and its previous value pTCoM (k − 1). We have:

δp?CoM (k) =
∥∥pTCoM (k)− p̄TCoM

∥∥
L2
,

δpCoM (k) =
∥∥pTCoM (k)− pTCoM (k − 1)

∥∥
L2
.

(9)

B. Qualitative measures and performance metrics

Assume that the teleoperation task is a complex of s
serial subtasks T = {T1, ..., Ts}. The task completion time

is given by Texec =
∑s
i=1 Ti, where Ti is the execution

time of the i-th sub-task Ti. This indicates how temporal
demanding the whole teleoperation task is. This total time
should also include the system setup time and the associated
UI’s learning curve complexity. Indeed, the time an expert
spends to setup a teleoperation system (denoted by Tsetup) is
of special importance in scenarios that need fast preparation
time (deployment time). In addition, an interface’s learning
curve is evaluated in a supervised manner before the real
task is started. More specifically, during learning, the UI’s
expert explains the usability, functionalities, robotic module’s
behaviours, and motion generation mechanism to the user.
Afterwards, the user starts a learning trial to control the
follower robot with the introduced UI in practice. When the
user shows an accepted level of proficiency, the supervisor
finishes the pre-training session and records the learning time
that is denoted by Tlearn.

The subjective assessment tools, on the other hand, evaluate
the effectiveness and performance of a system, and in turn rate
a user’s perceived workload. One of the most used tools in
this regard is the NASA-TLX that assesses workload based
on mental demand (MD), physical demand (PD), temporal
demand (TD), performance (PE), effort (EF), and frustration
(FR). Each aspect is scored from 1 to 21, indicating the scale’s
strength with low, medium, and high labels.

IV. EXPERIMENTAL SETUP

In this section, the experimental setup for the evaluation of
the suggested framework is introduced. The setup includes two
UIs (leader systems) to control a follower robotic system. The
UIs are implemented based on (i) a whole-body MoCap system
in standing body posture, and (ii) a 3D mouse device in seated
body posture. The choice of these two UIs is due to (i) the
diversity among them, which allows a more comprehensive
analysis of the proposed framework and (ii) the familiarity
we have with their implementation and usage since they have
been investigated and employed in previous studies [10], [30].
However, other different UIs may have been potentially em-
ployed to assess the developed metrics. Moreover, the follower
robot is a mobile collaborative manipulator, controlled in two
different modes, i.e., manipulation and locomotion.

In what follows, first, the follower robot system and its
embedded loco-manipulation control structure are introduced.
Then, the UIs and the strategy for generating the follower
robot’s reference trajectories are explained in detail. The
overall system is illustrated in the block diagram of Fig. 4.
Whereas, the experimental setup is shown in Fig. 5

A. Follower mobile manipulator

The MObile Collaborative Robotic Assistant (MOCA),
which is an integration of a Robotnik® SUMMIT-XL STEEL
mobile platform and a 7 DoF Franka Emika robot manipu-
lator, is utilised as the follower mobile manipulator in our
experiments. Moreover, we use the default Franka Emika’s
gripper to grasp the desired objects of the task. As illustrated
in Fig. 4, two separate control modes, i.e., locomotion and



Fig. 4: The unified block diagram of the two teleoperation interfaces, i.e., MoCap system [10] and 3D mouse device [30], for controlling a
mobile robotic manipulator [10], [31]–[33].

manipulation, are considered to control the robot’s whole-
body loco-manipulation behaviour. These are toggled by the
“control mode detection” block triggered by a set of pre-
defined patterns defined in the employed teleoperation UI.

1) Control mode: manipulation

For the manipulation control mode, a “Cartesian impedance
controller” suitable for the robotic manipulators with rigid-
joints and kinematically redundant structures is implemented
[31]–[33]. The virtual equilibrium point of this controller is
generated by the “pose planner” block in Fig. 4 based on
the output motion commands of the employed UI. In the
experiments, based on a trade-off between the interaction
requirements with the stiff objects of the task and the required
tracking performance during the teleoperation, the numerical
values of the controller’s parameters are selected as follows:
the translational and rotational stiffness (critical damping)
values are set to 300.0 N m−1 (2

√
300.0) and 30.0 N m rad−1

(2
√

30.0), respectively. Regarding the nullspace behaviour, the
stiffness and damping values are chosen as Kn = 10.0 I7 and
Bn = 2

√
10.0 I7, respectively. Finally, the controller update

rate is 1.0 kHz.

2) Control mode: locomotion

In the locomotion control mode, on the other hand, a
built-in low-level velocity controller is used to control the
2D pose of the omni-directional mobile base, equipped with
four Mecanum wheels. The user’s inputs are mapped to
proper twist commands v = [vx, vy, ωz]

T where vx, vy ,
and ωz are the robot’s linear velocity along x and y axes,
and its angular velocity around z axis, respectively. This is
done in the “velocity planner” block (Fig. 4). During this
mode, the robot manipulator is being controlled autonomously
by the Cartesian impedance controller without the human
user intervention. The update rate of the controller is set
to 300.0 Hz. The maximum values of the twist elements are
vxmax = vymax = 0.20 m s−1, and ωzmax = 0.25 rad s−1.

B. User-interface 1: whole-body MoCap system

A wearable inertial-based system, the Xsens MVN
BIOMECH (Xsens Technologies BV, Enschede, Netherlands),
is selected as the whole-body MoCap device in this work.
Compared to the camera-based systems that suffer from occlu-
sions, limited range of camera visibility as well as unreliable
continuous pose estimation and low update rate (e.g., when
employing the OpenPose framework [34]), the inertial-based
ones ensure the least amount of data loss (poor estimations)
during the teleoperation tasks. The MoCap system is used to
satisfy two independent requirements: (i) tracking the body
kinematic information to calculate the proposed metrics (Sec-
tion III-A) and (ii) generating the desired reference trajectories
for the follower robot within the employment of the first
UI (MoCap system). Thus, the Xsens Inertial Measurement
Units (IMUs) and the corresponding WiFi-signal receiver
module construct the “hardware” block in Fig. 2. The received
signal is processed by the Xsens software bundle (Microsoft®
Windows® 7.0) and are sent to the ROS master (ROS Kinetic
Kame in Ubuntu®16.04) through the UDP networking pro-
tocol with the frequency of 60.0 Hz. These are encapsulated
in the “software” block. The output signals are, then, used in
the “evaluation” block to meet the first requirement (metrics
evaluation). On the other hand, and for the second requirement
(motion generation), data is converted to the desired follower
robot’s reference trajectories by means of proper mapping
functions. These functions are implemented in the “right arm
postures” and “center of pressure estimation” blocks.

In the locomotion mode, the inputs for the “velocity plan-
ner” block are generated via the body Center of Pressure (CoP)
movements projected on the 2D plane. These are estimated by
the “Statically Equivalent Serial Chain (SESC)” method [35].
To avoid unwanted motions, a virtual polygon is assumed as
a deadzone around the initial position of the CoP point on
the floor (see the human manikin in Fig. 4). Consequently,
body inclinations along x and y axes, out of the defined



Fig. 5: The snapshots of the task and experimental setup. First row: (1) The user teleoperated MOCA to approach the first object by means
of visual feedback. The installed cameras are labeled with C1 and C2, respectively. (2) The user grasped the object and navigated the robot
toward the other table. (3) The user found the appropriate location to place the object inside the box (by using the second viewpoint). (4)
the object was placed in the box. Second row: (Setup) the experimental elements used during the trials. (A) the standing posture with the
MoCap system, (B) the seated posture with the 3D mouse.

deadzone, δp ∈ R2 generate the following virtual torques
τv = Kv δp + Bv δṗ, where, Kv and Bv are the virtual
stiffness and damping matrices of the CoP movements model,
respectively. Afterwards, τv is processed by the designed
admittance interface for the mobile base, and the outputs are
sent to “velocity planner” of the robot. For the manipulation
mode, on the other hand, the “pose planner” receives the data
from the “right arm postures” block and, in turn, generates
the required pose displacement for the ”Cartesian impedance
controller”. This is done by utilising the 7 DoFs of the human
right upper limb provided by the shoulder, elbow, and wrist
joints. The switching between the control modes, here, is
realised by the pre-defined arm gestures. When the user’s
arms are at his/her sides (N-pose), the locomotion mode is
activated. Then, the user has to raise the right arm to trigger the
manipulation mode. To switch back to the locomotion mode
he/she first needs to raise the left arm and then to go back to
the N posture. For detailed information, one may refer to [10].

C. User-interface 2: 3D mouse device

The second interface implies the user to sit behind a
desk [30]. The operator controls the remote follower robot
with a 3D mouse device, named SpaceMouse® Compact
(3Dconnexion, UK). This mouse has a 6 DoF motion sensor
(motion axis) and two push buttons. For the purposes of
our teleoperation tasks, these buttons are used to enable the
operators to switch between modes. Indeed, the user can toggle
between the control modes by pressing the left push button and
change the motion modes (i.e., translation and rotation) with
the right button. The switch between motion modes, however,

is just available in the manipulation mode. This is because the
dimension of the task-space is considered to be 6, indicating
that all the mouse’s DoFs are required for controlling the
manipulator’s end-effector.

Regarding the motion generation for the follower robot,
initial tests proved that the mouse’s DoFs are highly coupled
and sensitive. This makes the generation of precise and decou-
pled reference trajectories near impossible. Thus, the reference
trajectories are generated after processing the raw mouse’s
motion axis information (DoFs) in the “motion axis processor”
block (Fig. 4). More specifically, the mouse’s raw data are,
first, read and stored as δxraw = [δpTraw, δε

T
raw]

T with the
frequency of 50.0 Hz. δpraw ∈ R3 and δεraw ∈ R3 are the
translational and rotational displacements along and around the
mouse’s motion axis, respectively. Then, these are normalized
to a signed percentage values, denoted by δx†raw. Afterwards,
the motion mode is checked (just in the manipulation control
mode), assigning δε†raw or δp†raw to 0 when the translation
or rotation motion mode are activated, respectively. Next, a
moving average filter is applied with a window of size N ,
populated with the current δx†raw and its last N − 1 values.
The average value of each motion axis j of the mouse over
the past N samples is defined as δx̄j(k) at time instant k.
Finally, the maximum value of δx̄j and its corresponding
axis label j? are fetched and the other values are set to 0.
Consequently, the desired displacement vector is generated as
δxd = [δpTd , δε

T
d ]
T , where only the j?-th element is non-zero.

In the locomotion mode, δpxd , δpyd, and δεzd are converted to
the desired twist command of the platform based on vxmax,
vymax, and ωzmax (see Section IV-A2). For the manipulation



mode, on the other hand, all of the elements may be used based
on the motion mode and the pre-set maximum Cartesian steps
of each DoF (for translational and rotational motions, these
steps are set to 0.01 m and 0.5 deg, respectively).

V. EXPERIMENTAL EVALUATION

A. Task description

To evaluate the proposed framework, we asked eleven
healthy subjects of different ages (27.54 ± 3.09 years), body
heights (178.95 ± 5.39 cm) and genders (nine males and two
females) to execute an identical task by using the introduced
UIs (sections IV-B and IV-C). Thus, each subject performed
the task in two independent trials (groups). More specifically,
the trials carried out by means of the MoCap system and 3D
mouse device are labeled as “trial 1” and “trial 2”, respectively.
The first trial was followed by the second one after a ten-
minute break. The experimental setups related to these trials
are shown in the second row of Fig. 5. The whole experimental
procedure was conducted in accordance with the Declaration
of Helsinki and the protocol was approved by the regional
ethics committee of Liguria (Protocol IIT-HRII-ERGOLEAN,
156/2020, DB-id 10215).

Regarding the task, a remote pick-and-place operation with
industrial gear pieces was considered to be executed by the
participants. The task’s snapshots are displayed in the first row
of Fig. 5. The latter illustrate the sequence of sub-tasks that
should be followed one after another, for picking one of the
task’s target objects and placing it into a desired box. In each
trial (i.e., the MoCap or the 3D mouse), the subject started
moving the follower mobile manipulator from the initial
location toward a table on which three different industrial gears
were placed (Fig. 5-1). There, she/he grasped the first object
(Fig. 5-2) and moved the robot near to an empty box located on
another table (Fig. 5-3). Finally, she/he placed the object into
the box (Fig. 5-4). This cycle was repeated for the middle and
right objects, respectively. For the visual feedback, a monitor
display was used to show the remote environment to the user
with two different viewpoints. Indeed, two RGB cameras were
installed in the remote environment whose locations were
optimised based on the task’s requirements. The location of the
installed cameras are shown by “C1” and “C2” labels in Fig.
5-1, and corresponding viewpoints of the remote environment
are displayed in Fig. 5-setup.

B. Analyses

In this section, numerical, graphical, and statistical data
analyses over the performed experiments are discussed.

Starting with the time-related metrics, the median (M) and
InterQuartile Range (IQR) of the data, among the eleven
subjects, are chosen as the statistical parameters. For the learn-
ing curve, we have: MMoCap = 241.00 s and IQRMoCap =
130.75 s, and M3D = 179.00 s and IQR3D = 62.00 s. For
the execution time: MMoCap = 449.08 s and IQRMoCap =
158.18 s, and M3D = 312.13 s and IQR3D = 126.96 s. The
results suggest the UI with the 3D mouse device was easier
to be learned by the participants (25.72% reduction in the

Fig. 6: Descriptive statistics by means of the boxplot method to
compare the employed UIs in the sense of learning curve duration
and task execution time. “+” denotes the outlier data.

Fig. 7: NASA-TLX results for the experimental groups, i.e., the
MoCap and 3D mouse UIs.

TABLE I: The mean and standard deviation values of the NASA-TLX
assessment tool among eleven subjects.

UI MD PD TD PE EF FR

MoCap 13.27± 3.74 9.81± 5.09 10.36± 4.67 8.36± 4.98 13.00± 4.21 10.54± 5.14
3D Mouse 7.00± 3.28 3.54± 2.16 7.18± 5.25 6.27± 4.07 6.09± 2.58 5.54± 2.73

learning time). Also, the task was executed 30.49% faster with
this UI. These results are shown in the boxplots of Fig. 6.

The results of the subjective NASA-TLX questionnaire are
displayed in Fig. 7. The exact mean and standard deviation
values related to this questionnaire, among the eleven subjects,
are reported in Table. I. The participants showed less mental,
physical, and temporal demands with the 3D mouse UI (MD,
PD, and TD, respectively). Especially, this difference is more
evident in the physical and mental scales. Instead, the “perfor-
mance” scale is quite similar in both groups with a slight lower
score for the MoCap UI (here, 1.0 and 21.0 indicate “perfect”
and “failure”, respectively). Moreover, and as it was expected,
the perceived “effort” is way higher in the first group, most
likely due to the standing nature of the employed UI. Finally,
the “frustration” scale is lower in the second group, which
is probably because of the difference between the mapping
functions of the employed motion generation interfaces.

From the quantitative perspective, normalized whole-body
comparisons are carried out on the studied groups based on the
proposed metrics in Section III-A. As a result, the statistical
parameters, formatted as “M, IQR” pair, computed among



TABLE II: The normalized numerical comparison between the studied groups (teleoperation UIs) in the experiments. In the table cells, “·, ·”
denote the median and IQR pair, i.e., “M, IQR”.

Group 1: MoCap Group 2: 3D Mouse

Part Joint/Link Posture comfort Joints’ usage RoM comfort Posture comfort Joints’ usage RoM comfort

vertebral
column

head 0.0561, 0.0150 0.0501, 0.0607 0.8794, 0.0702 0.0528, 0.0240 0.0619, 0.0407 0.8554, 0.1029
neck 0.0494, 0.0080 0.0266, 0.0328 0.9959, 0.0084 0.0311, 0.0153 0.0331, 0.0216 0.9882, 0.0120

pelvis 0.0267, 0.0053 0.0465, 0.0325 0.7618, 0.0111 0.0199, 0.0104 0.0075, 0.0187 0.7870, 0.0170

left upper
limb

shoulder 0.0520, 0.0552 0.0879, 0.0764 0.7975, 0.0187 0.0348, 0.0378 0.0252, 0.0155 0.8196, 0.0102
elbow 0.1032, 0.0723 0.1613, 0.1550 0.7060, 0.0346 0.0226, 0.0149 0.0353, 0.0142 0.7644, 0.0201
wrist 0.1365, 0.0497 0.0684, 0.0848 0.8334, 0.0168 0.0254, 0.0164 0.0167, 0.0315 0.8776, 0.0268

right upper
limb

shoulder 0.1147, 0.0691 0.2614, 0.1126 0.6953, 0.0974 0.0383, 0.0248 0.0287, 0.0369 0.8066, 0.0241
elbow 0.5033, 0.1178 0.5808, 0.3809 0.4552, 0.0527 0.0581, 0.0359 0.0454, 0.0605 0.7449, 0.0460
wrist 0.6683, 0.1923 0.1999, 0.1548 0.8144, 0.0521 0.0663, 0.0544 0.0658, 0.0400 0.8707, 0.0121

left lower
limb

hip 0.0268, 0.0045 0.0387, 0.0389 0.7258, 0.0034 0.0189, 0.0093 0.0089, 0.0148 0.7233, 0.0102
knee 0.0186, 0.0124 0.0342, 0.0219 0.6529, 0.0100 0.0173, 0.0141 0.0052, 0.0038 0.6695, 0.0039
ankle 0.0137, 0.0039 0.0320, 0.0263 0.6793, 0.0030 0.0178, 0.0178 0.0053, 0.0024 0.6743, 0.0066

right lower
limb

hip 0.0266, 0.0068 0.0518, 0.0405 0.6959, 0.0114 0.0200, 0.0062 0.0086, 0.0201 0.7096, 0.0139
knee 0.0192, 0.0033 0.0313, 0.0226 0.6553, 0.0088 0.0202, 0.0134 0.0058, 0.0060 0.6714, 0.0040
ankle 0.0157, 0.0055 0.0371, 0.0351 0.6802, 0.0102 0.0237, 0.0155 0.0046, 0.0050 0.6733, 0.0019

eleven subjects, are listed in Table II for each body part.
Besides, a graphical representation of the indexes is provided
in Fig. 8 by means of the polar plots. In this figure, each row
illustrates a particular index, being the whole-body divided to
three sections: “vertebral column”, “upper limbs”, and “lower
limbs”. To avoid clutter, we just consider one of the subjects
(8-th subject). By calculating the corresponding polynomial
areas, a ratio is obtained for each body part giving the relative
strength of the 3D mouse UI over the MoCap one, or vice
versa. These results are discussed in what follows.

For the “posture comfort” index, normalized average values
of (3) during the task’s execution time are calculated for each
body part. It should be noted that the users started the task in a
pre-defined ideal body posture approved by the task supervisor.
So, the divergence from this initial posture is served as the first
metric. Results show remarkable divergence values in the body
upper limbs when the user is equipped with the MoCap UI.
However, the corresponding values for the vertebral column
and the lower limbs are not considerably different. These are
also shown graphically for one of the subjects in Fig. 8a.
Compared with the other body parts, the greatest divergence
from the ideal posture is noticed in the right upper limb in
the first trial (the MoCap UI). The lower limbs, on the other
hand, have a better condition in this trial for this particular
user. Indeed, the ratio values (by calculating the polynomial
areas) for the vertebral column, upper limbs, and lower limbs
are 1.15, 60.17, and 0.39, respectively.

As we discussed earlier, the more the values of (6) are close
to 1, the more comfort the body experiences in terms of RoM.
Based on the data presented in the table, the users performed
the task with a totally comfortable posture while using the
second UI. Indeed, the minimum median value for this setup
is M = 0.6695 which is an acceptable value for the RoM
index (the threshold is set to 70.0%). The same conclusion
holds also for the first UI but with an exception. Here, the
right elbow is exposed to a non-comfortable posture during
the task (M = 0.4552). It should be noted that the average
values of (6) are normalized for the body parts throughout the
task completion, and listed in the table. This is also shown

for the studied subject in Fig. 8b, and the corresponding ratios
are 0.9586, 0.7334, and 0.9893 for the vertebral column, upper
limbs, and lower limbs, respectively. This shows a slight better
“RoM comfort” index status for the second UI compared to
the first one.

Regarding the normalized “joints’ usage” values in the table,
these are calculated by the numerical integration of (8) via the
trapezoidal method during the task. As expected, body joints
were used more by the subjects when they employed the first
UI; especially the lower and upper limbs. However, the neck
and head joints’ usage have a negligible difference. Moreover,
the graphical results in 8c yield the following ratios for the
vertebral column, upper limb, and lower limbs, respectively:
3.84, 29.38, and 24.14. As it may be seen in this figure, the
most employed body joints are the right elbow and shoulder
while the user is performing the task with the first UI.

Furthermore, the statistical analyses of the body “CoM
divergence” is investigated in this section. The median and
IQR values of the normalized index in (9) (divergence from
the average point) over the eleven subjects are: MMoCap =
0.5978 and IQRMoCap = 0.4175 for the MoCap UI, and
M3D = 0.1816 and IQR3D = 0.1301 for the 3D mouse one.
Moreover, the body CoM information related to the afore-
mentioned subject during both trials are shown in Fig. 9. As
it may be seen, the body CoM experienced more fluctuations
during the teleoperation task when the user employed the
MoCap UI. This is mostly because of the whole-body motion
generation technique used within this UI, which implies the
user to generate the navigational motions with the lateral body
CoM motions. These fluctuations, on the other hand, are not
seen in the seated UI and the body CoM stayed within a
limited region during the task and this contributes to less
perceived effort in the human body. In addition, the numerical
integration of the suggested index in (9) (divergence from the
average point) via the trapezoidal method yields the ratio of
2.60 between the MoCap and 3D mouse UIs.



(a) Metric: posture comfort.

(b) Metric: Range of Motion (RoM) comfort.

(c) Metric: joints’ usage.

Fig. 8: The normalized polar-plot representations of the introduced quantitative metrics. The results are related to the 8-th subject.

Fig. 9: The evolution of body Center of Mass (CoM) parameter in
time. The results are related to the 8-th subject.

VI. CONCLUSION AND FUTURE PERSPECTIVES

In this work, we developed a quantitative physical er-
gonomics assessment framework based on a set of human
kinematics-related information. The objective was to create a
tool that can evaluate and compare different types of teleoper-
ation UIs so that the system designers can quantify the impact
of UI elements on the overall teleoperation system’s perfor-
mance and ergonomics. Experiments with eleven participants
in using two different teleoperation UIs, i.e., standing posture
interface with a whole-body MoCap system and the seated one
with a 3D mouse device, showed the proposed framework’s
effectiveness.

The effects of well-known teleoperation factors such as
communication time-delays and vision feedback (i.e., the
information about the remote environment provided by 2D
cameras) were not investigated in this work. The former holds
true because of the local network used throughout the exper-
iments, while the latter imposes the same effects to both UIs.
In addition, the two UIs implemented a unilateral teleoperation
architecture, thus the stability issues of the bilateral force-
reflecting architectures were not of our interest.



Future works will focus on the enhancement of the er-
gonomics assessment. The effects of task repetition and fre-
quency, which has been recognised as a significant contributor
to musculoskeletal disorders, as well as users’ experience
on the proposed metrics will be investigated. Besides, our
experiments are carried out by non-expert users while in
real-world applications, teleoperation tasks are executed by
operators who undergo long training sessions. Hence, the latter
will be considered as subjects in future experimental sessions.
Finally, alternative teleoperation UIs will be taken into account
to validate the proposed evaluation framework.
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