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Smart Rollators Aid Devices:
Current Trends and Challenges

Gabriela Verdezoto, Joaquin Ballesteros, Member, IEEE, and Cristina Urdiales

Abstract—Mobility loss has a major impact on autonomy.
Smart rollators have been proposed to enhance human abilities
when conventional devices are not enough. Many human-robot
interaction systems have been proposed in the last decade in this
area. Comparative analysis shows that mechanical issues aside,
they mainly differ in i) equipped sensors and actuators; ii) input
interface; iii) operation modes, and iv) adaptation capabilities.
This paper presents a review and a tentative taxonomy of
approaches during the last 6 years. In total, 92 papers have
been reviewed. We have discarded works not focused on human-
robot interaction or focused only on mechanical adaptation. A
critical analysis is provided after the review and classification,
highlighting systems tested with their target population.

Index Terms—Shared control, Smart rollator, Mobility Aid
Devices

I. INTRODUCTION

The percentage of world population over 65 years is ex-
pected to grow 13.5% in the next decades [18]. Ageing is
correlated with an increase of people with disabilities that, in
extreme, leads to dependence. In the current overloaded health-
care system, this means a lower number of allocated resources
per person. Hence, it is necessary to extend older people’s
autonomy as much as possible. This issue has been outlined by
the World Health Organization (WHO) in its Global strategy
and Action Plan on Aging and Health in strategic objective
2.1 [42]. WHO reported that assistive devices When adapted to
the individual and his or her environments [these mechanisms]
can enable older people to retain the maximum level of control
over their lives. However, in order to maintain their autonomy,
people will require personalized solutions, adapted to the
user’s needs to prevent issues like disuse syndrome, loss of
residual skills, abandonment of assistive technology, etc.

Assistive devices to enhance mobility are a major tool
to promote autonomy. Mobility loss negatively affects many
Activities of Daily Living (ADL), such as leisure activities
engagement, daily social contacts, residential location or pub-
lic transport usage [17]. There are different types of mobility
assistive devices depending on the users’ needs, but they
can be broadly divided into three [56]: canes, walkers, and
wheelchairs.

Most mobility assistive devices allow some level of adapta-
tion, mostly from a mechanical point of view (handle shape,
height adjusting, seat tilt angle, etc). In extreme cases, devices

G. Verdezoto and C. Urdiales were with the Department of Electronic Tech-
nology Deparment, University of Malaga, Málaga, Spain; e-mails: gverde-
zoto@uma.es, acurdiales@uma.es

J. Ballesteros was with ITIS Software, Universidad de Málaga, Málaga,
Spain; e-mail:jballesteros@uma.es

can be designed and then manually adapted to the specifics of
a given user. However, mechanical adaptation in conventional
assistive devices is limited and must be manually tailored to
users. Alternatively, the so called smart assistive devices also
include sensors and/or actuators to manage the interaction
between the human and the device [6], [54]. Specifically,
this paper proposes a tentative taxonomy of smart rollators,
including a comparative analysis of their weaknesses and
strengths.

Smart assistive rollators including only sensors may be
used to monitorize users’ activity, biomechanical parameters,
biometrics, etc, to gain knowledge about their condition and
lifestyle. Devices including also actuators may use this infor-
mation to provide some level of assistance, adapted to the
environment (slope control, support to cross narrow areas,
obstacle avoidance, etc) and/or user’s condition (balance sup-
port, steering assistance, etc). Smart adaptation depends on
reliable sensing and processing to determine how to help best
depending on what the user plans to do at a given situation
and their condition.

Users’ intention can be estimated using different input
interfaces (force couple, speakerphone, etc), depending on
the device and the end-user profile. For example, in a smart
rollator, the combination the hardware interfaces like camera
and force-sensing resistor (FSR), estimate the user’s intention
based on face orientation and user’s gait [48]. In any case, in-
tention may need to be inferred from input hardware, situation,
experience and even users’ disability profile.

Even if user’s intention is clear, providing assistance is not
simple, as the system may determine that the best action at
a given situation is not actually what the users intends to do.
As a person and assistive rollator move as a single entity, it
is important to determine how much each agent contributes
to control at any given situation. There are different control
modes depending on how much each agent contributes to
control at a given instant and how control is traded between
them. In many cases control is held either by the human or the
machine, and users voluntarily hand it over when a situation
is difficult to handle or a trade mechanism takes over in case
of need. Other approaches rely on command blending and
increased adaptation.

As a whole, mechanical differences aside, we can observe
that the main differences among different assistive devices
depend on: i) equipped sensors and actuators; ii) user interface;
iii) operation modes; and iv) adaptation capability. Hence,
we have conducted a review of smart rollators in scientific
literature to tentatively provide a taxonomy according to these
factors. A classification of devices based on these parameters
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is proposed in section II.
Our review focuses on papers published in the last 6 years

including the following keywords in the title or abstract:(smart
OR intelligent OR robotic) AND (walker OR rollator); (walker
OR rollator) AND (control OR interface OR user intention);
and assistive devices. We have searched in IEEE Xplore,
Springer Link, ACM Digital Library, Taylor&Francis, and Sci-
enceDirect, and 40 conferences and journals were found. We
have selected only journals indexed in JCR and conferences
indexed in CORE or GGS rankings. In total, 92 papers met
these criteria. However, after reading these papers, 44 were
discarded because they were not focused on human-robot
interaction and focused on: rollator constructions (19 out of
44), hardware adaptations (18 out of 44), or reliable/secure
communications (7 out of 44). Hence, this work analyzed 48
papers in the smart rollator area.

We have explicitly highlighted papers that engage the target
population ,i.e. people with disabilities or elderly people,
in their testing, as clinicians consistently report that healthy
people do not walk and/or support weight on the device
like these target users. Nevertheless. papers not meeting this
condition yet are also included in this review as well, as they
provide valuable insight on current trends.

II. SIGNIFICANT FEATURES IN SMART ROLLATORS

As commented, our goal is to review relevant works on
smart rollators during the last 6 years, but also to find a set
of parameters to establish a taxonomy (see Fig. 1). Through
our analysis, we determined that the main differences among
reviewed smart systems relied on the following factors: i)
equipped sensors and actuators; ii) user interface; iii) operation
modes; and iv) adaptation capability. Since these parameters
are also employed in other fields with different meanings, this
section clarifies how they are used in this paper.

A. Sensors, actuators and user interfaces

Smart rollators rely on different sensors to acquire parame-
ters of interest about: i) the environment and ii) their user.
Some systems are restricted to on-board sensors, whereas
others may also require wearable sensors on users or even
third party sensors (e.g. Motion Capture systems) to operate.
Systems relying uniquely on on-board sensors are cheaper,
require less configuration and adaptation to specific users
and can be tested anywhere. Indeed, although we have not
restricted our search to this respect, reviewed works mostly
include rollators equipped only with on-board sensors. On-
board rollator sensors typically include the conventional ones
in robotics -e.g. sonars, laser, infrared sensors, encoders,
accelerometers, motors, etc- but systems may also include
additional sensors to gain knowledge on the user if necessary1

-e.g. biometrics, biomechanics, pose, etc-. We do not rely on
this hardware for classification, because i) similar devices may
use different hardware for the same purposes -e.g. the same
rollator could use a Time of Flight camera instead of a laser

1These sensors are necessary if the device is meant to monitor the user
and/or to adapt assistance to their needs.

to avoid obstacles-; and ii) very different devices may use the
same basic sensor set. However, this hardware partially defines
what a given system may be able to do, plus it has a direct
impact on its cost, weight, bulkiness, battery consumption, etc,
so we will refer to it later when we classify systems according
to their capabilities.

We have chosen to separate operational sensors/actuators
from user interfaces, i.e. the hardware that users need to
(voluntarily) feed their intention to the system. User interfaces
mostly provide information about where the user wants to go,
while user sensors provide non-intention related parameters
like balance or heart rate. As commented, input interfaces do
not always return a clear command and intention may need to
be inferred via data mining. We have categorized each type
of input device in our review according to a common set of
features. Specifically, we have selected the following ones:

• Interface: base input technology (speakerphone, cameras,
force sensors, leap motion sensors, etc).

• Measurement: type of captured data (e.g. cameras can
be used to measure the face orientation [47], [59]).

• Input: knowledge expected to be extracted from the
measurement (e.g. a head movement may be used to steer
a rollator).

• Invasiveness: comfort and simplicity of use, mainly how
many sensors users have to wear, how long it takes to
attach them, and how comfortable they are. A system that
requires no wearable sensors nor calibration, such as an
on-board sensor, presents low invasiveness compared to
others with high invasiveness that require sensors attached
to the body and long calibration procedures.

• Cognitive Load: attention and cognitive effort required
from the user to guide the device. When users can easily
interact with the assisted device and the environment, the
cognitive load is None. Other interfaces require Low user
concentration during navigation with the assistive plat-
form. Another group requires significant concentration,
and sometimes users may feel discomfort and fatigue in
a short time, so their cognitive load is High.

• Usability according to literature and/or reported by users
after tests via common questionnaires (e.g. The Psy-
chosocial Impact of Assistive Devices Scale (PIADS)).
It is classified into 3 groups. The High group includes
interfaces that are transparent to the user, i.e. no adap-
tation is necessary. Interfaces in the Medium group are
customizable but not intrusive, so users can remove
hardware at any time and installation is easy. Finally, the
Low group includes interfaces that are both intrusive and
require adaptation, for example, EOG interfaces where
electrodes need to be placed on the face at specific motor
points.

• Training: how much it takes for a new user to learn to
manipulate the device adequately and/or for the device to
be adapted to the user if this is expected (including the
calibration time). We have defined 3 categories. Interfaces
in the None category require no training. Interfaces in
the Low category require less than 5 minutes of training.
Finally, High category, is selected when training and/or
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Fig. 1. Mobility aid devices taxonomy for smart rollators.

calibration time is greater than 5 minute. This value is
extracted from the experimentation section of each paper.
If it is not commented in a paper, it is assigned from
another paper that used the same input interface.

• Cost of the input interface, including hardware and soft-
ware -if any- required to operate it. We have established 3
ranges. In the Low range the cost of hardware is less than
100 USD. Medium range is from 100 to 400 USD. Lastly,
in High range the cost is over 400 USD. This value is
calculated as the addition of all components declared in
the paper or the total cost, if it is specified.

• Validated It shows approaches validated with end-users
and their reported target patient profile.

• Verified The last column shows the approaches tested
only with healthy users.

Table I shows the input interface classification for selected
rollators according to these parameters. The Measurement
column specifies which type of data the system extracts from
the associated sensors. It can be noted that some approaches
have not been tested with the target population in the reviewed
works. As expected, in the case of rollators, the most common
choice is to attach force sensors to the rollator frame, but
several alternatives are proposed to deal with low weight-
bearing loads. We will discuss further on this on later sections.

B. Operation modes

The most relevant non-physical difference among different
mobility assistive devices is their operation mode. There are
solutions that give all the control to the users to just monitor
them [14], [55], whereas others -typically in case of extreme
disabilities- give all the control to the machine and focus on
interfaces instead [39]. In general, all assistive devices control
approaches fall within the spectrum of shared or traded control,
that combines both user control and an automation component.
Shared control is applied in other fields, like aerial vehicles,
and sometimes definitions change from one field to another.
In the field of assistive robotics, shared control can be roughly
divided into different subcategories depending on how much
autonomy the person retains. Originally, the first rollators [36],
[39] operated mostly like an autonomous robot, meaning that

users were only supposed to point out a destination and the
device would take/guide them there. In cases like these, user
contribution to control is minimal.

Another approach to control, the traded control, is to keep
users in full control until they find a situation they can not cope
with on their own, like crossing doors, navigating corridors,
negotiating obstacles, etc. At this point, control is given to
the machine until the situation is over. The decision to give
control to one or the other may be automatic -if control
switch situations can be reliably detected- or it can be initiated
by the user via a proper interface. In extreme, some works
rely on giving control to users as long as possible and only
trigger robot control when a potentially dangerous situation is
detected, e.g. imminent collision. It needs to be observed that
in traded-control, user and machine do not contribute to control
simultaneously. Instead, they take turns at absolute control.

A rollator using autonomous or traded-control modes where
the robot may be fully in control at a given time can be loosely
defined as an active device, meaning that the device may take
action even if users are not moving [46]. As independent
motion may affect user’s balance, recent rollators tend to be
passive, e.g. affect user’s motion by selectively braking one or
both wheels, so users need to walk to operate the system [1],
[22], [29], [31], [38]. Passive systems may oppose to motion in
a prefixed way, e.g. for rehabilitation purposes, modify motion
direction to negotiate the environment [25], e.g. obstacle
avoidance [30], or adapt to the user’s needs to compensate
disabilities [11], [59]. These so-called collaborative control
approaches rely on assessing how much control should be
given to user and machine at any given navigation situation
to combine user’s and robot intention into a single emergent
command.

Operation modes in reviewed works are presented in Table
II. We have explicitly included the following features:

• Switch mode describes how control switches from hu-
man to robot and vice versa. It can be autonomous-human
if the user has full control or autonomous-robot if the
robot has full control. In Traded-control mode, either
user or robot may have control, but not at the same time.
Finally, in Shared-control mode, user and robot contribute
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to the control simultaneously.
• The type of Help provided is represented in another

column. Some system provide help adapted to the en-
vironment or to other non-person related parameters
(Generic). Help may also be adapted to intrinsic user
parameters (Personalized). Finally, if a device does not
provide help, i.e it is only used for monitoring, Help
provided is None.

• Information about the Behavior that systems yield is
presented too.

• The last columns show approaches verified with healthy
users and validated with end-users within their reported
target patient profile.

It can be observed that, as commented, active rollators
(autonomous robot/traded-control modes) have been aban-
doned recently in favor of collaborative (Shared-control) or
monitoring rollators, that have a lower impact on balance,
specially for users supporting significant weight on the device.

III. CURRENT TRENDS ON SMART ROLLATORS

After establishing our features for classification, this section
presents our review on mobility aid devices. We provide two
tables for reference, table I for input interfaces, and table
II for operation modes. The following subsections present a
comparative analysis of smart rollators input interfaces and
operation modes.

A. User Interfaces

The first smart rollators, which basically operated like
autonomous robot with an attached rollator frame, relied on
conventional input devices like touchpads or joysticks to know
the user intention. However, interfaces in rollators quickly
evolved to become more transparent to the user by using
on-board sensors to infer intention from physical interaction
between human and device. Indeed, all reviewed approaches
rely on on-board sensors, such as force sensors [8], [35],
[47], [59], force and torque sensors [24] or load cells [50].
In addition, a platform contains a voice interaction system,
the user uses speech to express their intention [40].

The cost of the on-board sensors vary, from simple force
sensors to measure forces in one axis, ranging from $60 to
$1800, to a tri-axial load cell to measure high accurate forces
in three axes with a cost of $4500. This cost is very high
when compared joysticks or microphone interfaces in assistive
devices, usually cheaper than $250.

As commented, interfaces based on on-board sensors do
not directly provide a explicit navigation command. In the
reviewed approaches motion commands have been inferred
from: i) differences in longitudinal forces [8]; ii) longitudinal
forces and torques in a admittance controller [24], [50], [59];
or iii) adaptive neural fuzzy inference systems using grasping
forces and the rollator velocity [35].

B. Operation Modes in Rollators

Assistance in rollators allows the device to modify the
user’s proposed trajectory using motors or brakes. Recent

rollators tend to oppose to motion rather than to pull to avoid
balance loss (passive assistance). Rollator users are expected to
contribute to control at all times. Furthermore, traded-control
modes may upset the balance, so at the very least, smart
rollators operate under shared or autonomous-human modes.
Indeed, the second most common operation mode in rollators
(40% of reviewed works) is the Shared-control mode. Help
provided in this mode is usually generic, i.e. not specifically
adapted to each user. In the reviewed works, assistance: i)
supports users to steer to correct orientation [1], [2], [3], [22],
[35], [50]; and ii) keeps secure distances between rollator and
user [46] and/or between rollator and obstacles, either at the
current location [26], or in the near future [50].

All commented approaches are adapted to the environment,
rather than to the specific users’ condition. However, users
facing the same situation may require different support de-
pending on their disability profile. Hence, some works focus
on personalizing assistance. For instance, [12] creates a model
to forecast human motion. Then, the model is used to adapt the
platform motion to the user’s gait, while keeping all required
constraints (i.e. separation distance and weight bearing on
the platform). In [11], [24], admittance controllers are used
to continuously adapt support to users, relying on a long-
term user performance model (physical fatigue or velocity).
In [59], a reinforcement learning method is used to select
user contribution weight to control. This weight is optimized
to maximize user’s safety (distance to nearby obstacles) and
trajectory smoothness (low changes in the platform velocities).

Rollators take users everywhere, so they are perfect to
monitors users’ conditions. This is observed in the reviewed
approaches, where autonomous-human mode is the most com-
monly used operation mode (60%). In this mode, the device
simply monitorizes users’ gait and/or biomechanics to assess
their condition and trends. The simplest approach focuses
on measuring walking speed and distance traveled, via IMU
[16], [51] or encoders [5], [6], [8]. This data provides rough
information about users’ conditions [23]. Other approaches
analyze variability between left and right walking patterns (e.g.
stride or step variability) to obtain a better users’ condition
understanding [9]. This can be achieved using LIDAR [14],
[55], RGB-D cameras [5], or encoders and force sensors [6]. In
some cases, medical scales like Tinneti Mobility Assessment
[53] can be predicted using these parameters[6]. Other ap-
proaches focus on activity classification (straight movements,
left-turn, forward-backward movements) with an IMU [51] or
on push events detection [16].

Monitorization can be also used to provide non-physical
help to users. Visual feedback [57] or combinations of visual
and acoustic feedback [34] have been used to improve Parkin-
sonian gait. Visual feedback has also been used to correct some
elderly gait abnormalities [25].

IV. DISCUSSION

In this literature review, 48 works in the last years on smart
rollators have been analyzed. After reviewing and discussing
those papers, several findings have arisen in three main topics:
the validation of proposals, the interfaces used, and the con-
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TABLE II
CLASSIFICATION OF OPERATION MODES

Switch mode Help
provided

Behaviors Validated Verified

Autonomous-
human

Generic

Autonomous-
human

Personalized Guide or improve users’ gait using visual [25], [29],
[57] or acoustic feedback [34]. Guidance the users to
place they want to go using audio cues [40]. Guidance
using resistive or assistive forces [47].

Elderly people [25], [34], [47].
Parkinson’s disease [57]. User with
mild to moderate cognitive and mo-
bility impairment [40]

[29]

Autonomous-
human

None Monitoring walking speed and/or distance traveled
[5], [6], [8], [16], [51]. Performing Tinnety Mobility
Assessment [53]. Activities classification [51]. Detect
push events [16]. Monitoring of gait parameters [13],
[20], [21], [43], [49], [58]. Gait asymmetries [5], [6],
[13], [14], [44], [55]. Walking styles [45].Human Gait
Stability [10]. Gait events [15], Sit-to-stand transfer
[27]

Users with a variety of physical and
neurological disabilities (e.g. Parkin-
son’s disease, Dementia, Ischemia,
Intellectual disability) [5], [6], [8].
User with multiple sclerosis [16]. El-
derly people [10], [13], [14], [15],
[27], [41], [43], [51], [55]. Hemi-
plegic patient [41]

[20], [21], [27],
[44], [45], [49],
[58]

Autonomous-robot Generic
Autonomous-robot Personalized
Traded-control Generic
Traded-control Personalized
Shared-control Generic Steering control [1], [2], [3], [22], [29], [31], [35],

[38], [50]. Keep distances between the human and the
rollator [26], [46], [50]. Fall detection [52]. The walker
synchronously follows the user [28]. Slope mobility
assistance [32]

Elderly people [1], [2], [22], [31].
Disabled people [31], [35], [46].
People with diagnosis of ischaemic
or hemorrhagic stroke [26]

[3], [28], [29],
[32], [38], [50],
[52]

Shared-control Personalized Creates a model to forecast human motion to keep
the desired situation (separation distance and bearing
in the platform) [12]. Admittance controllers and a
long-term user performance [11], [24]. Reinforcement
learning method to maximize the user safety and
the smoothness [59]. Path following via simulated
passivity [4], The rollator will follow in front of the
person - the leader of the formation [48]. Support force
modulated based on the user’s gait [19]. Admittance
control with spatial modulation to navigate in confined
spaces [30]. Adjust the level of resistance depending
on the gait phase [33]. Change the speed [58]

People with moderate to mild mo-
bility impairment [11], [12]. Elderly
people [24]. People with different
physical and cognitive skills [59]

[4], [19], [30],
[33], [48], [58]

trol modes implemented. The following sections cover those
topics.

A. Testing and validation

A first conclusion is that, despite the significant number of
recent works on smart rollators, six out of ten have not been
tested by their target population. Instead, reported experiments
were performed by volunteering healthy people, often by
researchers or students themselves. Although understandable,
given the difficulties of involving persons with disabilities
in tests, this is a major drawback, because disabilities have
an unexpected impact in many aspects of navigation. This is
particularly important in the case of rollators, because healthy
people do not support their weight on the device like target
users do [7]. In conclusion, it is extremely important in this
field to test systems with target population. We have split
analyzed systems into V alidated (tested by at least a person
among the target group) and V erified (tested by healthy
volunteers). Most validated systems were tested by elderly
people, but some focused on specific disease like Parkinson,
dementia or ischemia. Validated systems focused mostly on
gait and support monitoring, usually by means of force sensors
on the handlebars. Verified works presented more variation and
paid significant attention to user intent prediction, involving
different multimodal sensors.

B. Interfaces

Interfaces in rollators do not present as much variation as in
other assistive devices (e.g. wheelchairs), as there are obvious
constraints, both physical and cognitive, to what people can
use while they walk. Invasiveness in rollator interfaces needs
to be low, since restrictions to users’ movements can affect
their mobility and, thus, increase fall risk. For the same reason,
rollator users need to focus on the task and keep both hands
on the handlebars most of the time. Hence, although wearable
sensors are sometimes used for testing, recent systems tend
to keep interfaces on-board and as less intrusive as possible.
While interfaces based on audio and visual data are feasible,
most reviewed rollator interfaces rely on the upper limbs
interaction with the handlebars to obtain the user intention
by means of different sensors: force sensors [8], [35], [59];
force and torque sensors [24]; or load cells [50]. Feedback,
if any, is often provided haptically (structure vibration or
selective braking) or visually (LEDs) [25], [34], [57]. Other
sensors can be used to monitor gait parameter, such as inertial
measurement units (IMUs) [20], [45], [49], cameras [10], [15],
[48], laser range finder (LRF) [41], [43] or ultrasonic sensors
[25], but they are not used to obtain the user intention.
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C. Control modes

Regarding control models, original assistive rollators oper-
ated on active mode, i.e. rollators could move autonomously,
independently from the user. As active mode may upset
balance, recent rollators operate in passive mode, meaning
that users are expected to move the rollator, which, at most,
may selectively brake one or both wheels to affect motion.
To this respect, it needs to be noted that original rollators
were basically autonomous robots with attached handlebars,
and hence, quite heavy, whereas recent ones tend to be
modified versions of easier to operate commercial rollators.
This evolution has led to disuse of autonomous-robot and
traded-control control modes in favor of autonomous-human
and shared-control ones, where robots either do not contribute
to motion (monitoring-only devices) or cooperate with humans
in a non disruptive way.

In the first case, the device simply monitors user condition
[5] or useful parameters, such as walking speed or distance
traveled [16], [51]. In the second case, the device provides
walking support: steering control [1], [2], [3], [12], [22], [35],
[50], maintaining motor function (e.g using visual or auditory
cues) [25], [34], [40], [57], collision avoidance [59], or saving
energy cost of walking [46].

One of the major limitations of current control modes is
lack of adaptation to the specific needs of users, as there is
a wide variety of functional disabilities, present in the target
population at very different degrees. As commented, continu-
ous adaptation to (evolving) conditions is of key importance
to reduce frustration and loss of residual skills. In this sense,
it is expected that improvements and cost reduction in sensors,
combined with learning algorithms will enhance human/robot
integration in a near future.

V. CURRENT CHALLENGES

As a whole, we can conclude that recent trends in rollator
tend to develop systems structurally similar to commercial
standard ones, which operate in passive mode (human propul-
sion) and mostly rely on on-board sensors. Typical hardware
includes force sensors and, often, odometry on the wheels,
although equipment like 360o lasers or cameras is being
progressively added as its cost keeps decreasing and embedded
systems provide higher on-board computation power. Recent
smart rollators are used either exclusively for monitoring or for
providing haptic feedback by passively modifying trajectories
in shared-control modes. In both cases, one of the main
challenges working with users with disabilities is to determine
their intent. Although weight balance on the handlebars is
often transformed into a motion vector, depending on their
disability profile, some users may not be able to steer the
rollator in the desired direction. Besides, resulting data is
very limited, as only upper limbs interaction between user
and device is measured, and cheapest solutions like force-
sensing resistors yield low precision and repeatability. Lasers
and depth cameras may provide additional information on gait
and pose to cope with this issue, plus multimodal sensors
like microphones or eye trackers may also gather meaningful
information. In any case, extracting intention from captured

data from users with different disability profiles is still an open
challenge.

Physical assistance also offers opportunities, as many smart
rollators are only used for monitoring and remaining ones
mostly focus on steering assistance for obstacle avoidance .
Control approaches must avoid upsetting balance to minimize
fall risk, so trade-control must be avoided and shared control
must be as smooth as possible. Also, efficient algorithms
to predict balance rather than to detect falls in order to act
preemptively using only on-board sensors could be of major
interest.

Assistance personalization remains one of the major chal-
lenges in smart mobility devices. Personalization allows the
device to provide the amount of help that the user needs. This
may increase acceptability [37] and may reduce frustration
[28], plus it avoids loss of residual skills caused by excess of
help. Recently, some approaches to assistance personalization
have been explored by analysing how users operate the device
(e.g model to forecast human motion to keep the desired
situation [12]), but modelling people with disabilities still
requires further work.

Finally, since disability is hard to measure and standard
profiles are very difficult to set, a major effort is required to
establish disability benchmarks and quantify help needed per
task or situation. Current clinical scales are manually obtained,
so any advance in automatizing these procedures would be
helpful both for system designers and for clinicians.

We expect this review to be useful both for scientists and
health professionals. To this end, frequent terms in the field
of assistive rollators have been listed and disambiguated, so
differences among existing systems can be adequately tack-
led. Information on hardware, software, control architectures
and algorithms is provided so scientists can determine their
contributions. Besides, information on applications, acquired
knowledge, target population and degree of validation may be
helpful to health professionals in designing tests or deciding
whether they want an assistive robot to validate therapies and
condition changes.
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