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AI-CardioCare: Artificial Intelligence Based Device
for Cardiac Health Monitoring

Rakesh Chandra Joshi, Juwairiya Siraj Khan, Vinay Kumar Pathak, and Malay Kishore Dutta

Abstract—Cardiac disorders are one of the leading causes of
mortality around the globe and early diagnosis of heart diseases
can be beneficial for its mitigation. In this article, an artificial in-
telligence (AI) based device has been proposed, which allows for an
automatic and real-time diagnosis of cardiac diseases based on deep
learning techniques. The heart sound (phonocardiogram) signal is
acquired by a customized designed stethoscope and the signal is
processed before analysis using AI methods for the classification of
four major cardiac diseases (Aortic Stenosis, Mitral Regurgitation,
Mitral Stenosis, and Mitral Valve Prolapse). Two deep learning-
based neural networks, one-dimensional (1-D) convolutional neural
network (CNN) and spectrogram based 2-D-CNN models from the
analysis of these signals has been integrated with a low-cost single-
board processor to make a standalone device. All data processing
is done in a single hardware setup and user interface is provided
allowing the user to control the data accessibility and visibility to
generate the diagnostic report. As a result, the developed device
has demonstrated to be a valuable low-cost diagnostic tool for both
medical professionals and personal usage at home.

Index Terms—Body auscultation, cardiac disorders, deep neural
network, health care system, phonocardiogram.

I. INTRODUCTION

ACCORDING to World Health Organization, cardiovascu-
lar diseases (CVDs) are one of the significant causes of

death worldwide and around 17.9 million people losses their
life every year [1]. The main cause of high morbidity and death
is late identification of heart-related disease due to a lack of
necessary facilities and knowledge in developing nations [2],
[3]. CVD is a collective term used for a number of blood vessels
or heart-related disorders, which generally includes rheumatic
heart disease, cerebrovascular disease, and coronary heart dis-
ease. The severity of CVDs may be as high as in cases such as
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Fig. 1. Conceptual diagram of the cardiac health-monitoring device.

heart attacks or strokes leading to premature deaths in four out
of five cases [4]. CVDs severely affect the overall health and
adversely affect the lives of the general population.

Prevention, early diagnosis and treatment are considered key
factors for limiting the negative impact of these deadly diseases.
Vibrations in the heart produce sound and murmur throughout
each cardiac cycle, which can be recorded as audio wave signals
using a digital stethoscope [5]. Heart sounds of healthy per-
son are typically composed of low-frequency signals, whereas
high-frequency noises are more common in disease due to
turbulent blood flow over faulty heart valves. Electrocardiogram
(ECG) and phonocardiogram (PCG) signals are two widespread
noninvasive methodologies for the early diagnosis of compli-
cations related to cardiac health such as detection of defects
and structural abnormalities in the heart valves. The recognition
of abnormality and their classification from different abnormal
classes of heart sounds can be a strenuous task even for a spe-
cialist and may introduce subjectivity in the diagnostic interpre-
tation. In this scenario, artificial intelligence-based methods can
benefit in automatic interpretation of cardiac sounds, especially
in underdeveloped regions of the world, where there is scarcity
of physicians.

The applications of artificial intelligence (AI) based tech-
niques in PCG signals are used in recent researches to evalu-
ate whether a cardiac sound is normal or abnormal, however,
this article tries to find a generalized and effective solution to
numerous cardiac disorders and handle different complexities
in the signals using various deep learning-based approaches.
Multiclass classification of cardiac disorders becomes more
challenging in real-world scenario due to the complexity of
recorded PCG signals and interference due to ambient noise
during heart sound auscultation. The conceptual diagram of the
proposed device AI-CardioCare, is shown in Fig. 1. The goal
of this article is to design a fully automatic AI-based device
capable of identifying four major cardiac disorders in a nonin-
vasive manner and tackling misclassification issue pertaining to
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cardiac diseases. The subject needs to record the cardiac signal
using an electronic stethoscope and select the requisite options
in the user-friendly graphical user interface (GUI). Then, the
recorded signal will be comprehensively tested with developed
deep learning techniques and user can generate the diagnostic
report having the information on the cardiac health.

The rest of this article is organized as follows. Section II
illustrates existing related works and advancements through this
article. Section III describes the system design of the proposed
device. Section IV describes the details about the experimental
results obtained on different scenarios of data and training
models with different approaches with their discussion. Finally,
Section V concludes this article.

II. EXISTING RELATED WORKS AND ADVANCEMENTS

THROUGH THE CURRENT PAPER

A. Related Prior Research

Advances in the field of AI with high-speed processors and
efficient algorithms have made the concept of a decision support
system a reality in the recent decade. Various machine learning
and deep-learning methods have been developed and trained
with biomedical data to have a more accurate decision-making
mechanism [6]. Several studies have been reported for the
development of heart disease diagnosis frameworks based on
machine learning (ML) models with enhanced performance on
clinical data parameters [7], [8], [9] and unsupervised learning
approaches like discriminatively boosted clustering [10]. Dif-
ferent clinical data parameters such as age, heart rate, blood
sugar, cholesterol, and blood pressure were considered to make
predictive decisions and XGBoost demonstrated superior perfor-
mance with an overall accuracy of 95.90% [11]. Ali et al. [12]
and Shah et al. [13] used support vectors machines to increase
the efficiency of the diagnosis process to select relevant features
and predict cardiac disorders. In another ML-based work, 11
different features are extracted from the nonsegmented signals
using instantaneous frequency and classification is done through
Random Forest with 94.90% accuracy [14]. The combination of
recursive feature elimination and genetic algorithm has achieved
an accuracy of 86.6% after the selection of relevant feature
subset [15]. Artificial neural networks were also equipped with
different clinical parameters to find the cardiac abnormality [16].

Data collected from multiple wearable body sensors to mea-
sure oxygen saturation, glucose level, cholesterol, temperature,
blood pressure, ECG, electromyography (EMG), and electroen-
cephalogram (EEG) with associated medical information of the
patient are used for heart disease prediction [17]. An Internet
of Things (IoT) and deep learning-based patient monitoring
framework for heart patients was proposed to assist in the
diagnosis of cardiac disorders, and perspective medication [18].
ElSaadany et al. [19] presented a diagnostic scheme utilizing
IoT with a low energy Bluetooth communication module and
multiple sensors that gathered data of heart rates along with
body temperature. Other such wearable sensors systems and
IoT-based healthcare assistive systems for monitoring cardiac
health were also designed in multiple works [20], [21], [22].
Different studies analyzed PCG signals and different AI-based

techniques were used to develop some cardiac health screening
systems [23], [24], [25]. A deep neural network also used to
classify significantly class-imbalanced clinical data and crucial
features are homogenized by using a fully connected layer. In
this two-step approach, the least absolute shrinkage and selection
operator and majority-voting were used where overall accuracy
of 79.5% was obtained [26].

Auscultation is one of the most popular and traditional means
of analyzing cardiac problems. The majority of currently avail-
able digital stethoscopes have the ability to record and trans-
fer heart sounds. Similarly, an architecture was proposed for
memory constraint mobile devices to diagnose cardiac auscul-
tation using sequence residual and representation learning from
fine-grained extracted features from the PCG and attained an
accuracy of 86.57% [27]. In a recent work, deep learning with
higher order spectral analysis-based approaches is utilized for
multiclass classification short heart sound signals [28]. Further-
more, numerous AI algorithms have proven that auscultation
data can be characterized as healthy or diseased. One of the
few works in the direction to develop an end-to-end product, an
AI-powered mobile application was designed that can recognize
cardiac abnormalities with approximately 92% accuracy using
a stethoscope and mobile but the applicability of work is limited
to binary classification [29].

B. Issues With Existing Solutions and Other Challenges

IoT-based systems with multiple body sensors and clini-
cal parameters-based diagnostic methods are not feasible for
one-to-one screening in real-world scenarios. Apart from the
conventional ML-based techniques, deep learning-based classi-
fication using convolutional neural network (CNN) is needed to
be explored more. Instead of giving the predictive output into
normal and abnormal categories, it would be more beneficial if
it can identify different categories of cardiac abnormality. As
only software or computer programs were designed in most of
the works to analyze the data, there is a strong need to develop
an AI-powered end-to-end decision-making system for real-time
diagnosis of multiple cardiovascular diseases with high accuracy
and robustness, which can not only help medical professionals
but can also be utilized for screening of disease in the absence
of a doctor in primary health care units in remote places or in
rapid mass screening of the cardiac health for a large population
with limited medical facilities.

C. Novel Contributions of AI-CardioCare

The main contribution of this article is to develop an end-
to-end handheld, automatic, compact-size, portable, standalone,
and use-friendly artificial intelligence-based solution for rapid
diagnosis of different cardiac disorders. Two deep learning
models have been developed for classification of low frequency
cardiac sounds and is optimized in different parameters for
achieving high accuracy. The deep learning model developed
using the 1-D signal is complemented by another deep learning
model using the spectrogram of the signal makes the process
full-proof and robust. Furthermore, the models are customized
in a lightweight computing framework to be integrated in a
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Fig. 2. Block diagram of the proposed methodology.

Fig. 3. Development of the final prototype.

low-cost processor to make a portable and cheap device. In the
proposed modality, subjects need to record their heart signal
with the designed digital stethoscope by making the selection of
required options in the user-friendly GUI. The recorded sound
is fed to the proposed device and that recoded signal will be
processed to a complete report with diagnostic results. These
results can be printed and emailed as a record.

Another key contribution is higher prediction accuracy and
reduced error rate for identification of four different cardiac
disorders. The proposed method has also improved recognition
robustness, particularly in noisy situations with signal augmen-
tation techniques to handle different real-world scenarios. The
proposed CNN architecture optimizes the multidisease classi-
fication task with less computational complexity appropriate
for real-time operations. In this method, anyone can do the
requisite screening task with minimal guidance instead of a
trained workforce.

III. AI-CARDIOCARE: SYSTEM DESIGN

The methodology behind the development of the proposed
AI-CardioCare device is summarized in Fig. 2, where multiple
steps have been taken before porting the AI-based module in
a device-based modality. The cardiac health data have been
captured from multiple experts under the supervision of clinical
experts. The recorded cardiac signals were preprocessed and
labeled into multiple health categories and different recognized
cardiac disease according to the cardiac health of the subjects
and opinion of experts.

Then, the final prototype of AI-CardioCare is developed after
assembling different hardware and software units in one frame-
work to design a compact portable cardiac health-screening
device, as shown in Fig. 3. Different hardware modules such

Fig. 4. Circuit diagram of the AI-CardioCare.

Fig. 5. Chest piece of Stethoscope.

as touch screen display, sound cards, single board computer,
and power battery, are assembled together in a as 3-D printed
casing for this purpose. Software installation of the necessary
libraries, designing of GUI and interfacing of single board DSP
processor with other hardware units is also done.

The circuit diagram of the proposed prototype is shown in
Fig. 4, where different modules are connected to the processor.
The Wi-Fi module can be utilized to access internet or to connect
associated printers to email or print report.

A. PCG Sensing Unit

A stethoscope is designed that uses vibrations to pick up
heart sounds and transmits them to a processing unit through a
microphone. The stethoscope has two separate sound-receiving
heads: the bell and the diaphragm, as shown in Fig. 5. Diaphragm
is a flat or curved chest component, coated in a film that looks
like a drum. When sound waves reach the diaphragm, it vibrates
and amplifies the sound, which is then transmitted via the sealed
hollow tube into the microphone. The bell has a double cup
structure and is made up of stainless steel. Chrome-plated brass
plate or aerospace alloy can also be used.

This stethoscope can be used to capture both pediatric and
adult auscultations with diaphragm diameter around 32 mm
and 44 mm, respectively. Cardiology sensitivity ranges from
3.2–26 dB in a frequency range of 50–1000 Hz. The diaphragm
detects high-frequency noises with substantial pressure, whereas
the bell detects low-frequency sounds. The bell carries all fre-
quencies adequately, but any secondary low-frequency audio
hides the high-frequency murmurs (e.g., aortic regurgitation)
in some patients, making detection of the murmuring sound
more difficult. The diaphragm does not filter out low-frequencies
selectively; instead, all frequencies are attenuated uniformly,
lowering the barely discernible low-frequency sounds below the
human hearing threshold [30]. The bell of stethoscope should be
pushed against the body wall with just enough pressure to form
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Fig. 6. Digital Stethoscope making: Connection of audio jack connector,
microphone and diaphragm.

an air vacuum by excluding ambient noises in order to detect
low-frequency signals.

PCG signal acquisition for AI-CardioCare can be carried out
by converting the conventional analog stethoscope into a digital
one. To accomplish this task, a 3.5 mm audio connector is con-
sidered with one end open so as to fix the microphone. Complete
operations for making a digital stethoscope are summarized in
Fig. 6.

The most common cause of poor acoustic performance is air
leakage; even a little air leakage with a radius of only 0.0075
inches can reduce sound transmission by up to 20 dB, especially
for frequencies below 100 Hz [31]. Thus, the entire connection
is then covered using shrink tubes of varying sizes to ensure that
it is not prone to external noise and disturbances.

B. Signal Conditioning Section

This section is composed of three different parts, i.e., filtering,
amplification, and analog-to-digital signal conversion. Signal
filtering ensures the removal of any noise components from
the heart sound signal. A band-pass filter of 10–1000 Hz has
been used to transmit the sounds in a given frequency range and
record the cardiac sounds. The design consists of a high-pass
filter followed by a low-pass filter, where the MCP604 quad
operational amplifier has been used with the advantages of
high-speed operation and low bias current.

The signal amplification process is carried out to magnify
the input signal to yield a notably larger output signal. The
amplifier circuit is made up of LM386, an integrated circuit
for low voltage audio power amplifiers. It amplifies around 20
times heart sounds in the frequency range of 20–1000 Hz.

The analog heart sound signals recorded using a diaphragm
need to be converted into digital format to be fed to the processor
for further processing. This operation is carried out by the analog
to digital converter. The PCF8591 is an 8-bit CMOS signal
acquisition device having four input pins, one output, and a
serial I2C-bus interface on a single chip with a single supply.
Analog input multiplexing, on-chip track and hold, 8-bit analog-
to-digital conversion are among the features of the device. The
maximum conversion rate is determined by the I2C-maximum
speed of the bus.

TABLE I
SPECIFICATIONS OF SINGLE BOARD DSP PROCESSOR

Fig. 7. Details for casing of the prototype and their dimensions (in mm).

C. Processing Unit

The processing unit of a single-board computer is comprised
of Broadcom BCM2711 64-bit ARM Quad-core System on
a chip having a processing speed of 1.5 GHz. Single board
DSP processor supports Bluetooth and 2.4 GHz IEEE 802.11ac
wireless connectivity. Interfacing can be done via different USB
ports, micro-HDMI ports. The complete device specifications
for AI computing module are given in Table I.

The system runs on python supporting operating system,
connected with the touch screen display to perform different
tasks to use the graphical user interface for visualization of
the process and utilizing the predictive diagnosis facility of the
proposed device. Display serial interface standard is utilized to
allow high-speed communication between LCD screens having
10-point capacitive touch functionality.

D. Mechanical Design

The mechanical design of the AI-CardioCare is made accord-
ing to the desired requirements of placing each component at
a suitable position for making a compact and portable model.
The CAD design is built in SOLIDWORKS software with
appropriate dimensions after a number of iterations. The final
CAD file is then saved as .SLDPRT and converted to .STL format
and fed to the 3-D printer. The final casing is 3-D printed using
MAKERBOT 3-D printer based on fused deposition modeling
technology. The top face of the casing is extruded and left
hollow for the purpose of fitting in the LCD display. The design
dimensions of front, left, and right faces and slots are also given
in the CAD file, as shown in Fig. 7. The rear face is given a
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bend at a distance of 46.74 mm about an angle of 150° for a
convenient view and access to the touchscreen. The bottom face
is the base of the device. All the other components are placed
inside the casing below the screen.

E. AI Module

The AI-CardioCare device for the automatic diagnosis of
CVDs works in two modes. One is based on 1-D classification
of heart sounds i.e., raw PCG signals while the other is based
on 2-D classification of spectrogram of the given/recorded heart
sound signals.

The cardiac sounds in the dataset have been classified into
two primary categories based on PCG signals: first having
recordings normal healthy and the second containing recordings
from subjects suffering from four distinct types of major CVDs
i.e., aortic stenosis (AS), mitral regurgitation (MR), mitral valve
prolapse (MVP), and mitral stenosis (MS), comprising five
distinct classes [32]. The dataset is in .wav format and contains
1000 audio samples, 200 samples each class, and only one
channel with 16 bits per sample. It features a sampling rate of
8000 Hz and a bit rate of 128 kb/s. The dataset used for training
has high interclass and intraclass diversity and data samples are
acquired from subjects belonging to different age group and
gender with high variation in signals in terms of time, amplitude,
and intensity. Noise injection is done in collected data to get
efficient performance because actual cardiac signals collected
by clinicians may contain noise in real-world settings. Hence,
background deformations chosen at random within a frequency
range of 1000 Hz and applied directly to raw PCG signals. For
a signal represented by S = [s1, s2, s3, . . . ,sn], having n time
instances and si is the amplitude in those time instances for
i = [1, 2, 3, . . . ,n]. The background deformation to add in the
given signal represented as η = (η1, η2, η3, . . . ,ηn) having
same length n as that of input signal. The resultant signal ϒ
is represented and their relation is given as

Υ = S + η ∗ σ (1)

where, η ranges from 0 to 1 and σ is the control parameter is
taken 1000 to keep final signal in frequency range of 1000 Hz.

The set of newly generated signals with random background
noises are mixed with the raw signals to produce augmented
dataset with increased size of the training set for extraction of
the most discriminatory features of cardiac sounds and their
authentic categorization through a deep neural network. Also,
training in noisy environment increased the robustness of the
model. After augmentation, final augmented dataset is composed
of 2000 signals having 400 signals in each category. Thus,
new version of the dataset for 5-fold cross-validation using the
background deformation approach is presented in this article for
validating the performance in noisy environments.

1) Diagnostic Framework for Analyzing PCG Signals Using
1-D CNN:: Automated diagnosis of the cardiac disorders is a
challenging problem due to different issues such as background
noises with high intensity and substantial variations in those
sounds. As a result, processing these data is required in order
to ready a raw PCG signal for training a CNN model [25].
This aids CNN in identifying significant and discriminating

Fig. 8. Sample PCG signals after pre-processing. (a) Healthy. (b) Aortic
Stenosis. (c) Mitral Regurgitation, (d) Mitral valve prolapse. (e) Mitral Stenosis.

characteristics that may be used to differentiate between various
cardiac issues. While acquiring PCG signals with electronic
stethoscope, different noises, and other artefacts can also be
recorded, which must be eliminated in order to properly identify
cardiac issues. As a result, the amplitude of given signal and time
length may be adjusted to various levels. Thus, all signals are
subjected to 16-bit amplitude normalization, and signal duration
lengths of up to 2.5 s, which have been converted to a frequency
of 8 KHz, resulting in 20000 data points. Background noise,
such as high-frequency noise, is typically present in recorded
PCG signals. As the heart beats at a frequency of 20–150 Hz,
frequencies higher than 150 Hz may be readily eliminated.
Gaussian butterworth filter with high-cut at 20 Hz and low-cut
at 150 Hz has been employed for the aforementioned purpose.
Fig. 8 represents the normalized amplitude of PCG signals after
pre-processing for different categories with respect to time.

The CNN makes use of its ability to share features or charac-
teristics and reduce dimensionality. As a result, the number of pa-
rameters is minimized, as is the computation complexity. Here,
a dataset of cardiac sounds with various amplitudes and fixed
time instance is used to train the 1-D CNN for cardiac health
prediction, which consists of multiple convolutional layers ac-
companied by few more dense layers. The data are transmitted
from one layer to the next, with low-level features extracted
in the first layer and more abstract information processed in
the deeper layers. Fig. 9 depicts the whole architecture of the
1-D-CNN architecture. Following these convolutional layers
are dense layers. Rectified linear unit (ReLU), an unsaturated
nonlinear activation function, is employed to construct the pro-
posed 1-D-CNN architecture to speed up the training process
and improve accuracy because it performs better than saturated
nonlinear functions like Tanh and Sigmoid. To limit the amount
of network parameters, max-pooling operations are used across
the region in different stages.

2) Diagnostic Framework for Analyzing PCG Signals Using
2-D CNN:: In another approach, power spectrogram of recorded
cardiac signals was utilized to develop a 2-D-classification
network. The power spectral density estimates the power of
the signal over frequency and then, signal spectrograms have
been developed where small window has been analyzed for
longer time duration and plotted with respect to the time
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Fig. 9. CNN architecture for diagnosis of cardiac disease.

corresponding to that window [33]. Raw 1-D cardiac signals
have been converted into power spectrograms in a stepwise
manner with the goal of transforming the entire dataset including
augmented dataset, into a dataset of spectrogram images [34].
For the time-frequency analysis of audio signals, a short-time
Fourier transform (STFT) approach called Power spectrogram
is utilized, with mono-audio clips feeding the algorithm as batch
input. STFT allows to perform time-frequency analysis. It is
used to generate representations that capture both the local
time and frequency content in the signal [35]. STFT has better
temporal and frequency localization properties compared with
other transforms such as the Fourier transform [36]. STFT or
power spectrogram can also give time-localized information
about the energy content of each heartbeat. The main advantages
of the STFT in the case of cardiac signal analysis is that it is
possible to know the occurrence of the different frequencies
in time windows and visualize nondeterministic energy in the
heartbeat, which can be prominent features for deep learning
methods for automatic classification [37].

The generation of STFT of a signal that changes over time
requires the use of a window function to divide an elongated
version of the time-varying signal into equally tiny sized por-
tions. Each portion is then subjected to the Fourier transform.
First, a 44100 Hz sampling rate raw audio file of a cardiac signal
is loaded. Because a normal conversation is roughly at 60 dB,
a threshold level of 60 dB is chosen to eliminate extraneous
sounds. The signal is then normalized to 44100 data points by
clipping or padding as needed, depending on the signal length.

The fixed normalized array was then converted into a
complex-valued matrix that represents the STFT matrix, with
the FFT window size set to 2048 and the hop length set to 812.
The discrete STFT is represented as follows:

X (m, ω) =

∞∑

n = −∞
x [n]w [n − mR] e−jωm (2)

where x[n] is the input signal, w[n] is the window function of
length m, X(m,ω) is the DTFT of windowed data centered about

Fig. 10. Residual block used in the proposed deep learning architecture.

time mR, and R is the size of sample hop between consecutive
DTFTs.

Then, the STFT is converted into dB-scaled STFT. Hann
and Hamming window functions are widely utilized window
functions in STFT. Hann window is best suited for the intended
job since it has fewer side lobes and less leakage than other
windowing techniques. The dimension of the output single-
channel spectrogram image is 1025×120×1 pixels. Various
feature filters are used by the model to find local patterns in an
image. The feature extraction section of the proposed 2-D-CNN
architecture for processing spectrogram of cardiac signals is
a combination of a convolutional layers, max-pooling layers,
and batch normalization with suitable hyperparameters while
the second section is a fully-connected neural network, which
classifies the extracted features into different categories.

Although CNNs are efficient, but the problem of vanishing
gradient emerges while updating the weights. This can be han-
dled by employing skip connections, as seen in ResNet, and
utilizing residual blocks [38]. The architecture 2-D CNN for
diagnosis of cardiac signals using spectrograms in this article
utilizes different skip connections. The residual block of the
proposed architecture has been shown in Fig. 10, showing
different skip connections and convolutional blocks that were
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Fig. 11. Layered architecture of the proposed deep learning model containing
four residual blocks and one fully connected neural network.

TABLE II
HYPERPARAMETERS USED IN TRAINING OF 2-D-CNN MODEL

used multiple times in the architecture of proposed deep learning
model. It permits the gradient to flow along a second shortcut
path in deep neural networks, resolving the issue of vanishing
gradient.

The complete architecture has been shown in Fig. 11, where
data has been processed through multiple number of layers for
proper categorization. The proposed 2-D-CNN architecture for
diagnosis of cardiac signals consists of 43 layers including batch
normalization, activation, convolution, flattening, and dense
layers.

In order to make the network efficient, responsive, and robust,
the batch normalization technique is utilized for regularization to
solve a major problem of internal covariate shift. Hyperparame-
ters used for the development of the proposed CNN architecture
are given in Table II. The last layer of the densely connected
network exploits the softmax activation function to enable the
normalization of the outputs into probabilities of the envisaged
five classes.

F. AI-CardioCare Implementation

The diagrammatic representation of the implementation of
AI-CardioCare has been shown in Fig. 12. It begins with switch-
ing on the AI-CardioCare device and placing the chest-piece of
the stethoscope in the desired position for clear heart sounds of
the patient’s chest in order to acquire PCG signals.

The captured PCG sound signal is then processed within the
device, in the processing unit, in a series of sequential steps. First,
signal filtering is carried out to remove any noise components in
the signal that is followed by signal amplification resulting in a

Fig. 12. Diagrammatic representation of the implementation of AI-
CardioCare.

Fig. 13. Augmentation techniques. (a) Raw signal. (b) Augmented signal.
(c) Raw power spectrogram. (d) Augmented power spectrogram.

magnification of the signal for a better yield and analog to digital
conversion for further processing. The signal is then fed to the
deep learning model for prediction of the normalcy of heart rate
and otherwise types of CVDs by executing signal classification.
The AI-CardioCare device also generates a report for further
diagnosis to enable careful perusal by a medical professional.

IV. EXPERIMENTAL RESULTS

A. Experimental Configuration and Performance Metrices

The original cardiac signal dataset has 1000 audio files that
are divided into five categories, i.e., Normal, AS, MR, MS, and
MVP; each of which contains 200 files. To begin, the model
is trained and tested using a 1000-file original dataset. The
same model is trained and tested using an augmented dataset
that contains a total of 2000 files, with 400 files in each cat-
egory. All audio files in the .wav format are transformed into
an array of signal amplitudes to train a 1-D-CNN architecture
and then into power spectrogram images with dimensions of
1025×120×1 pixels to process with 2-D CNN. The signals
before and after augmentation are shown in Fig. 13. Then,
five-fold cross-validation has been done where the data spilt
into two subsets i.e., training and test set. The performance of the
trained models has been accessed in each iteration on a different
test set in each fold of cross-validation.
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TABLE III
VARIOUS PARAMETERS, HARDWARE, AND SOFTWARE SPECIFICATIONS

The accuracy, specificity, sensitivity (recall), precision, and
F-1 score of the trained deep learning model are all evaluated
using five-fold cross-validation. The model is tested with unseen
data samples of cardiac sounds, which are labeled by human
physicians. There is no overlapping between the training and
testing (unseen) set during five-fold cross-validation. These
performance matrices are computed from the resulted confusion
matrices for both raw and augmented data using false positive
(FP), true positive (TP), false negative (FN), and true negative
(TN).

An exhaustive analysis has been performed using the perfor-
mance matrix of the trained deep learning models using different
methodologies and data configuration in order to make the model
robust. The performance of the trained model is evaluated on
different matrix components such as accuracy, recall (or sensi-
tivity), specificity, and F1-score. The complete list of parameters,
software, and hardware related information is mentioned in the
Table III.

B. Detailed Results

All the data samples have been resized to the same dimen-
sions, which reduces the potential ambiguity and data acqui-
sition error. Table IV represents the compiled results for all
five-folds of cross-validation for trained deep neural networks
with raw and augmented data of cardiac sounds. The results
are demonstrated into two parts i.e., 1-D CNN using raw PCG
signals and 2-D CNN using spectrograms of those signals for
both raw data as well as augmented data. Outcomes signifies
high accuracy with higher values of TP and TN, whereas FP and
FN got lower values.

The data augmentation and addition of noise were done
for authentic categorization with low FP and FN rates. Signal
acquisition in controlled conditions with some analysis of past
medical history can be done to reduce false negative in clinical
scenarios. Even if there are FP or FN, these rates can be reduced
further after taking potential misclassified samples to retrain the
deep learning model for enhancing the robustness while testing
the device in real-world scenarios. Also, the proposed prototype
is a screening device only and if the subject is identified as
positive case with suspected disease, the subject will be recom-
mended to medical professionals to assess the impact or grading
of disease and consequent treatments.

Four confusion matrices for 1-D CNN and 2-D CNN with raw
data and augmented data have been shown in the Fig. 14, where

Fig. 14. Confusion matrices. (a) One-dimensional CNN with raw data.
(b) 1-D CNN with augmentation. (c) Two-dimensional CNN with raw data.
(d) 2-D CNN with augmentation.

Fig. 15. (a) Accuracy in different folds of cross validation. (b) Box-plot
Normal. (c) Box-plot AR. (d) Box-plot MR. (e) Box-plot MS. (f) Box-plot
MVP.

the comparison of obtained multiclassification predictions and
actual ground truth labels have been shown after averaging all
five-folds of cross-validation.

The accuracy in different folds of cross-validation and cate-
gorized performance matrices of five different categories used
in the proposed work including four abnormal categories, as
shown in Fig. 15. The results are also compared with other
approaches in Table V, which demonstrates superiority of the
proposed method with respect to state-of-the-art methods. Over-
all, spectrogram-based analysis of cardiac signals results in
superior results than processing the 1-D array of amplitudes of
PCG signals using different deep learning architectures. More
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TABLE IV
COMPILED AVERAGE FIVE-FOLD CROSS VALIDATION RESULTS USING DIFFERENT METHODOLOGIES

TABLE V
COMPARISON OF THE PROPOSED APPROACH WITH OTHER METHODS

TABLE VI
PERFORMANCE ASSESSMENT ON TEST DATA

training data in CNN leads to increased accuracies, as evidenced
by the resulting confusion matrices, which show high accuracy
with a large dataset.

Additionally, the efficacy and robustness of the developed
device are tested in real-world scenarios on 205 subjects using
both 1-D-CNN and 2-D-CNN approaches for acquired cardiac
signals. Table VI shows the analysis of different categories
of signals in terms of accuracy and F1-score. Spectrogram
based 2-D-CNN approach obtained 97.16% average accuracy
on these testing signals. Both 1-D and 2-D CNN models work
independently that enables the user multiple analysis of cardiac
signals with single handheld device without requiring additional

hardware. Subjects can double-check the results with more
affirmation using two completely independent methods.

C. Computation Time

The AI-CardioCare device acquires a 2.5 s PCG signal as input
using a stethoscope. The average processing time to process a
single recorded signal is 0.25 s using the 1-D-CNN technique
and 0.32 s for the spectrogram based 2-D-CNN technique,
including uploading time at a rate of 150 kb/s. A conversion
time to convert and save a raw signal to a power spectrogram
takes an average time of 0.1127 s. Thus, a total time of 2.75 s
was taken with 1-D-CNN approach and 2.9327 s using 2-D-CNN
approach for each cardiac signal.

D. Developed AI Device for Cardiac Health Screening

After training the deep neural networks for multiple iterations
on given dataset, trained AI-models were ported to low-cost
single-board computer for development of standalone device for
having better usability in real-world situations. The proposed
device consists of an electronic stethoscope (chest piece and
microphone); signal preprocessing unit, DSP processor and
touch screen having GUI interface for accessibility of different
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Fig. 16. (a) Developed prototype of AI-CardioCare in the lab. (b) Designed
GUI for the screening device- AI-CardioCare.

functions. The developed prototype for the cardiac health
assessment device is shown in Fig. 16(a). Different hardware
components including battery and switches are embedded in
the 3-D printed device to have a compact device and portability.
A Python based user-friendly GUI application has been built
for monitoring and analysis of generated reports, which can
be used by any regular individual (or operator) with minimal
guidance. The trained AI-model has been ported in the hardware
setup with low-cost single board computer to use the designed
end-to-end modality in real-world scenarios. Fig. 16(b) exhibits
the GUI of the developed device for the automated cardiac health
monitoring. GUI is divided into four sections i.e., patient’s
details, diagnostic method, options, and report visualization.

Name and age of the patient will be recorded in “patient
details” section to be used in generation of a diagnostic re-
port. Operator can choose any of the two methodologies i.e.,
1-D or 2-D CNN though radio button in “diagnostic method”
section. The report visualization section shows the graphs of
the direct-recorded PCG signal through designed stethoscope
(through record signal button) or any pastrecorded cardiac sig-
nals (through “open a file” button in “options” menu). These
graphs will be visualized by pressing “start test” button after
selecting or recording a PCG signal and then signal will be
analyzed with deep learning models to get predictive diagnosis
of cardiac health. Options such as “mail report” and “print
report” can be used if the device has an active internet connection
with a Wi-Fi module in common network interfacing.

V. CONCLUSION

This article presented an AI-based embedded device to clas-
sify and recognize the PCG of subjects as a smart healthcare
system. The device was automatic and fast to recognize the
potential subjects having cardiac abnormality with their possible
categorization. The device was capable of identifying normal
and abnormal heart conditions with four major types of diseases.
The device was compact, made in 3-D printed case, and is in-
stalled the necessary processing system, software, and hardware
for the proper functioning of the device. The 1-D CNN and
pectrogram based 2-D CNN based approaches were analyzed
with five-fold cross-validation and accuracy of approximately
96.95% and 97.85% was achieved through both methods, re-
spectively. This article presented here has great potential of ben-
efiting people having cardiac disorders as an efficient solution for
early diagnosis. As the device holds promise for improving the
initial screening mechanism at Primary Health Care centers, the

research proposed will be commercialized after taking necessary
approvals from respective authorities.

The future research is towards the development of AI-based
single devices having the capability of identifying multiple
diseases related to cardiac, pulmonary, and prenatal health and
their multiclass or multigrade classification. Health-related data
and values obtained from different pathological tests could be
integrated together with the existing mechanism to increase the
reliability of the obtained results.
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