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Abstract—Vital sign (breathing and heartbeat) monitoring is
essential for patient care and sleep disease prevention. Most
current solutions are based on wearable sensors or cameras;
however, the former could affect sleep quality, while the latter of-
ten present privacy concerns. To address these shortcomings, we
propose Wital, a contactless vital sign monitoring system based on
low-cost and widespread commercial off-the-shelf (COTS) Wi-Fi
devices. There are two challenges that need to be overcome. First,
the torso deformations caused by breathing/heartbeats are weak.
How can such deformations be effectively captured? Second,
movements such as turning over affect the accuracy of vital sign
monitoring. How can such detrimental effects be avoided? For
the former, we propose a non-line-of-sight (NLOS) sensing model
for modeling the relationship between the energy ratio of line-
of-sight (LOS) to NLOS signals and the vital sign monitoring
capability using Ricean K theory and use this model to guide the
system construction to better capture the deformations caused
by breathing/heartbeats. For the latter, we propose a motion
segmentation method based on motion regularity detection that
accurately distinguishes respiration from other motions, and
we remove periods that include movements such as turning
over to eliminate detrimental effects. We have implemented and
validated Wital on low-cost COTS devices. The experimental
results demonstrate the effectiveness of Wital in monitoring vital
signs.

Index Terms—Wi-Fi, CSI, sleep monitoring, vital signs, wire-
less sensing

I. INTRODUCTION

REspiratory rate and heart rate are key physiological
indicators for assessing the health of a human being,

and some diseases can be detected or prevented by finding
abnormalities in such vital signs, e.g., sleep apnea [1], asthma
[2] and sudden infant death syndrome (SIDS) [3]. In many
such diseases, patients develop symptoms only for a short
period of time, and therefore, long-term continuous monitoring
is needed. However, due to limited medical resources and
funding, long-term inpatient observation is impractical for
most people. Therefore, continuous and cost-effective mon-
itoring of vital signs in the home setting is highly desired.
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Traditional vital sign monitoring protocols are mainly based
on specialized sensors attached to the body, such as elec-
trodes for polysomnography (PSG) [4] and electrocardiogra-
phy (ECG) [5]. However, these special devices are not suitable
for use in the home environment since they are generally
expensive and can affect sleep quality. Other methods based
on attached nonspecialized sensors, such as pressure or ac-
celeration sensors, also require contact with the body, which
can cause inconvenience to users. As a result, contactless
vital sign sensing has received a great deal of attention,
mainly focusing on vision- and radio frequency (RF)-based
solutions. However, lighting conditions limit computer-vision-
based solutions. Meanwhile, although RF-based methods [6],
[7] can provide noninvasive vital sign monitoring without
the aforementioned drawbacks, the devices (software-defined
radio or radar systems) used in traditional RF-based solutions
are typically costly and difficult to deploy.

Therefore, Wi-Fi-based vital sign monitoring has recently
received considerable attention [8]–[10] due to its advantages
of noncontact sensing and reliance on widespread and low-cost
Wi-Fi devices. The reason why Wi-Fi can be used to detect
vital signs is that breathing and heartbeats causes abdominal
and chest deformations, which affects the propagation of Wi-Fi
signals and WiFi Channel State Information (CSI) can record
this information [11]. In turn, we can use the recorded CSI to
recover the desired vital signs.

The first challenge in Wi-Fi-based vital sign monitoring
is that the torso deformation caused by respiration/heartbeats
is extremely weak and only minimally affects Wi-Fi signal
propagation. Therefore, a theoretical model is needed to guide
the implementation of such a system. Currently, most state-of-
the-art schemes are based on the Fresnel zone model [12], the
Fresnel diffraction model [8], or the CSI-ratio model [9], [13].
The Fresnel zone model analyzes how human motion leads to
effective displacement, and the Fresnel diffraction model [8]
indicates that optimal sensing performance can be achieved at
or near the line of sight (LOS). However, neither of these two
Fresnel-based models considers the effect of the energy ratio of
LOS to non-line-of-sight (NLOS) signals on NLOS sensing.
The CSI-ratio model is very useful for data processing, but
it yields better results when the perception sensitivity of the
deployed hardware is higher.

The second challenge is that the effects of motions such as
turning over may be mixed with those of breathing/heartbeats,
thus affecting the accuracy of vital sign detection. If these
movements are not distinguished from the movements of
interest, they can have a detrimental effect on the monitoring
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results. However, current Wi-Fi-based vital sign monitoring
methods all lack a method to differentiate different kinds of
motions during sleep. Moreover, since breathing/heartbeats
and turning over are all dynamic phenomena, existing mo-
tion segmentation schemes [14] for use in other Wi-Fi-based
sensing applications are not applicable because they aim to
separate dynamic and static activities. Thus, for accurate
monitoring, we need a solution that can distinguish between
different types of motions.

In this paper, we propose Wital, a contactless vital sign
monitoring system based on low-cost and widespread com-
mercial off-the-shelf (COTS) Wi-Fi devices. To address the
first challenge identified above, we propose an NLOS sensing
model for monitoring vital signs to guide the implementa-
tion of the system. For the second challenge, we propose a
regularity-based motion segmentation method that can accu-
rately separate breathing/heartbeats from other motions. We
also implement a monitoring system using MATLAB that
enables easy monitoring of vital signs.

The main contributions of this paper are summarized as
follows:

1) We propose an NLOS sensing model to investigate
the relationship between the energy ratio of LOS to
NLOS signals and the ability to monitor vital signs. We
theoretically prove that blocking the LOS signals during
NLOS sensing is beneficial for vital sign monitoring.

2) We propose a motion segmentation method based on
regularity detection, which can accurately distinguish
periods of motion (such as turning over and rising from
bed) that are different from vital signs.

3) We implement a vital sign monitoring system using
MATLAB. Experimental results indicate that our method
achieves 96.618% and 94.708% accuracy for breathing
and heart rate detection, respectively.

We organize the remainder of this paper as follows. In
section II, we provide an overview of related work. We
describe our NLOS sensing model in section III. We introduce
our system design in section IV. Then, we evaluate our method
and analyze the experimental results in section V. Finally, we
conclude our work in section VI.

II. RELATED WORK

A. Sensing with Wi-Fi

Due to the widespread deployment of Wi-Fi devices and the
convenience of wireless sensing, research on passive sensing
based on Wi-Fi has received widespread attention [18]–[20].
These studies are mainly based on the received signal strength
index (RSSI) or CSI. The RSSI is easy to acquire, but its
granularity of perception is crude. The CSI can only be
obtained by modifying the underlying drivers of Wi-Fi network
cards, but the granularity of sensing is better than that of the
RSSI [21], [22].

With the help of Wi-Fi RSSI or CSI data, existing research
has enabled human presence detection [23], gesture recogni-
tion [24]–[26], cross-domain gesture recognition [27], [28],
localization [29], sleep movement detection [30] and driving
activity detection [31] by means of COTS Wi-Fi devices. In

the past two years, Wi-Fi-based perception research has further
expanded into new fields. [32] used Wi-Fi devices to image
key points of the human body, enabling human visualization
without vision equipment. [33] used Wi-Fi devices to track
symbols drawn with a finger in the air. [34] achieved the steal-
ing of mobile phone passwords using COTS Wi-Fi devices. By
extracting the interference-independent component, PhaseAnti
[21] realizes the effective recognition of various activities in
cochannel interference scenarios. SMARS [35] utilizes CSI for
sleep stage detection based on sleep breathing status detection
and an autocorrelation function (ACF).

B. Breathing and Heartbeat Monitoring

The respiratory rate and heart rate are key physiological
indicators for assessing the health of the human body. In
general, the current methods used to track such vital sign
information fall into three categories: contact-sensor-based,
vision-based, and RF-based methods.

Most traditional solutions use contact sensors for physi-
ological signal detection. For example, PSG [4] and ECG
[5] involve measuring body functions such as breathing or
heartbeats by attaching multiple sensors to a patient. H. Aly
et al. [36] utilized the accelerometer and gyroscope in a
mobile phone to detect the breathing-induced chest motion
of a person. Smart sleeping mats [37] use pressure sensor
arrays for breathing detection. However, contact-sensor-based
approaches are typically costly, complex to deploy, and obtru-
sive during measurement.

Contactless vital sign sensing methods, such as vision- and
RF-based schemes are more user-friendly. However, vision-
based solutions [38] are usually susceptible to variations
in lighting conditions and present privacy concerns. As an
alternative, research on the use of wireless radio signals as
sensors has recently received increasing attention. As RF
signals travel from the transmitter to the receiver, they are
affected by breathing-induced chest movement along their
propagation path. However, RF-signal-based solutions usually
rely on special equipment, such as ultrawideband devices
[39] or frequency-modulated continuous wave (FMCW) radar
[6], [7]. The devices used in these solutions are costly and
not suitable for everyday environments. Compared with these
solutions, Wi-Fi-based solutions are less expensive and simpler
to deploy and can be implemented using COTS equipment.

Previous Wi-Fi-based breathing monitoring studies are
mostly based on the RSSI [40]–[42]. The RSSI characterizes
the total received power over all paths; thus, it is a coarse-
grained that is inherently incapable of capturing multipath
effects. In contrast, CSI can effectively capture fine-grained
channel and multipath information. Therefore, most of the
latest related schemes are based on CSI [8], [9], [11], [12],
[15], [35], [43]–[45]. Liu et al. [15] obtained the respiratory
rate by applying the short-time Fourier transform (STFT)
to the CSI amplitude. However, this solution requires the
deployment of two routers and three computers. Liu et al. [11]
used a pair of Wi-Fi devices to monitor the respiratory rate in
different sleeping postures. However, they needed to leverage
LOS conditions between the devices for heartbeat detection.
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TABLE I: Comparison of the proposed system with the latest research results.

Reference Vital Signs Accuracy Requirements Model Support
[15] breathing rate (various

sleep postures)
greater than 85% 2 transmitters and 3 receivers,

3 data streams, natural
breathing

no

[11] breathing rate (various
sleep postures) and heart

rate (only supine)

80% of estimation errors are less than 0.5
bpm for breathing rate, 90% of estimation
errors are less than 4 bpm for heart rate

pair of transceivers, one data
stream, metronome to control

breathing

no

[16] breathing rate (various
postures)

over 99% pair of transceivers, cables
and splitters, two data
streams, metronome to

control breathing

yes

[8] breathing rate (various
sleep postures)

for good positions, overall estimation
accuracy is as high as 98.8%; for bad
positions, accuracy decreases to 61.5%

pair of transceivers, one data
stream, natural breathing

Fresnel diffraction
model

[9] breathing rate (various
sleep postures)

less than 0.3 bpm for breathing rate pair of transceivers, two data
streams, natural breathing

CSI-ratio model

[17] breathing rate (various
sleep postures)

average 0.31 bpm for breathing rate pair of transceivers, one data
stream, natural breathing

ambient-reflected
signal model

Our system breathing rate and heart
rate (both for various

sleep postures)

accuracy of 96.887% for breathing rate and
94.708% for heart rate, average errors of

0.498 bpm for detected breathing rate and
3.531 bpm for detected heart rate

pair of transceivers, one data
stream, natural breathing

NLOS sensing
model

[16] used the CSI phase to detect the breathing rate, using
cables and splitters to connect the transmitter and receiver to
eliminate phase shifts.

[12] proposed the Fresnel zone model to relate the depth,
location, and direction of human breathing to the detectability
of respiration by examining the received signal strength in
the context of the Fresnel zones. [8] presented the Fresnel
diffraction model to relate the target person’s position to the
detectability of respiration within the first Fresnel zone (FFZ)
and declared that the closer the person is to the LOS, the better
the monitoring of respiration is in the lying posture. These
models have provided excellent insight for later research.
However, the Fresnel zone model and the Fresnel diffraction
model do not consider the impact of changes in the LOS-
to-NLOS signal ratio on vital sign monitoring. [9] used the
CSI ratio of two receive antennas to eliminate the phase offset
and utilized complex plane projection to achieve long-distance
breathing detection. In this scheme, at least two antennas
are required at the receiver, making it incompatible with
single-antenna receivers and increasing the computational cost.
Additionally, the CSI-ratio model is a data processing model.
It will yield better results when the perception sensitivity of the
deployed hardware is higher. The authors of [17] were among
the first to realize respiration monitoring with cell phones, and
they proposed an ambient-reflected signal model under the
NLOS setting to obtain the variations in the CSI amplitude
at the receiver, which varies with subtle displacements of the
human chest. Their work showed that blocking the LOS signal
is beneficial for NLOS sensing, but no theoretical proof was
provided. We compare these systems with our work in Table
I.

Note that this paper is an extension of our previous work
that was presented at IEEE BIBM 2021 [46]. In our previous
work, we found that blocking the LOS signal is beneficial
for NLOS sensing, and in this paper, we utilize a model
based on Ricean K theory to explain why in more detail.
We also propose a new motion segmentation method based
on regularity detection, which can accurately distinguish sleep

motions (such as turning over and rising from bed) that are
different from breathing/heartbeat motions.

III. PRELIMINARIES

In this section, we first analyze preliminary experiments.
Then, we propose our NLOS sensing model based on Ricean
K theory for better monitoring of vital signs.

A. Channel State Information

The CSI of a signal describes its attenuation along its prop-
agation paths due to phenomena such as scattering, multipath
fading or shadow fading caused by motion, and decay in power
over distance. In the frequency domain, this attenuation can
be characterized as follows [47]:

𝑌 = 𝐻 · 𝑋 + 𝑁, (1)

where 𝑌 and 𝑋 are the received and transmitted signal vectors,
respectively; 𝑁 is additive white Gaussian noise; and 𝐻 is the
channel matrix representing the CSI.

For Wi-Fi CSI, the received signal’s channel frequency
response (CFR) can be expressed simply as the superposition
of the dynamic path CFR and static CFR:

𝐻 ( 𝑓 , 𝑡) = 𝐻𝑠 ( 𝑓 , 𝑡) + 𝐻𝑑 ( 𝑓 , 𝑡). (2)

The dynamic CFR can be written as:

𝐻𝑑 ( 𝑓 , 𝑡) =
∑︁
𝑘∈𝐷

ℎ𝑘 ( 𝑓 , 𝑡)𝑒− 𝑗2𝜋 𝑓 𝜏𝑘 (𝑡 ) , (3)

where 𝑓 and 𝜏𝑘 (𝑡) represent the carrier frequency and the
propagation delay on the 𝑘 𝑡ℎ path, respectively, and 𝐷 is the
set of dynamic paths. The received signal has a time-varying
amplitude in the complex plane [12]:

|𝐻 ( 𝑓 , 𝜃) |2 = |𝐻𝑠 ( 𝑓 ) |2+|𝐻𝑑 ( 𝑓 ) |2+2|𝐻𝑠 ( 𝑓 ) | |𝐻𝑑 ( 𝑓 ) |𝑐𝑜𝑠𝜃, (4)

𝜃 is the phase difference between the static vector and the
dynamic vector, and the term that causes the amplitude fluc-
tuation of the CSI waveform is 2|𝐻𝑠 ( 𝑓 ) | |𝐻𝑑 ( 𝑓 ) |𝑐𝑜𝑠𝜃. In the
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Fig. 1: Fresnel zones.

case that the range and position of the motion are constant, 𝜃
is also constant, and the only factors affecting the fluctuation
range are |𝐻𝑠 ( 𝑓 ) | and |𝐻𝑑 ( 𝑓 ) |.

B. Preliminary Experiments and Analysis

The CSI-ratio model is focused on data processing, and
it requires at least two antennas placed close together at
the receiver. The ambient-reflected signal model focuses on
ambient-reflected signals, which are inconsistent with our
objectives. Therefore, we chose to explore the effects of the
Fresnel models in our preliminary experiments. As shown in
Fig. 1, the Fresnel zones are defined as a series of concentric
ellipsoids, where 𝑃1 and 𝑃2 are the positions of the transmit
antenna and the receive antennas, respectively, and 𝑇𝑥 and
𝑅𝑥 represent the transmitter and receiver, respectively. For a
given radio wavelength 𝜆, we can construct the Fresnel zones
by means of the following equation [48]:

|𝑇𝑥𝑄𝑛 | + |𝑄𝑛𝑅𝑥 | − |𝑇𝑥𝑅𝑥 | = 𝑛𝜆/2, (5)

where 𝑄𝑛 is a point at the boundary of the 𝑛th Fresnel zone.
The Fresnel zone model analyzes how human body motion

causes an effective displacement 𝑑 (𝑡), representing the change
in the reflected (dynamic) path length of the signal. The
dynamic path phase shift caused by this effective displacement
can be expressed as 𝑒− 𝑗2𝜋 𝑓 𝜏𝑘 (𝑡 ) = 𝑒− 𝑗2𝜋𝑑 (𝑡 )/𝜆, where 𝜆

represents the wavelength of the Wi-Fi signal. The larger the
effective displacement is, the greater the phase shift caused
by the motion, and the more significant the effect on |𝐻𝑑 ( 𝑓 ) |
and the CSI. Previous studies [12] have shown that when
the direction of human body deformation is approximately
0 degrees, the effective displacement caused by human body
motion is the largest, and the sensing efficiency is the best.
As the angle increases, the effective displacement decreases,
and the sensing efficiency worsens [12]. Moreover, when the
target moves along the boundary of a Fresnel zone, there is
no effect on the reflected path length.

Different from the Fresnel zone model, the Fresnel diffrac-
tion model [8] focuses only on the FFZ. This mathematical
model was developed to relate the location of a human target
to the detectability of respiration within the FFZ by modeling
various human targets as cylinders of varying size and then
analyzing how a cylinder within the FFZ affects the received
RF signal. The findings show that the closer to the LOS the

target is, the better the respiratory monitoring effect in the
lying posture.

Based on these findings, we constructed a prototype system
to carry out preliminary experiments.
[Prototype] Our prototype system consisted of two commod-
ity mini PCs serving as the transmitting and receiving devices.
These two mini PCs were each equipped with an Intel Network
Interface Controller (NIC) 5300. The antenna settings are
shown in Fig. 2.
[Participant] One 22-year-old student participated in the
preliminary experiments.
[Environment] We conducted the experiments in a 7× 10 m2

office room with furniture, including chairs, couches, computer
desks, and book cabinets, as shown in Fig. 5.
[Setting] The package sending rate was set to 1000 Hz. The
participant conducted experiments in different sleeping pos-
tures (prone, supine, left-facing recumbent, and right-facing
recumbent) under different antenna settings (as shown in Fig.
2), and the experimental results are shown in Fig. 3.

By analyzing the preliminary results, we obtained the fol-
lowing key observations [46].

Breathing indeed affects the channel response, and the
experimental setting also affects the channel response:
First, we confirmed that respiration-induced signal changes
were recorded under all settings. As shown in Fig. 3, we
observed significant fluctuations in the CSI amplitude induced
by respiration in all settings.

Fresnel-diffraction-model-based sensing: Similar to the
findings presented in [8], we observed that proximity to
the LOS resulted in excellent sensing performance (for both
supine and prone positions in setting 2). Similar to [8], we
also found that the T1–R2 antenna pair had poor perception
ability when the volunteer was lying on his side. This is
because the direction of trunk deformation in the antero-
posterior dimension (breathing mainly causes deformation in
this dimension) was roughly parallel to the LOS path of
T1–R2. Accordingly, the deformation in the anteroposterior
dimension could cause little significant effective displacement
when the volunteer was lying on his side. The respiration-
induced abdominal/thoracic deformation in the mediolateral
dimension is too small; hence, its effect on signal propagation
is also relatively small. Moreover, as shown in Fig. 3b and 3c,
it was difficult to observe significant fluctuations caused by
breathing in various sleeping positions during certain periods.
This is because in the sleeping state, the position of the torso
differs greatly between the side-lying and flat-lying postures,
and thus, it is difficult to ensure that different users have the
torso close to the LOS in all sleeping postures. Therefore, it
would be wise to develop a system that does not rely on the
FFZ for robust monitoring of vital signs.

Fresnel-zone-model-based sensing: The Fresnel zone
model [12] was developed to relate the depth, location, and
direction of a person’s breathing to the detectability of breath-
ing by examining the received signal strength in the context
of the Fresnel zones. However, the Fresnel zone model cannot
explain some of the phenomena observed in our experiments.
In setting 1, when the human target is prone or supine, the
direction of abdominal/thoracic deformation in the anteropos-
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Fig. 2: Antenna settings for the preliminary experiments. The elliptical region between the antennas is the first Fresnel zone
(FFZ). The region between the solid chest line and the dotted line is the range of chest deformation induced by breathing. (a)
Setting 1. T1 is the transmit antenna, and R1, R2, and R3 are the receive antennas. The distance between T1 and R3 is 80
cm, and the distance between T1 and R1 is 120 cm. (b) Setting 2. The chest is on the LOS of T1–R2. The distance between
T1 and R3 is 20 cm, and the distance between T1 and R2 is 120 cm. (c) Setting 3. The chest is in the FFZ of T1–R2. The
distance between T1 and R3 is 30 cm, and the distance between T1 and R2 is 120 cm.
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Fig. 3: Vital sign monitoring performance under different settings. (a) Performance under setting 1. (b) Performance under
setting 2. (c) Performance under setting 3. SNR denotes the signal-to-noise ratio.

terior dimension induced by breathing is nearly parallel to
T1–R3. According to the Fresnel zone model, the effective
displacement caused by the thoracic/abdominal deformation is
tiny, and thus, the sensing performance of T1–R3 should not be
good, or at least should be worse than that of T1–R1; however,
in our experiments, the sensing performance of T1–R3 was
better than that of T1–R1. We believe that the reason may be
that the LOS path of the T1–R3 antenna pair was blocked by
the shelf. In the following subsection, we verify our conjecture
through a Ricean-K-based derivation and experiments.

C. NLOS Sensing Model Based on Ricean K Theory

To study in depth the phenomena that occurred in the
preliminary experiments for better monitoring of vital signs, in
this section, we propose our NLOS sensing model to analyze
the relationship between the power ratio of the LOS and NLOS
signals and the NLOS sensing ability based on Ricean K
theory.

The Ricean K factor is defined as the ratio of the power on
the LOS path to the power on the NLOS paths. The baseband
in-phase/quadrature-phase (I/Q) representation of the received
signal can be expressed as follows [49]:

𝑥(𝑡) =
√︂

𝐾Ω

𝐾 + 1
𝑒 𝑗 (2Π 𝑓𝐷𝑐𝑜𝑠 (𝜃0 )𝑡 )+𝜙0 +

√︂
Ω

𝐾 + 1
ℎ(𝑡). (6)

Here, 𝐾 is the Ricean factor; Ω denotes the total received
power; 𝜃0 and 𝜙0 are the LOS angle of arrival (AOA) and

phase, respectively; 𝑓𝐷 is the maximum Doppler frequency;
and ℎ(𝑡) is a diffuse component representing the sum of the
large number of multipath components, constituting a complex
Gaussian process.

Since the antennas do not move in the considered exper-
imental scenario, i.e., 𝑓𝐷 = 0, we can simplify equation (6)
to:

𝑥(𝑡) =
√︂

𝐾Ω

𝐾 + 1
𝑒𝜙0 +

√︂
Ω

𝐾 + 1
ℎ(𝑡). (7)

In the case that the torso does not block the LOS signals,
all LOS components and part of the NLOS components
correspond to static path conditions, and the remainder of the
NLOS components correspond to dynamic path conditions.
Considering equation (7) and ignoring the transmit power, we
define |𝐻𝑠 | and |𝐻𝑑 | as follows:

|𝐻𝑠 | =
𝐾

𝐾 + 1
+ 1
𝐾 + 1

· 𝜌, (8)

|𝐻𝑑 | =
1

𝐾 + 1
· (1 − 𝜌). (9)

Here, 𝜌 is the proportion of the static path contribution to the
NLOS components. Combining the above with equation (4),
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we obtain the following equation:

|𝐻 |2 = |𝐻𝑠 |2 + |𝐻𝑑 |2 + 2|𝐻𝑠 | |𝐻𝑑 |𝑐𝑜𝑠𝜃

=
(𝐾 + 𝜌)2

(𝐾 + 1)2 + (1 − 𝜌)2

(𝐾 + 1)2

+2(𝐾 + 𝜌) (1 − 𝜌)
(𝐾 + 1)2 𝑐𝑜𝑠𝜃.

(10)

The motion-induced variation in the signal amplitude can
be quantified as follows:

𝑓 (𝐾, 𝜌) = 2|𝐻𝑠 | |𝐻𝑑 |𝑐𝑜𝑠𝜃 =
2(𝐾 + 𝜌) (1 − 𝜌)

(𝐾 + 1)2 𝑐𝑜𝑠𝜃. (11)

The output of the above formula depends on three variables,
namely, 𝜃, 𝐾 and 𝜌. Considering that the change in the phase
difference caused by breathing is relatively stable, we omit 𝜃.
Then, we take the derivative of equation 11 with respect to 𝐾
to obtain the following formula:

𝑓 ′ (𝐾) = 2(1 − 𝜌) (−𝐾2 − 2𝜌𝐾 + 1 − 2𝜌)
(𝐾 + 1)4 . (12)

When 𝐾 > 1 − 2𝜌, 𝑓 (𝐾, 𝜌) decreases as 𝐾 increases. Under
normal circumstances, only a small part of the signal from an
omnidirectional antenna can be reflected by the human body,
which means that 𝜌 is generally larger than 0.5. In other words,
appropriately blocking the LOS path can make the CSI more
sensitive to human body motion.

How does 𝜌 influence the Wi-Fi sensing capability?
In some Wi-Fi-based sensing studies, directional antennas

have been used to enhance the performance of Wi-Fi sensing.
A directional antenna can transmit its signal directly toward the
human body, ensuring that as much of the NLOS component as
possible will be subject to dynamic path conditions (decreasing
𝜌). We can also use the proposed model to explain why this
works and provide guidance for subsequent research.

We first seek a formula to explain the influence of 𝜌 on Wi-
Fi sensing. We take the derivative of equation 11 with respect
to 𝜌 to obtain:

𝑓 ′ (𝜌) = 2(−2𝜌 + 𝐾 − 1)
(𝐾 + 1)2 . (13)

When 𝐾 is invariant, the Wi-Fi sensing capability increases
as 𝜌 increases in the interval [0, 1−𝐾

2 ] and decreases as 𝜌

increases in the interval [ 1−𝐾
2 ,1]. For a more intuitive explana-

tion, we map the CSI signal to the complex plane for further
discussion.

Now, we can explain the conclusion in a more intuitive
way. We will first explain how to use the complex plane
to intuitively visualize the sensing capability [9]. As shown
in Fig. 4, 𝐻𝑠 , 𝐻𝑑 and 𝐻 𝑓 represent the static and dynamic
vectors and the composite vector of 𝐻𝑠 and 𝐻𝑑 , respectively.
According to [9], when the dynamic path length changes on
a short time scale, the amplitude of 𝐻𝑑 remains the same, but
the phase (the angle of 𝐻𝑑 with respect to the 𝐼-axis) changes.
This means that 𝐻𝑑 draws a circle with the end point of 𝐻𝑠
as its center, as shown in Fig. 4. The amplitude and phase
extracted from the CSI correspond to the amplitude of 𝐻 𝑓

I

Q

Hf1

Hf2

Hd1

Hd2

Hs

Fig. 4: The CSI in the complex plane when 𝐻𝑠 | >= |𝐻𝑑 |. 𝐻𝑠 ,
𝐻𝑑 and 𝐻 𝑓 represent the static and dynamic vectors and the
composite vector of 𝐻𝑠 and 𝐻𝑑 , respectively.

and its angle with respect to the 𝐼-axis, respectively, and the
sensing capability of the CSI can be expressed as:

𝐴𝑆 = |𝐻 𝑓 𝑚𝑎𝑥 | − |𝐻 𝑓 𝑚𝑖𝑛 |, (14)

𝐴𝑆 denotes the CSI sensing ability, which is expressed as
the maximum amplitude difference in the CSI waveform
caused by motion. |𝐻 𝑓 𝑚𝑎𝑥 | and |𝐻 𝑓 𝑚𝑖𝑛 | are the maximum
and minimum absolute values of the composite vector 𝐻 𝑓 ,
respectively.

Next, we discuss how 𝜌 affects the sensing capability in
two cases: 𝐾 > 1 and 0 <= 𝐾 <= 1. When 𝐾 > 1,
1−𝐾

2 < 0; according to formula 13, the sensing capability
decreases monotonically as 𝜌 increases in the interval [0,1].
In the complex plane, it can be seen that |𝐻𝑠 | > |𝐻𝑑 |; when
|𝐻𝑠 | >= |𝐻𝑑 |, |𝐻 𝑓 𝑚𝑎𝑥 |2 = |𝐻𝑠 |2 + |𝐻𝑑 |2 + 2|𝐻𝑠 | |𝐻𝑑 | and
|𝐻 𝑓 𝑚𝑖𝑛 |2 = |𝐻𝑠 |2 + |𝐻𝑑 |2 − 2|𝐻𝑠 | |𝐻𝑑 |. The maximum value
that 𝐴𝑆 can reach is ( |𝐻𝑠 +𝐻𝑑) − (|𝐻𝑠−𝐻𝑑) = 2|𝐻𝑑 |; in other
words, the larger 𝐻𝑑 is, the better the sensing capability.

When 0 <= 𝐾 <= 1, this means that 0.5 >= 1−𝐾
2 >= 0, and

according to equation 13, the sensing capability increases as 𝜌
increases in the interval [0, 1−𝐾

2 ] and decreases as 𝜌 increases
in the interval [ 1−𝐾

2 ,1]. In the complex plane, when 𝜌 is in
the interval [ 1−𝐾

2 ,1], according to equations 8 and 9, |𝐻𝑠 | >
|𝐻𝑑 |, this situation is the same as in the previous paragraph:
a smaller 𝜌 is better. When 𝜌 is in the interval [0, 1−𝐾

2 ],
which means that |𝐻𝑠 | < |𝐻𝑑 |, the maximum value of 𝐴𝑆 is
|𝐻 𝑓 𝑚𝑎𝑥 | − |𝐻 𝑓 𝑚𝑖𝑛 | = |𝐻𝑑 | + 𝐻𝑠 | − (|𝐻𝑑 | − |𝐻𝑠 |) = 2|𝐻𝑠 |. In
other words, the larger 𝐻𝑠 is, the better the sensing capability,
which means that a larger 𝜌 is better.

In practical applications, it is difficult to achieve |𝐻𝑠 | < |𝐻𝑑 |
unless 𝐾 < 1 and most of the NLOS component is subject
to the dynamic path conditions. Therefore, decreasing 𝜌 is
conducive to improving the sensing capability. Considering
that directional antennas can reduce 𝜌, directional antennas
are concluded to be beneficial for Wi-Fi-based sensing.

Does blocking the LOS make the sensing ability worse?
Blocking the LOS path reduces the Ricean K value, but does
blocking the LOS make the sensing ability worse? Formula
11 contains two main variables, 𝐾 and 𝜌. Does a situation
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Fig. 5: System architecture.

exist in which blocking the LOS path reduces 𝐾 but increases
𝑟ℎ𝑜, resulting in poorer motion perception? We believe that
it is difficult for such a scenario to occur unless the blocking
causes the static signal energy (|𝐻𝑠 |) that reaches the receiver
to be too low. Suppose that in the worst-case scenario, the LOS
path is blocked such that the NLOS signal energy increases
by 𝐿, but no part of 𝐿 is allocated to the dynamic vector.
Then, the amplitudes of |𝐻𝑠 | and |𝐻𝑑 | do not change, nor does
their product, and the sensing capability is equal to that in the
original case. In an actual indoor environment, it is difficult
to prevent any of the blocked LOS signal from spreading to
the human body at all. In summary, regardless of whether
𝑟ℎ𝑜 is large, small or constant, no deterioration in the sensing
capability will be caused by blocking the LOS unless the
blocking severely affects the signal received at the receiver.

IV. SYSTEM DESIGN

A. System Overview

In this section, we present the system design of our vital
sign monitoring system, Wital. The Wital system is shown in
Fig. 5 and is divided into three modules:
Data Collection. We collect better CSI data for vital sign
monitoring based on our NLOS sensing model (blocking the
LOS). Since the data collection setup is different in different
scenarios, this section describes only the general data process-
ing modules (data preprocessing and vital sign extraction) in
detail. The data collection setting considered in this paper is
described in the evaluation section.
Data Preprocessing. We first select the best-performing sub-
carrier via subcarrier selection, and we then distinguish the
vital signs from other motions in accordance with our motion
segmentation method. Finally, we denoise the CSI data to
remove outliers.
Vital Sign Extraction. The preprocessed data are divided
into two parts via frequency-domain segmentation: one mainly
includes breathing, and the other mainly contains heartbeats.
Then, we extract the breathing rate and heart rate using the
Fast Fourier Transform (FFT).

B. Data Preprocessing

Subcarrier Selection. Different subcarriers have different cen-
tral frequencies and may have different sensing performances.
Therefore, it is essential to select a suitable subcarrier that

can capture vital signs as effectively as possible. Based on
previous experience [50], we select the subcarrier with the
largest variance for Wital.
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Fig. 6: A example of the regularity calculation results. 𝑊𝐸𝑃,
𝑇𝑃, and 𝑃𝐴𝑃 represent the wave end point, turning point, and
positioning activation point, respectively.

Motion Segmentation. During vital sign monitoring, it is
impossible for the monitored person to remain quiescent at
all times. Random movements such as turning over can affect
the accuracy of vital sign monitoring; therefore, it is necessary
to design a motion segmentation method to locate and filter
out motions that are different from breathing/heartbeats.

Since both breathing/heartbeats and turning over are move-
ments, the dynamic vs. static segmentation method used in
previous studies is not applicable. To fill this gap, we propose
a motion segmentation method that can distinguish vital signs
from other movements. Our method is based on the assumption
that breathing and other activities have different regularities.
We choose a data sequence containing two instances of turning
over as well as normal breathing as an example to verify this
hypothesis, as shown in Fig. 6.

To calculate the regularity of the CSI data, we first establish
a variable-length window 𝐴 and a fixed-length window 𝐵. 𝐴
starts at the beginning of the CSI waveform, 𝐵 starts at the
end of 𝐴, and the initial length of both 𝐴 and 𝐵 is 2000
packets. We calculate the minimum Euclidean distance (MED)
between the CSI data contained in 𝐵 and the data in 𝐴 and
record the result. Then, we expand window 𝐴 forward by 100
packets, shift window 𝐵 forward by 100 packets, and calculate
the MED again. The process is iterated until the end of the
waveform is reached.
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The results are shown in Fig. 6. The MED increases sharply
when the first instance of turning over occurs and begins to
decrease once this movement ends. From the experimental
results, we can observe that the regularities differ between
breathing and turning over, whereas the regularities of actions
of the same type are similar.

The key steps of our segmentation method are as follows:

1) Initialization. Establish a variable-length window 𝐴 and
a fixed-length window 𝐵. 𝐴 starts at the beginning of the
CSI waveform, 𝐵 starts at the end of 𝐴, and the initial
length of both 𝐴 and 𝐵 is 2000 packets. Also establish
an empty set 𝑀𝐴.

2) Activation point detection. Calculate the MED of the
CSI windows as described above. If 𝑀𝐸𝐷 > 𝑣 ·
𝑎𝑣𝑒(𝑀𝐴) in the current iteration (where 𝑎𝑣𝑒() is the
averaging function), mark this point as a positioning
activation point (PAP) and go to the next step; otherwise,
record the MED into 𝑀𝐴 (where 𝑣 is the threshold
for judging whether an action occurred; 𝑣 = 2.5 in our
experiments).

3) Start-point positioning. Based on the obtained MED
waveform (𝑀𝐴), construct an auxiliary positioning
waveform to accurately locate the start point of the
motion. Establish two points in front of PAP as the
turning point (TP) and the wave end point (WEP).
The distance from TP to WEP is 20 packets, and the
constructed waveform is as shown in Fig. 6. Calculate
the Euclidean distance (ED) between the constructed
waveform and the MED waveform and record the result;
then move TP forward by 10 packets and repeat the
above process for 50 iterations. Finally, choose the TP
with the minimum ED as the start point of the motion.

4) End-point positioning. Set the identified start point
as the beginning of the CSI waveform, initialize the
parameters as described in the first step, and calculate
the MED as described above. Then, use the previously
described method to position the end point of the motion.
Set the identified end point as the beginning of the CSI
waveform, and return to step 1. Repeat the entire process
until the end of the monitoring period.

Figs. 7 and 8 show the experimental results of our pro-
posed segmentation method. Our inspiration for designing this
method is that the regularity of respiration differs greatly from
those of other activities; consequently, as shown in Figs. 7
and 6, our method can precisely locate the time period during
which such an activity occurs. For different pairs of activities,
the difference in regularity may be smaller, and thus, the
positioning of these activities may not be very precise. We
tested the performance achieved in distinguishing between
walking and jumping using the proposed method, as shown
in Fig. 8, from which it can be seen that the segmentation
accuracy is still within an acceptable range.
Data Denoising. The received CSI data may contain a large
amount of interference noise due to equipment and envi-
ronmental factors. In the preprocessing module, we use the
Hampel filter to filter out outliers that have markedly different
values from other neighboring CSI measurements. The goal
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of the Hampel filter is to identify and replace outliers in a
given series. Specifically, we calculate the median of the set
consisting of the current CSI sample and its six surrounding
samples (three on each side) and use the median absolute
deviation to calculate the standard deviation of the set. If the
difference between the current sample and the median exceeds
three times the standard deviation, this sample will be replaced
by the median value.

C. Vital Sign Extraction

Frequency-Domain Segmentation. The trunk deformation
caused by the heartbeat is very small, and the changes in the

Breath Rate

Heart Rate

Real-time waveform display of three streams
Parameter Settings

Time and package received

Fig. 9: Real-time system interface. The upper left part is
the parameter setting interface, which can be used to set the
storage location of the received data, the time axis scale, the
receiving rate, the sender’s IP address, whether to enable vital
sign detection, etc. The bottom left shows the time when the
current packet was received and the size of the packet. The
top right is the real-time display of the CSI waveform, and the
bottom right is the real-time display of vital signs.
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Fig. 10: Comparison of the processed CSI and the accelerometer (ACC) readings for heartbeats. (a) Supine. (b) Facing right.
(c) Facing left.

CSI caused by this deformation can be overwhelmed by the
changes caused by breathing [11]. Therefore, we first need
to segment them in the frequency domain. Here, we leverage
Butterworth bandpass filters based on some prior knowledge
in the frequency domain: the frequency range associated with
a normal heartbeat is 60 bpm to 120 bpm, corresponding to 1
Hz to 2 Hz, and the frequency range associated with normal
breathing is 15 bpm to 30 bpm, corresponding to 0.25 Hz to
0.5 Hz.
Vital Sign Extraction. After segmenting the CSI in the
frequency domain, we extract the heart and respiratory rates
by applying the FFT. We have used MATLAB to implement
a real-time system for the processing and display vital signs
to facilitate our experiments, as shown in Fig. 9. This system
works on the monitoring side and is connected to the data
acquisition equipment via a network.

V. PERFORMANCE EVALUATION

In this section, we first evaluate the proposed vital sign
monitoring system, Wital, and then verify the effectiveness
of our NLOS sensing model.

A. Experimental Setup

The performance of vital sign detection varies greatly
among different people and different sleeping postures within
the FFZ. Therefore, in our experiments, we constructed our
prototype system in accordance with setting 1, and we selected
the T1–R3 antenna pair to monitor vital signs. Due to the
limitations imposed by the bed, the torso is closer to R3 when
the human target is lying either face up or face down; in other
words, the torso is far from the mid-perpendicular of T1–R3.
According to the Fresnel zone model, the chest displacement
caused by breathing/heartbeats in the anteroposterior dimen-
sion still has a significant effect on T1–R3, thereby ensuring
the monitoring performance in different sleeping postures. If
we were to select the T1–R1 antenna pair, however, as shown
in Fig. 11, the monitoring performance would become worse
when the person’s arm is blocking the side. This is because
the main factor affecting the CSI received by R1 when the
target is in the left-/right-facing recumbent position is the torso
deformation in the lateral abdomen, and the arm sometimes
blocks this area. This is why we selected T1–R3 for vital sign
monitoring instead of T1–R1.
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In our experiments, we placed a lead plate under T1 to
block the LOS path from T1 to R3 in accordance with our
NLOS sensing model. CSI data were collected using csitool
[51], and the receiver transmitted the received CSI data to the
monitoring computer for processing via the network.

We used COTS hardware devices to implement the proposed
system. Specifically, we used two mini PCs with Intel Link
5300 Wi-Fi NICs as the transmitting and receiving devices.
The mini PCs each had a 2.16 GHz Intel Celeron N2830
processor with 2 GB of RAM and Ubuntu OS version 12.04.
The monitoring computer was a desktop computer equipped
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(a)

(b) (c)

Fig. 13: System readings with no other person present and with active interference. (a) Setup. (b) With interference from other
activities. (c) With no other person present.

with an Intel Core i5 3450 CPU (3.1G Hz) and 2 GB of
storage.

We conducted the experiments in a laboratory environment,
as shown in Fig. 12, with a total of 10 volunteers (6 male
and 4 female) whose age range was 21 to 26 years. These
10 volunteers were university students who volunteered to
participate in the experiments. During the experiments, we did
not restrict the normal activities of others in the laboratory.

Each participant underwent a 30-minute actual test in dif-
ferent natural sleeping positions (prone, supine, left-facing
recumbent, and right-facing recumbent). Different from pre-
vious work [11], [16], we did not use a metronome to control
the volunteers’ respiratory rate, and we did not need to use
a directional antenna to monitor the heart rate under LOS
conditions. The ground-truth respiratory rate and heart rate
were measured by an accelerometer attached to the abdomen
and a fingertip pulse oximeter, respectively.

B. Evaluation Results
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Fig. 14: Comparison of the processed CSI and the accelerom-
eter (ACC) readings for breathing.

Fig. 13 shows the system readings in the presence of people
performing other activities and in an unoccupied room. Our
system does not output false respiratory/heart rate values in
either of these scenarios.

We compared the obtained respiratory waveforms with the
data from the accelerometer attached to the abdomen, as shown
in Fig. 14. From this figure, we can observe that the CSI
waveform is highly consistent with the respiratory waveform
obtained by the accelerometer. Fig. 10 compares heartbeat
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Fig. 16: Errors of vital sign estimation for different sleeping
postures.

waveforms obtained in different postures with the readings
from the accelerometer attached to the chest, and we find that
the heartbeat readings obtained from the accelerometer are
also consistent with the results of CSI detection. These results
indicate that the CSI obtained from Wi-Fi signals can be used
to extract fine-grained heartbeat and respiration information.

We evaluated the overall performance of breathing and heart
rate estimation in different sleeping postures. The final results
indicate average errors of 0.498 bpm (beats per minute) for the
detected breathing rate and 3.531 bpm for the detected heart
rate, and the corresponding accuracy is 96.887% and 94.708%,
respectively.

Fig. 15 illustrates the errors of vital sign (respiration and
heart rate) monitoring for different participants; the volunteers



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

had different body types, which led to different final results.
However, in general, our system shows high accuracy in
detecting respiration, and the error in detecting the heart rate is
also within the acceptable range for nonclinical environments.

Fig. 16 illustrates the vital sign (respiration and heart rate)
monitoring errors in different sleeping postures. These errors
are relatively small in the supine and right-facing recumbent
postures. However, the largest error in the monitored heart
rate was found for the left-facing recumbent posture, while the
largest error in the monitored respiratory rate was found for the
prone posture. This is because the effective displacements of
the dynamic path caused by these two sleeping postures are
relatively small and not conducive to vital sign monitoring.
Overall, our system can accurately monitor vital signs in
different sleeping postures.

C. Evaluation of the NLOS Sensing Model

To verify the NLOS sensing model proposed in section
III, we first calculated the Ricean K value of each stream in
setting 1 (Fig. 2a), as shown in Fig. 17, from which it can be
found that the larger the value of 𝐾 is, the worse the sensing
capability. Then, we placed a lead sheet between the T1–
R1 antenna pair in setting 1 (decreasing 𝐾) and performed a
breathing monitoring experiment, and the results are presented
in Fig. 11, showing that the motion sensing capability of T1–
R1 was significantly improved. We also show the average
breathing detection error (BDE), the variance of the CSI
waveform (VAR), and the mean amplitude difference (MAD)
in Fig. 18. We can observe improvements in both the detection
accuracy and the sensitivity to motion.

D. Comparison with Previous Approaches

In this subsection, we compare Wital with four previously
reported Wi-Fi-based vital sign monitoring approaches [10],
[45], [52], [53].

TVS. Similar to our method, TVS [52] uses the CSI
amplitude for respiration sensing. First, the Hampel filter and a
moving average filter are employed to clean the collected CSI
data to remove noise. Then, subcarriers with larger variance
are selected and subjected to the FFT to obtain the final results.

PhaseBeat. PhaseBeat [53] uses the phase difference be-
tween the CSI readings of two antennas for respiration sens-
ing. First, environment detection, data calibration, subcarrier
selection and the discrete wavelet transform are used to
preprocess the captured data. Then, peak detection is employed
to estimate the respiratory rate.

TensorBeat. TensorBeat [45] is also a phase-difference-
based method. First, the obtained CSI phase difference data
are used to create tensors, and then, canonical polyadic (CP)
decomposition is employed to obtain the respiration signals.
Finally, peak detection is used to estimate the respiratory rate.

ResBeat. ResBeat [10] uses both phase difference and
amplitude for respiration monitoring. First, an adaptive signal
selection module is leveraged to select the most sensitive
signal group from the CSI amplitude groups and CSI phase
difference groups. Then, peak detection is used to estimate the
respiratory rate.

Fig. 19 presents the results. Wital achieves better per-
formance than the other solutions. Although Wital’s data
processing is less sophisticated than that of the other solutions,
we improve the respiration sensing ability by attenuating the
LOS signal under the guidance of the proposed NLOS sensing
model.

E. Limitations and Future Work

There are still some limitations to the application of our
system in real-world scenarios, and these limitations are driv-
ing our further research. In this subsection, we describe these
limitations and the solutions we propose to explore.

The first limitation is that Wital cannot recover the exact
heartbeat waveform. Since the MATLAB-based system has
difficulty handling multiple threads, we have used a crude
bandpass filter and the FFT to obtain the heartbeats; however,
this approach is not sufficient to obtain highly accurate and
timely vital signs. The difficulty in overcoming this problem
is that the trunk deformation caused by heartbeats can be
overwhelmed by that caused by breathing, and it is difficult
to separate heartbeats from breaths. The second limitation is
that we are currently discarding the time periods during which
interfering sleep activities occur, but it is also important to
monitor vital signs during these periods. The challenge in
solving this limitation is that such activities can overwhelm
the vital signs. The third limitation is that for multiperson
scenarios, we may be able to acquire the respiratory rates of
multiple people (with different respiratory rates) via the FFT,
but recovering the vital sign waveforms of individual people
is difficult because of the superposition of the signal changes
caused by multiple persons breathing.

Fortunately, these three problems can be viewed as the same
general problem of separating signals that are superimposed
on each other. Solutions based on traditional independent
component analysis (ICA) may not solve these problems very
well. However, we have reviewed some literature and believe
that methods based on big data and deep learning may have
unexpected benefits. For example, [54] developed a nonlin-
ear generalization approach based on temporal dependencies
(e.g., autocorrelations), contrastive learning and a multilayer
perceptron (MLP) for ICA or blind source separation. Some
other literature on learning disentangled representations has
focused on variational autoencoders (VAEs) [55], [56]. The
authors of these studies first encode the original input to obtain
latent variables and impose artificially specified constraints on
these latent variables to force the approximate posterior to
match the prior in the latent space (under the assumption that
the latent variables obtained by the VAE approximate the true
latent variables of the input). Then, they reconstruct the input
using a decoder and the obtained latent variables. Finally, a
well-trained VAE can disentangle the factors (latent variables)
of interest from the inputs. The core of both approaches is to
find a suitable and effective model structure and constraints;
these constraints should reflect the differences in the factors
that are to be separated. We are currently experimenting with
these solutions to enhance the applicability of our system.
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Fig. 17: Distributions of the three streams in Fig. 3a. (a) T1–R1, 𝐾 = 201.1. (b) T1–R2, 𝐾 = 17.8. (c) T1–R3, 𝐾 = 52. PDF
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VI. CONCLUSION

In this paper, we show the ability to use Wi-Fi signals
to track breathing and heartbeats in different sleeping pos-
tures using only one pair of Wi-Fi devices. To achieve this,
we propose an NLOS sensing model based on Ricean K
theory to help monitor the minor displacements caused by
breathing and heartbeats, and we theoretically prove that
blocking the LOS signal is beneficial for motion detection
in NLOS sensing. We also propose a motion segmentation

method based on regularity detection, which can accurately
identify the time ranges corresponding to motions different
from vital signs (such as turning over and rising from bed). We
have implemented a prototype system to evaluate our method.
The experimental results indicate that our method achieves
96.618% and 94.708% accuracy for breathing and heart rate
detection, respectively.

REFERENCES

[1] S. D. Min, J. K. Kim, H. S. Shin, Y. H. Yun, C. K. Lee, and M. Lee,
“Noncontact respiration rate measurement system using an ultrasonic
proximity sensor,” IEEE Sensors Journal, vol. 10, no. 11, pp. 1732–
1739, 2010.

[2] P. X. Braun, C. F. Gmachl, and R. A. Dweik, “Bridging the collaborative
gap: Realizing the clinical potential of breath analysis for disease
diagnosis and monitoring–tutorial,” IEEE Sensors Journal, vol. 12,
no. 11, pp. 3258–3270, 2012.

[3] F. L. Facco, D. W. Ouyang, P. C. Zee, and W. A. Grobman, “Sleep
disordered breathing in a high-risk cohort prevalence and severity across
pregnancy,” American journal of perinatology, vol. 31, no. 10, pp. 899–
904, 2014.

[4] C. A. Kushida, M. R. Littner, T. Morgenthaler, C. A. Alessi, D. Bailey,
J. Coleman Jr, L. Friedman, M. Hirshkowitz, S. Kapen, M. Kramer
et al., “Practice parameters for the indications for polysomnography
and related procedures: an update for 2005,” Sleep, vol. 28, no. 4, pp.
499–523, 2005.

[5] T. A. Nappholz, W. N. Hursta, A. K. Dawson, and B. M. Steinhaus,
“Implantable ambulatory electrocardiogram monitor,” May 19 1992, uS
Patent 5,113,869.

[6] M. Zhao, F. Adib, and D. Katabi, “Emotion recognition using wireless
signals,” in Proceedings of the 22nd Annual International Conference
on Mobile Computing and Networking, 2016, pp. 95–108.

[7] S. Yue, H. He, H. Wang, H. Rahul, and D. Katabi, “Extracting multi-
person respiration from entangled rf signals,” Proceedings of the ACM
on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 2,
no. 2, pp. 1–22, 2018.

[8] F. Zhang, D. Zhang, J. Xiong, H. Wang, K. Niu, B. Jin, and Y. Wang,
“From fresnel diffraction model to fine-grained human respiration
sensing with commodity wi-fi devices,” Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 2, no. 1,
p. 53, 2018.

[9] Y. Zeng, D. Wu, J. Xiong, E. Yi, R. Gao, and D. Zhang, “Farsense:
Pushing the range limit of wifi-based respiration sensing with csi ratio of
two antennas,” Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies, vol. 3, no. 3, pp. 1–26, 2019.

[10] X. Wang, C. Yang, and S. Mao, “Resilient respiration rate monitoring
with realtime bimodal csi data,” IEEE Sensors Journal, vol. 20, no. 17,
pp. 10 187–10 198, 2020.

[11] J. Liu, Y. Chen, Y. Wang, X. Chen, J. Cheng, and J. Yang, “Monitoring
vital signs and postures during sleep using wifi signals,” IEEE Internet
of Things Journal, vol. 5, no. 3, pp. 2071–2084, 2018.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

[12] H. Wang, D. Zhang, J. Ma, Y. Wang, Y. Wang, D. Wu, T. Gu, and
B. Xie, “Human respiration detection with commodity wifi devices:
do user location and body orientation matter?” in Proceedings of the
2016 ACM International Joint Conference on Pervasive and Ubiquitous
Computing. ACM, 2016, pp. 25–36.

[13] Y. Zeng, D. Wu, J. Xiong, J. Liu, Z. Liu, and D. Zhang, “Multisense:
Enabling multi-person respiration sensing with commodity wifi,” Pro-
ceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, vol. 4, no. 3, pp. 1–29, 2020.

[14] Y. Gu, J. Zhan, Y. Ji, J. Li, F. Ren, and S. Gao, “Mosense: An rf-based
motion detection system via off-the-shelf wifi devices,” IEEE Internet
of Things Journal, vol. 4, no. 6, pp. 2326–2341, 2017.

[15] X. Liu, J. Cao, S. Tang, J. Wen, and P. Guo, “Contactless respiration
monitoring via off-the-shelf wifi devices,” IEEE Transactions on Mobile
Computing, vol. 15, no. 10, pp. 2466–2479, 2016.

[16] D. Zhang, Y. Hu, Y. Chen, and B. Zeng, “Breathtrack: Tracking indoor
human breath status via commodity wifi,” IEEE Internet of Things
Journal, vol. 6, no. 2, pp. 3899–3911, 2019.

[17] J. Liu, Y. Zeng, T. Gu, L. Wang, and D. Zhang, “Wiphone: Smartphone-
based respiration monitoring using ambient reflected wifi signals,” Pro-
ceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, vol. 5, no. 1, pp. 1–19, 2021.

[18] Y. Ma, G. Zhou, and S. Wang, “Wifi sensing with channel state
information: A survey,” ACM Computing Surveys (CSUR), vol. 52, no. 3,
pp. 1–36, 2019.

[19] Y. Gu, X. Zhang, Z. Liu, and F. Ren, “Besense: Leveraging wifi
channel data and computational intelligence for behavior analysis,” IEEE
Computational Intelligence Magazine, vol. 14, no. 4, pp. 31–41, 2019.

[20] J. Huang, B. Liu, P. Liu, C. Chen, N. Xiao, Y. Wu, C. Zhang, and
N. Yu, “Towards anti-interference wifi-based activity recognition system
using interference-independent phase component,” in IEEE INFOCOM
2020-IEEE Conference on Computer Communications. IEEE, 2020,
pp. 576–585.

[21] J. Huang, B. Liu, C. Miao, Y. Lu, Q. Zheng, Y. Wu, J. Liu, L. Su,
and C. W. Chen, “Phaseanti: an anti-interference wifi-based activity
recognition system using interference-independent phase component,”
IEEE Transactions on Mobile Computing, pp. 1–1, 2021.

[22] J. Huang, B. Liu, C. Chen, H. Jin, Z. Liu, C. Zhang, and N. Yu, “Towards
anti-interference human activity recognition based on wifi subcarrier
correlation selection,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 6, pp. 6739–6754, 2020.

[23] H. Huang and S. Lin, “Widet: Wi-fi based device-free passive person
detection with deep convolutional neural networks,” Computer Commu-
nications, vol. 150, pp. 357–366, 2020.

[24] H. F. T. Ahmed, H. Ahmad, and C. Aravind, “Device free human
gesture recognition using wi-fi csi: A survey,” Engineering Applications
of Artificial Intelligence, vol. 87, p. 103281, 2020.

[25] K. Qian, C. Wu, Z. Yang, Y. Liu, and K. Jamieson, “Widar: Decimeter-
level passive tracking via velocity monitoring with commodity wi-fi,” in
Proceedings of the 18th ACM International Symposium on Mobile Ad
Hoc Networking and Computing, 2017, pp. 1–10.

[26] H. Yan, Y. Zhang, Y. Wang, and K. Xu, “Wiact: A passive wifi-based
human activity recognition system,” IEEE Sensors Journal, vol. 20,
no. 1, pp. 296–305, 2020.

[27] Y. Zhang, Y. Zheng, K. Qian, G. Zhang, Y. Liu, C. Wu, and Z. Yang,
“Widar3.0: Zero-effort cross-domain gesture recognition with wi-fi,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 44, no. 11, pp. 8671–8688, 2022.

[28] Y. Gu, X. Zhang, Y. Wang, M. Wang, H. Yan, Y. Ji, Z. Liu, J. Li,
and M. Dong, “Wigrunt: Wifi-enabled gesture recognition using dual-
attention network,” IEEE Transactions on Human-Machine Systems,
vol. 52, no. 4, pp. 736–746, 2022.

[29] L. Zhao, H. Huang, X. Li, S. Ding, H. Zhao, and Z. Han, “An accurate
and robust approach of device-free localization with convolutional
autoencoder,” IEEE Internet of Things Journal, vol. 6, no. 3, pp. 5825–
5840, 2019.

[30] Y. Cao, F. Wang, X. Lu, N. Lin, B. Zhang, Z. Liu, and S. Sigg,
“Contactless body movement recognition during sleep via wifi signals,”
IEEE Internet of Things Journal, vol. 7, no. 3, pp. 2028–2037, 2020.

[31] Y. Bai, Z. Wang, K. Zheng, X. Wang, and J. Wang, “Widrive: Adaptive
wifi-based recognition of driver activity for real-time and safe takeover,”
in 2019 IEEE 39th International Conference on Distributed Computing
Systems (ICDCS). IEEE, 2019, pp. 901–911.

[32] F. Wang, S. Zhou, S. Panev, J. Han, and D. Huang, “Person-in-wifi:
Fine-grained person perception using wifi,” in Proceedings of the IEEE
International Conference on Computer Vision, 2019, pp. 5452–5461.

[33] D. Wu, R. Gao, Y. Zeng, J. Liu, L. Wang, T. Gu, and D. Zhang,
“Fingerdraw: Sub-wavelength level finger motion tracking with wifi
signals,” Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, vol. 4, no. 1, pp. 1–27, 2020.

[34] Y. Meng, J. Li, H. Zhu, X. Liang, Y. Liu, and N. Ruan, “Revealing your
mobile password via wifi signals: Attacks and countermeasures,” IEEE
Transactions on Mobile Computing, vol. 19, no. 2, pp. 432–449, 2020.

[35] F. Zhang, C. Wu, B. Wang, M. Wu, D. Bugos, H. Zhang, and K. R. Liu,
“Smars: Sleep monitoring via ambient radio signals,” IEEE Transactions
on Mobile Computing, vol. 20, no. 1, pp. 217–231, 2019.

[36] H. Aly and M. Youssef, “Zephyr: Ubiquitous accurate multi-sensor
fusion-based respiratory rate estimation using smartphones,” in IEEE
INFOCOM 2016-The 35th Annual IEEE International Conference on
Computer Communications. IEEE, 2016, pp. 1–9.

[37] J. Paalasmaa, M. Waris, H. Toivonen, L. Leppäkorpi, and M. Partinen,
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