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Abstract—Visual to auditory sensory substitution devices con-
vert visual information into sound and can provide valuable
assistance for blind people. Recent iterations of these devices
rely on depth sensors. Rules for converting depth into sound (i.e.
the sonifications) are often designed arbitrarily, with no strong
evidence for choosing one over another. The purpose of this work
is to compare and understand the effectiveness of five depth
sonifications in order to assist the design process of future visual
to auditory systems for blind people which rely on depth sensors.
The frequency, amplitude and reverberation of the sound as well
as the repetition rate of short high-pitched sounds and the signal-
to-noise ratio of a mixture between pure sound and noise are
studied. We conducted positioning experiments with twenty-eight
sighted blindfolded participants. Stage 1 incorporates learning
phases followed by depth estimation tasks. Stage 2 adds the
additional challenge of azimuth estimation to the first stage’s
protocol. Stage 3 tests learning retention by incorporating a 10-
minute break before re-testing depth estimation. The best depth
estimates in stage 1 were obtained with the sound frequency and
the repetition rate of beeps. In stage 2, the beep repetition rate
yielded the best depth estimation and no significant difference
was observed for the azimuth estimation. Results of stage 3
showed that the beep repetition rate was the easiest sonification
to memorize. Based on statistical analysis of the results, we
discuss the effectiveness of each sonification and compare with
other studies that encode depth into sounds. Finally we provide
recommendations for the design of depth encoding.

Index Terms—Sonification, comparison, depth, sensory substi-
tution, vision to audition, blind

I. INTRODUCTION

SONIFICATION is the use of non-verbal sound to convey
information [1]. Common examples include audio alerts

in cars, computers, mobile phones, or the sound produced by
traffic lights for blind people.

Sonification of visual information 1 can provide essential
assistance with the audio modality [2]. Sensory substitution
of vision by audition (SSVA) systems for the blind are one
straightforward application of such sonification. Early SSVA
devices encode 2D camera images into sounds and have shown
potential for visual rehabilitation [3]–[8]. A new generation of
SSVA devices takes advantage of the rapid development of 3D
sensors to explicitly sonify depth [9]–[22].

A variety of depth sonifications are used in devices that
rely on 3D sensors. Some systems encode depth into sound
amplitude to sonify 3D images from a Kinect camera [9],
[10], locate object within virtual environments [11], [12] or
indicate the length of the traversable area in front of users [13],

1information that is usually captured by vision

[14]. Other devices encode depth into pitch for 3D space
perception [15], sightless navigation [16], [17] or hazard
detection [18]. Others use the repetition rate of beeps 2 to
encode the distance of pedestrians in front of users [19] or
to warn them of nearby obstacles [20]. Finally, some systems
use reverberation to represent the depth of objects [21] or to
inform users about the size of a room [22].

To date, there is no standardized depth sonification for
SSVA systems based on an extensive study. Yet, several
works underline the importance of choosing effective vision
to audition mappings for designing such systems [23]–[25].
In [23], the authors claim that more research is needed to
answer the question “what sort of stimulation is most effective
for conveying particular information ?”. In [24], the authors
argue that the design of human machine interface systems
could greatly benefit from the study of natural cross modal
correspondences (CMCs) 3. In [25] the authors showed that the
use of CMCs as a basis for designing color to sound association
rules improved performance in memory and recognition tasks.

In this work, we compare the effectiveness of five different
depth sonifications for SSVA devices that rely on 3D sensors.
In such systems, 3D sensors can usually capture depth up to
8 meters. We developed a system and protocol to precisely
evaluate the accuracy that can give different depth sonifications
in a depth range of 1 meter in front of the user. We discuss
in section V-E whether our results could be extended to larger
depth ranges.

To our knowledge, sonification comparison works of short
range depth (i.e. with a depth that is within the range of 3D
sensors used in SSVA devices) were always conducted with
sighted participants and are reported below.

Parseihian et al. [27] found that repetition rate of beeps
and pitch were more accurate than reverberation to encode
the distance between the position of the hand and a reference
point. Later, Parseihian et al. [28] evaluated the potential of 4
sound parameters (pitch, rhythm, timbre and loudness) for a
one dimensional guidance task. They found that performance
was dependent on both the sonification strategy and the given
instructions. Bazilinsky et al. [29] investigated, with 29 sighted
individuals, 3 sound parameters (pitch, amplitude and repetition
rate of beeps) to encode distance between the cursor and a
reference point on a computer screen. The authors did not find
significant differences in the estimation accuracy between the
3 sonifications.

The aforementioned sonification comparisons were per-
formed with sighted non-blindfolded individuals. Participants

2short, high-pitched periodic sounds
3CMCs are defined as a “tendency for a sensory feature in one modality to

be associated with a sensory feature in another sensory modality” [26].
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therefore had visual feedback combined with audio during the
learning phase as well as during the position estimation and
guidance tasks. It is reasonable to hypothesize that behavioral
and motor control differences exist when people cannot rely
on vision to estimate the audio encoded depth. Therefore, in
the context of sensory substitution for blind individuals, we
compare sonifications without visual feedback. In addition,
we conducted experiments with a physical object to imitate a
real life situation in which a blind person wants to understand
the position of an object. The importance of using a physical
object in the sensory substitution context has been highlighted
by Auvray et al. [30]. They showed that the distal attribution 4

in the sensory substitution process relies on the ability to
manipulate the physical object that is encoded with sounds.
Finally, conducting experiments in the real world rather than
in a virtual environment allows to remove performance biases
due to different skill levels of participants with controllers such
as a game pad or a mouse.

Our protocol comprises three experimental stages that are
described in section III-C. Experiments were conducted with
28 sighted blindfolded participants. Participant’s position esti-
mation accuracy was measured for five different sonifications.
At the end of the experiment, participants completed a short
questionnaire to give qualitative feedback on the sonifications.
We also conducted an online experiment to estimate Just
Noticeable Differences (JND), which we report on in the
discussion section.

Of the five investigated sonifications, two are based on natural
depth cues used to estimate the distance of a sound source:
the amplitude which is commonly used in sonification systems,
and the reverberation (as in the work of Ribeiro et al. [21]).
These may provide an intuitive way to encode depth. However,
humans tend to naturally underestimate and overestimate far
and near sound sources [31], [32]. We therefore tested 3 other
sonifications based on artificial cues that could potentially
overcome these natural biases. One is a mix of a pure tone and
a white noise. The amplitude ratio of the two signals is used to
encode depth. Plazak et al. [33] showed that this sonification
can be used to assist neurosurgeons to encode distance between
a surgical probe and an anatomical region. To our knowledge,
this is the first time that such a sonification is investigated in
a sensory substitution context. Finally, we investigated two
other common depth sonifications used in vision to audition
devices that rely on depth: the frequency, and the repetition rate
of beeps. It is hypothesized that the 5 evaluated sonifications
give significantly different depth estimation accuracy and user
preferences.

II. DEPTH SONIFICATION SYSTEM

The system consists of a styrofoam box along with a camera
and a computer to capture and sonify the position of the
box (Fig. 1). The audio feedback is delivered through a pair
of Audio-technica headphones (model ATH-M50X).

The system has two modes: one for the learning and one
for positioning tasks. During the learning, the position of

4The distal attribution is the ability to create a mental representation of a
distant object from sensory stimulation

the styrofoam box is tracked and sonified in real-time while
participants are moving the box. For the positioning task, an
audio encoded position is played and participants have to move
the box to the perceived location. The system encodes either
the depth only or the azimuth and the depth (defined in Fig. 2).

Fig. 1: Experimental setup. Participants are blindfolded and
standing in front of the table. The setup comprises the box
with the April Tag, a camera that captures the 3D position of
the box, and a computer that runs the position tracking and
the sonification algorithm.

The camera is the RGB sensor of a XBOX Kinect 360
(model 1414). It would be possible to use the depth sensor of
the Kinect, but we designed our experiments to be reproducible
with a simple RGB camera. The position tracking of the
box is implemented in Python. Sound is synthesized with
the Supercollider [34] audio programming environment.

Az

Depth

Top view

Depth range [0 m ;1 m]

 1.25 m

Zcam

Xcam

Ycam

Pb
Pv 

Fig. 2: Schematic top view of the experimental setup. The
camera’s coordinate system Ccam comprises the horizontal
Zcam axis pointing towards the participant, the vertical Y cam
axis pointing down and the Xcam axis pointing toward the
left of the participant. Pv and Pb are the positions of the visual
marker and the box in Ccam. The depth is assumed to be
0 m when the box is on the right edge of the table. Az is the
azimuth angle between the Zcam axis and the position of the
box Pb, with the origin of the angle being the midpoint of the
table on the participant’s side.

1) Box position tracking: The position of the box is
estimated in real time thanks to a visual marker pasted on
the box (Fig. 1) that is detected by the AprilTag algorithm [35].
AprilTag estimates 3D positions of visual markers relative to
a camera. We detail below the computation of the depth and
azimuth (Fig. 2).

We denote Pb(xb, yb, zb) the position of the box and
Pv(xv, yv, zv) the position of the visual marker in the camera’s
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coordinate system Ccam = (Xcam, Y cam,Zcam) (Fig. 2).
AprilTag gives the position of the visual marker Pv(xv, yv, zv)
in Ccam. We first compute the position of the box from the
position of the visual marker: (xb, yb, zb) = (xv, yv, zv+sb/2),
with sb being the length of the box edges, equal here to 28 cm.
We then estimate the depth in centimeters as depth = 125−zb.
We also compute the azimuth (in degree) with:

Az =


arctan(−xb/depth) if depth 6= 0

−90 if depth = 0, xb > 0

90 if depth = 0, xb < 0

2) Sonification design: Each depth sonification algorithm
has one sound parameter P (d) that is linearly mapped to the
depth d with the following equation:

P (d) = d× (Pd=1m − Pd=0m) + Pd=0m (1)

with Pd=0m and Pd=1m (described in Table I) being the values
of sound parameters used to encode a depth d of 0 and 1 meter,
respectively. Outside of the [0; 1] meter depth range, sound
parameters are not changed.

Table I gives the sound parameter ranges and equations for
each sonification. We provide additional details below:

• Freq: A pure tone with frequency varying according to
the western chromatic musical scale. The sound frequency is
therefore equally distinguishable within all the depth range.
Small and large depths are respectively encoded into high
and low pitch notes. The amplitude is weighted according the
“equal loudness curve” of the standard ISO 226:2003 [36] to
ensure that the perception of loudness is equal throughout the
frequency range.

• Amp: The amplitude of a pure tone (500Hz) according to a
decibel scale. Small and large depths are respectively encoded
into high and low sound amplitude.

• Reverb: the reverberation time of beeps. Here, beeps
are high pitched pure tones that lasts 200 ms and that are
repeated at a fixed rate of one beep per second. Beeps are
reverberated with Schroeder reverberators [37] implemented by
the synthesizer FreeVerb of Supercollider. FreeVerb consists
of 8 low-pass feedback comb filters in parallel followed by 4
all-pass feedback filters in series [38]. The reverberation time
is defined as the time for the low frequencies (below 1500Hz)
of the sound to be reduced by 60 dB. Small and large depths
are encoded respectively into short and long reverberation time.

• Beep Repetition Rate (BRR) 5: the repetition rate of beeps
(high pitch tone of 200 ms). Small and large depths are encoded
into fast and slow repetition rates, respectively.

• SNR: a pure tone (1200 Hz) mixed with white noise. The
varying parameter is the ratio of the amplitude of the pure tone
over the amplitude of the white noise. Small and large depths
are encoded respectively into high amplitude of the pure tone
(low amplitude of the noise) and high amplitude of the noise
(low amplitude of the pure tone).

When sonified, the azimuth angle (Fig. 2) is linearly mapped
to stereo panning. The stereo panning is the distribution of
the volume in the left and right channels of the headphones.

5We use the same notation as proposed by [29]

Azimuths of −90° and 90° are encoded with the signal being
entirely played in the left ear and the right ear, respectively.

III. METHODS

A. Participants

Twenty-eight voluntary subjects were recruited from the Uni-
versité de Sherbrooke (11 women and 17 men; mean age:
27 ± 5.8 years). All were naive regarding the purpose of the
experiment and none of the subjects reported any hearing losses.
None of them were relatives or friends of the authors. Each
individual received the same amount of financial compensation.

B. Design

We performed a within-subjects study where each partic-
ipant performed the tasks with the 5 different sonifications.
Independent variables are the depth sonification type and the
3 experimental stages (describe in section III-C). Dependent
variables are the depth estimation accuracy and participants
preferences.

C. Procedure

Individuals were standing in front of a table and listening
with headphones (Fig. 1). Participants were first asked to
calibrate the volume of the loudest sound in the experiment
by increasing it while remaining at a comfortable level. The
protocol was divided into three experimental stages 6, each
completed with the 5 sonifications. Before the beginning of
each stage, participants were blindfolded.

1) Stage 1 - Depth estimation with learning tasks : the
stage comprised 3 sequences of [1 learning task followed by 5
positioning tasks] (total of 3 learning and 15 positioning tasks).
During the learning task, participants were asked to actively
explore the space by moving the box and to try to understand
how the sound changed depending on its position. There was no
time limit for this task. For the positioning task, a random target
position (either a depth or a depth and an azimuth for stage
2) was generated from an uniform distribution. The generated
target was constrained to the area within the field of view of
the camera in front of the participant. A two second sound
encoding the target position was then played and participants
had to place the box at the perceived location.
The purpose was to quantify how well participants estimated
the depth and how the learning tasks impacted the positioning
accuracy. Only the depth was encoded into sounds.

2) Stage 2 - Depth and azimuth estimation: the purpose
was to investigate the simultaneous perception of the encoded
azimuth and depth. The stage comprised one learning task
followed by 5 positioning tasks. Learning and positioning tasks
were the same as those described above for stage 1, but with
both depth and azimuth encoded into sounds.

3) Stage 3 - Depth estimation after a 10 minutes break: the
purpose was to evaluate how well the different sonifications
could be remembered in the short term. Participants therefore

6The 3 stages were approved by the ethical committee from “lettres et
sciences humaines” faculty from Université de Sherbrooke under reference
number 2014-85/Rouat.
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TABLE I: Sound parameter ranges and equations for each sonification. The encoding parameter varies linearly with depth.
The range column ([Pd=0m, Pd=1m]) shows the sound parameter values for a depth of 0 and 1 meter. For Freq, the signal
amplitude A(M(d)) depends on the frequency of the sound signal and is set with the “equal loudness curve” of the standard ISO
226:2003 [36]. For BRR (Beep Repetition Rate) and Reverb, ExpEnv* is an exponential decay envelope defined on t ∈ [0, 1/τ ],
equal to exp(−39 · t). τ = 1 second for Reverb and τ depends on the depth d for Beep. The envelope ExpEnv reduces the
amplitude of the sound signal by 98% after 0.1 second. The envelope is repeated every 1/τ(d) second for Beep and every 1
second (τ = 1 second) for Reverb. For Reverb, we the use Freeverb filter, which is a public implementation of Schroeder’s
reverberators [37]. For SNR, N(t) is a white noise.

Sonification Encoding parameter [Pd=0m, Pd=1m] Sound signal s(t):

Freq M(d): Midi note number [107, 48] A(M(d)) · sin(2π · (440 · 2(M(d)−69)/12)) · t)
Amp A(d): Amplitude (DB) [0,−40] 10−A(d)/20 · sin(2π · 500 · t)

Reverb RT (d): Reverberation time [0.05, 0.95] FreeverbRT [(
∑∞

k=0 ExpEnv*(t− k/1)) · sin(2π · 1200 · t)]
BRR τ(d): Repetition rate (Hz) [10, 1] (

∑∞
k=0 ExpEnv(t− k/τ)) · sin(2π · 1200 · t)

SNR R(d): Signal-Noise ratio [20; 0.05] R(d)/(1 +R(d)) · sin(2π · 500 · t) + 1/(1 +R(d)) ·N(t)

took a 10 minutes break before performing the stage and
there was no new learning task. Then they had to complete 5
positioning tasks, which were the same as in stage 1.

Participants could rest and remove their blindfolds whenever
they needed during experiments. We did not provide feedback
on the accuracy of their estimation. Following the experiments,
they answered a questionnaire comprising 4 questions to give
qualitative feedback on the sonifications.

D. Graphical representation and statistical analysis
Distribution of depth and azimuth errors are displayed with

Boxplots [39]. Horizontal edges of the box show first and third
quartiles and ends of the vertical lines represent minima and
maxima. Medians and averages are shown with middle line
in the box and black filled circles, respectively. Outliers 7 are
shown with with empty black circles.

We define the chance level as the expected error if partic-
ipants had randomly positioned the box without the help of
sonifications. The computation of the chance level is shown in
Appendix section A and is equal to 1/3 of the range (i.e.
100/3 = 33 cm for the depth and 180/3 = 60° for the
azimuth).

To analyze the effect of sonifications on participant’s
performance, we use different versions of the ANalysis Of
Variance (ANOVA) [40]. An ANOVA determines whether the
means of two or more distributions are different, by comparing
inter- and intra-group variances. For each ANOVA, we give
the F statistic 8 and the p-value 9. The significance level for
the ANOVAs is set with the p-value at p < 0.05.

A two-factors 10 repeated measure 11 ANOVA is used to
analyze the effect of learning and sonifications on depth errors

7Data points that are more than 1.5 Interquartile Range (IQR) away from
the first or third quartile

8The F statistic represents the ratio between the inter- and the intra- group
variance. F is computed from the Fisher distribution and the degree of freedom
of the inter- and intra- group.

9The p-value is computed from the F statistic and represent the probability
of obtaining the observed means by chance

10Several factors ANOVAs are used for analyzing the effect of several
independent variables on one outcome variable

11The repeated measure ANOVA is used when data are collected from the
same individuals under different conditions or at different times

(section IV-A). One-factor repeated measure ANOVAs are used
to study the effect of sonifications on depth (section IV-B,IV-C)
and azimuth (section IV-B) errors. When ANOVAs are signif-
icant (i.e. p < 0.05), multiple pairwise posthoc [41] t-tests
are performed to determine which sonification pairs yield
significant different errors. The significance level 12 of the
pairwise comparisons are shown with gray asterisks above
boxplots as follows: * for {p < 0.05}, ** for {p < 0.01} and
*** for {p < 0.001}.

Simple linear regressions are computed to analyze to model
the estimated depths or azimuths and the actual target depths
(section IV-A) or azimuths (section IV-A) generated by the
system. For each linear regression, we give the goodness of fit
R2 13 and the regression equation. On each linear regression
figure (Figs. 4 and 6), the dashed line is the identity function
(i.e. when the target depth is equal to the depth estimate).
The plain black line shows the linear model. The shaded area
represents the 95% confidence interval of the linear model.

IV. RESULTS

Results are reported for 28 blindfolded sighted individuals.
Of the 28 participants, 14 completed the experimental stages
1 and 2 and 14 the stages 1 and 3. One participant felt sick
during the experiment and completed only stage 1 and the
questionnaire. Results of the first, second and third experimental
stages are therefore reported for 28, 13 and 14 individuals.

A. stage 1, depth estimation with learning tasks

In the rest of the paper, positioning errors refer to absolute
positioning errors.

We consider a sonification to have failed to encode depth
for individuals when their average depth error over the 15
positioning tasks was above the chance level (33 cm). During
this stage, one participant had an average error above the chance

12Significance levels of the multiple pairwise comparisons were adjusted
with the Holm method.

13The goodness of fit R2 is the percentage of the variance of the dependent
variable explained by the linear model
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level with Amp (40.3 cm) and Reverb (38.1 cm), while a second
had an error level above chance with Reverb (35.0 cm).

Figure 3 shows the distribution of participants’ average depth
errors with each sonification after each learning task.

The two-factor repeated measure ANalysis Of Variance
(ANOVA) showed a statistically significant interaction between
the effect of the sonification and learning tasks on depth
errors (F4.87,126.58

14 = 9.58, p = 0.015). Simple main
effect analysis showed that sonifications had a significant
effect on depth errors after the first (positioning tasks [1-5])
(F2.81,73.0 = 11.6, p = 4.41× 10−6), second (positioning
tasks [6-10]) (F2.34,60.9 = 4.53, p = 0.011) and third (position-
ing tasks [11-15]) learning task (F2.35,61.0 = 6.04, p = 0.003).
Pairwise comparisons further indicated that (i) Freq and BRR
(Beep Repetition Rate) were significantly better than the
3 other sonifications after learning task 1, (ii) Freq was
significantly better than Amp after learning task 2 and (iii) Freq
and BRR were significantly better than Amp after learning task
3 (Fig. 3). Freq and BRR are the most effective 2). Reverb
and SNR are initially not effective but, with practice, results
improve. Amp is not effective, even after practice. Smaller
Interquartile ranges of depth errors obtained with Freq and BRR
shows more consistency between participants’ performances
with these 2 sonifications.

Simple main effect analysis also showed that learning tasks
had a significant effect on depth errors with Reverb (F2,52 =
5.83, p = 0.005) and SNR (F1.61,41.8 = 6.51, p = 0.006).
Pairwise comparisons further showed that (i) Reverb led to
significantly better accuracy after the learning task 3 than
during after the learning task 1 (p = 0.006) and (ii) SNR led to
significantly better accuracy after learning task 2 (p = 0.017)
and 3 (p = 0.026) than after learning task 1. This supports the
idea that practice with Reverb and SNR allowed participants
to increase their positioning accuracy.

Linear regressions were estimated to model perceived depths
as a function of target depths (Fig. 4). We define the depth
estimation bias as the difference between the regression
curve and the identity function (showed with dashed lines
in Fig. 4). To compute the regressions, we removed data when
a sonification failed to encode depth for one participant (i.e.
when the average depth error was above the chance level).

Significant regression was found for each sonification and
phase (p < 2.2× 10−16), suggesting that estimates linearly
change with target depths. Amp resulted in the largest estimation
biases with a clear tendency to overestimate small depths and
underestimate large depths. Freq gave the smallest estimation
biases over the 3 phases. BRR, Reverb and SNR gave similar
estimation biases. Except with Amp, estimation biases were
smaller in phase 3 than in phases 1 and 2.

B. stage 2, depth and azimuth simultaneous estimation

Figure 5 presents the distribution of participants’ average
depth and azimuth errors. Two had their average azimuth error
over the chance level. One with Amp and SNR with an average

14Non integer degrees of freedom for the F statistic are due to the Greenhouse
Geisser correction applied to adjust the non-equality of variances, which is a
necessary assumption to conduct a repeated-measure ANOVA
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Fig. 4: Linear regression to model participants’ depth estimates
as a function of true target depths. Gray barplots show the
average errors as a function of the true target depth. We did
not identify a clear pattern of the average error distribution
with respect to the actual target depth.

azimuth error of 74±13° and 70±35°) and one with BRR (Beep
Repetition Rate) with an average azimuth error of 89 ± 13°.
These participants reported to be confused by the encoding
of the azimuth angle as they rather expected the y cartesian
coordinate (Fig. 2) of the box to be audio encoded.

Although Amp gave slightly better azimuth accuracy, close
averages and large variances suggest that there were no
significant differences between the sonifications (Fig. 5). This
was confirmed by a repeated measure ANOVA (F4,48 =
0.243, p = 0.913). This suggests that the perception of the
audio encoded azimuth is independent of the depth sonification.
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Depth errors were significantly higher during this stage
than during the first stage. The average depth error over all
sonifications and all participants was 21.5±13.9 cm (compared
to 12.3 ± 11.3 cm for the first stage). Five out of thirteen
individuals had their mean depth errors over the chance level
(33 cm) with at least one of the following sonifications: Amp,
Freq, Reverb and SNR. The simultaneous estimation of azimuth
and depth was more difficult than depth estimation alone.

A repeated measure ANOVA showed a significant effect of
the sonifications on depth errors (F4,48 = 4.731, p = 0.003).
Pairwise comparisons indicated that BRR gave significantly
better accuracy than Reverb, SNR and Amp.
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Fig. 5: Distribution of average azimuth (left) and depth (right)
errors during the experimental stage (simultaneous depth and
azimuth estimation).

Linear regressions were computed to model the estimated
azimuths as a function of the target azimuths (Fig. 6). We
remove participants from the data when their average azimuth
error with a sonification was above the chance level. All
regressions were significant (p < 2.2× 10−16). As for the
depth in section IV-A, we define azimuth estimation biases
as the difference between regression curves and the identity
function. With BRR and Freq, estimates were almost unbiased.
With the other sonifications, participants estimates were biased
toward the center (i.e., they underestimated the magnitude of
both the left and right azimuth).

C. stage 3: Depth estimation after a 10 minutes break

Figure 7 displays the distribution of participants’ average
depth errors for stage 3. Distributions are given for the 14
individuals who completed both stages 1 and 3. During stage 3,
3 out of 14 participants (21,4%) had their average depth errors
above the chance level (33 cm) with Reverb (36.6± 15.7 cm,
38.2± 16.1 cm and 47.9± 14.1 cm). This suggests that Re-
verb is not well remembered. A repeated measure ANOVA
showed a significant effect of the sonifications on depth errors
(F4,52 = 4.452, p = 0.004). Pairwise comparisons indicated
that positioning accuracy with BRR (Beep Repetition Rate)
was significantly better than with Reverb. Except with BRR,
sonifications led to larger positioning errors than in stage 1.
With BRR, averages are similar for stages 1 and 3 and the
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median for stage 3 is even lower than the median for stage 1.
This suggests that BRR is the easiest sonification to remember.
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Fig. 7: Distribution of average depth errors during the third
experimental stage (depth estimation after a 10 minutes break).
For comparison, average results over the 3 phases of stage 1
are shown with dotted lines.

D. Qualitative feedback

The questionnaire comprised the 4 following questions:
• (Easy) Were sonifications easy to use to estimate depth

positions? (rate from 1: “very easy” to 5: “very difficult”)
• (Pleasant) Were sonifications pleasant to listen to? (rate

from 1: “very pleasant” to 5: “very unpleasant”)
• (Strategy) What was your strategy to position the box?

(open question)
• (Natural) What sonification did you find the most natural

to encode the depth? (forced choice)
Figure 8 shows participants’ answers to questions (Easy) and

(Plaseant). A one-factor ANOVA showed a significant effect
of the sonifications on answers to questions (Easy) (F4,108 =
3.42, p = 0.011) and (Pleasent) (F4,108 = 2.65, p = 0.037).
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TABLE II: Participants’ answers to “What sonification did you
find the most natural to encode depth?”

BRR Amp SNR Freq Reverb

Number of part. for
question (Natural)

11
(39.3%)

7
(25%)

7
(25%)

2
(7.1%)

1
(3.6%)

Pairwise comparisons showed that BRR (Beep Repetition Rate)
obtained a significantly better score than Reverb and SNR for
the question (Easy). This is not surprising since BRR led to
overall better positioning accuracy than Reverb and SNR. For
the question (Easy), Amp scores were similar to Freq scores,
and not significantly higher than BRR scores. Yet, the accuracy
with Amp was overall worse than with BRR and Freq. Also,
only 11 out of 28 participants (39%) were more accurate
with the sonification that they rated as the easiest to estimate
depth positions. This suggests that a majority were not able to
accurately accurately self-assess their performance.

The lower median score with Amp and BRR for question
(Pleasant) suggest that individuals found these two latter
sonifications more pleasant to listen to.

*
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Fig. 8: Participants’ responses to: left, “Were sonifications easy
to use to estimate depth positions?” (score from 1: “very easy”
to 5: “very difficult”). Right, “Were sonifications pleasant to
listen to? (score from 1: “very pleasant” to 5: “very unpleasant”)

Table II present answers to question (Natural). BRR had
the best results with 11 participants who found it to be the
most natural sonification. We hypothesized that the most
natural sonification for individuals was also the one that they
found the easiest to estimate depth. Sixteen out of twenty-
eight participants (57%) responded that the most natural
sonification was te one to which they gave the best score on
question (Easy). For 12 of them (43%), there was therefore a
difference between the most natural sonification and the easiest
sonification. While Freq gave the best positioning errors in
the first experimental stage, only 2 participants answered that
it was the most natural sonification to encode depth. Finally,
only 4 out of 28 (14%) had their best performance with what
they found to be the most natural sonification to encode depth.
This also supports the idea that individuals were not able to
accurately self-assess their performance.

Answers to question Strategy allowed us to analyze the

learning strategies. One was to memorize two or three audio
encoded reference positions (e.g. closest, farthest, and middle
position). Participants then used the memorized reference
positions to find the target depth position by interpolation.
The other was to move the box slowly and repeatedly across
the depth range to hear the entire range of sound.

There were also strategies that depended on sonifications.
With BRR, some participants tried to count the number of
repetitions per second. With Freq, some used their knowledge
of music to associate depths with musical notes.

V. DISCUSSION

Many recent sensory substitution systems use audio-encoded
depth. However, no study has yet focused on the encoding of
depth with sound in such systems. Our protocol was designed
to evaluate 5 different sonifications of depth without the need
for visual feedback. Importantly, the sonification system can
be set up with any camera and a standard laptop and could be
easily adapted to investigate other depth sonifications. Twenty-
eight sighted blindfolded individuals completed positioning
tasks using the 5 depth sonifications describe in section II-2.

All sonifications resulted in average errors that are under
chance level. They are therefore all potentially viable for
encoding depth in sensory substitution systems. Nevertheless,
we observed significant differences that we discuss below.

A. Comparison with studies conducted with sighted non-
blindfolded participants

We compared our results to studies that have conducted
research on the effectiveness of distance sonification, but
with non-blindfolded participants. Those studies take place
within the generic context of auditory display while we focus
on sonification for sensory substitution. Despite the different
contexts, we are interested in comparing the effectiveness of
sonifications with and without visual feedback. This could also
potentially help to better understand multi-sensory integration.

In [28], participants had to complete a one dimensional
guidance task to a target location. The distance between the
experimental object and a target is sonified. We sonify the
distance between the user and the object. In one of their
experimental setups, the authors compare the sonifications
that we name Freq, BRR (Beep Repetition Rate) and Amp.
Despite the differences to our experimental protocol, they also
found that Freq and BRR gave better accuracy than Amp.

In [27], the distance between the hand and a central reference
point is sonified. Similar to our protocol, participants were
asked to perform a positioning task after a learning phase. The
authors compare the sonifications that we name BRR, Freq
and Reverb. Similar to our findings, Reverb gives worse
accuracy than Freq and BRR. However, they found that BRR
gives better performance than Freq while we found similar
performance between these two sonifications. This could be
explained by the use of a linear scale for Freq in their
sonification design while we use a logarithmic scale (based on
the Western music scale) which better fits to human perception
of frequency. Moreover, they observe a strong tendency to
overestimate small depths and underestimate large depths. We
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observe a similar but less significant effect. Indeed, the slopes
of the linear regressions are closer to 1 (i.e. estimated depths
were less biased) in our study. Zhang et al. [42] showed that
estimated visual depths are subject to a “contraction” bias (i.e.,
overestimation of small depth and underestimation of large
depth). Thus, it is possible that the bias exists also in the
estimation and memorization of audio-encoded depths and is
reinforced in [27] in which participants had visual feedback.

In [29], the distance between a cursor and line on a computer
screen is sonified. Participants were also asked to perform a
positioning task after a learning phase. The authors compare
the sonifications that we name BRR, Freq and Amp. They found
no difference in performance between the 3 sonifications while
we found BRR and Freq to be significantly better than Amp.
There can be several explanations. First, they used a linear
scale for Freq, which could explain why Freq does not give a
better accuracy than Amp. Moreover, the learning phase in their
work was passive. It consisted in presenting 11 audiovisual
stimuli corresponding to 11 positions equally distributed on
the screen. There was no sensory-motor feedback loop, which
is necessary for effective learning [43], [44]. Thus, it seems
that the differences in participants’ accuracy in their work
are mainly due to the memorization of audio-visual stimuli
presented during learning. It could also explain why they did
not observe differences between sonifications.

B. Additional findings

We found BRR to be the easiest sonification to remember.
It is possible that with a longer learning period, the other
sonifications would have been memorized in the same way.
However, in accordance with Dakopoulos et al. [45], a sensory
subsititution device should not require a long learning time.
BRR therefore seems to be a promising sonification since it is
well memorized without the need for a long learning period.
Moreover, we found that BRR gives the best accuracy when
depth and azimuth are simultaneously sonified.

With the exception of Amp, the sonifications resulted in
estimates with low biases. The large estimation biases obtained
with Amp can be explained by the work of Poulton [46], who
shows that the quantitative judgment of loudness follows a
contraction bias (i.e. an overestimation of soft sounds and
underestimation of loud sounds).

Qualitative feedback shows that a majority of participants
found BRR to be the most natural and the easiest sonifi-
cation to encode depth. BRR is present in everyday life
and individuals are already used to this type of sound. A
significant portion of the participants (25%) found SNR to be
the most natural way to encode depth. Participants may have
naturally associated this sonification with the visual atmospheric
perspective. Atmospheric perspective refers to the less detailed
appearance of distant objects due to particles and air between
the distant objects and the eyes. Also, a congenitally blind
person with whom we had informal discussions about our depth
sonifications noted that SNR gives two cues for estimating depth:
the volume of noise and the volume of sinusoidal sound. It
would be worthwhile to further investigate this sonification.

C. Differences in effectiveness of sonifications

The positioning accuracy is bounded by the smallest change
in depth required to perceive differences in the sonification
sounds. This is related to Just Noticeable Differences (JNDs)
of each sonification, which are the smallest changes in sound
parameters that can be perceived by the auditory system.
Parseihian et al. [28] suggest that JNDs might predict the
effectiveness of sonifications (small JNDs would give a better
effectiveness). We conducted an online audio experiment 15 to
estimate the minimum depth differences required to perceive
distinct sounds. For each sonification, we first played a sound
corresponding to a depth d and we then played a sound
corresponding to a depth d + r · ∆d, with r ∈ {−1, 0, 1}.
Parameter ranges of the online experiment are identical to
those of the main experiment. Pairs of sounds were successively
presented and listeners had to label the second sound as being
different or equivalent to the first sound. ∆d was chosen
according to a staircase procedure [47]: if the participant’s
answer was correct, ∆d was reduced and if not, ∆d was
increased. The procedure was stopped after 20 trials or when
participants alternately answered right then wrong 5 times in
a row. JNDs were computed as being the mean depth d from
the 5 last trials. Ten new listeners were recruited for the online
experiment. We estimated JNDs for two depths d = 5 cm and
d = 95 cm. Results are in Table III.

TABLE III: Minimum equivalent depth differences in cm
required to perceive two different sounds. Results are shown
for depths of 95 cm and 5 cm.

Amp BRR Freq Reverb SNR

5 cm 3.1± 1.7 3.1± 2.5 1.3± 1.9 3.3± 1.1 2.1± 1.0

95 cm 6.7± 1.8 2.2± 1.5 1.6± 1.7 8.8± 0.1 4.3± 2.7

Freq gives the smallest JNDs. Therefore, it could explain
why Freq gives better accuracy than the other sonifications.
However, this does not explain why BRR and Freq resulted in
similar accuracy. Also, while Amp, Reverb and SNR produced
better JNDs around low depths, positioning errors with theses
sonifications are higher or similar around low depths than
around large depths (see the distribution of errors represented
with grey barplots on Fig. 4 page 5). This leads us to conclude
that JNDs alone cannot explain differences between sonifica-
tions. Accuracy difference could also come from the natural
association between depth perception and sound parameters,
named cross-modal correspondences (CMCs). CMCs have
already proven to be the basis for effective human machine
interfaces [24], [25]. Some of these correspondences may
emerge from regular exposure in everyday life [48]. BRR is a
sonification often used in our daily experience in alarm systems
to warn of approaching dangers (e.g. in rear view cameras in
cars). This could also explain why a good positioning accuracy
is obtained with BRR. Differences could also arise from the
potential of the sonifications to develop effective strategies. For
example, some participants reported trying to count the number

15the experiment is available at: https://openprocessing.org/sketch/1536387
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of repetitions per second with BRR, which may be easier to
remember and to quantify than other sound parameters.

D. Guidelines for depth sonification

BRR (Beep Repetition Rate) gives a good accuracy with
an unbiased representation of the depth, was the easiest to
remember and has good qualitative feedback. Freq also gives
good accuracy but is not as easy to remember and participants
do not find it a natural sound to encode depth. Although the
amplitude of a sound and its reverberations are natural cues
used by the brain to estimate distance from the sound source,
participants were less accurate with the sonifications Amp
and Reverb. Moreover, Amp gives a biased representation
of the depth and Reverb received poor qualitative feedback.
Finally, even if SNR yields less accuracy than BRR and Freq,
participants rated it as a natural sonification to encode depth
and it gives a low bias representation of the depth. We therefore
believe that this sonification should be investigated further and
could be a viable design choice.

Our results lead us to recommend using BRR for depth soni-
fication. However it may not be possible to use BRR (e.g. if it is
already used to encode another visual dimension). In this case,
we would recommend to use Freq if the task requires accuracy.
If not, SNR could also be a good alternative which feels natural
for participants. Finally, we do not recommend Amp or Reverb.

E. Limitations of the work

The experiments were conducted with blindfolded sighted
participants. Late blind people maintain their spatial abilities
and spatial cognitive map from their early visual experi-
ences [49]. They also adopt similar strategies to those used
by sighted people when performing spatial tasks [50], [51].
Therefore, we are confident that results should hold with
late blind people. We also conducted a pilot study with a
congenitally blind participant who had overall similar results
to the blindfolded sighted participants (e.g. the congenitally
blind participant was also more accurate with BRR and Freq).
In the future, it would be interesting to compare our results
with other experiments conducted with late-blind individuals
and with more congenitally blind individuals.

The five depth sonifications were evaluated for hand-
reachable depths. Our results can therefore be used as such
for systems which assist blind users to speed up the process
of finding and grasping objects in front of them.

Differences in accuracy between sonifications are possibly
partially explained by the JNDs (see section V-C) of the sound
parameters. Using the same sonification parameters over a
larger depth range could therefore result in larger errors with
a similar order of accuracy between sonifications. Beyond the
hand reachable area, the accuracy is however less critical. The
information would be used to either get into the hand reachable
area of the object, or to avoid it. This is supported by Pressl
and Wiesel [52], who suggest that a SSVA device dedicated
to navigation should encode the position of an object with an
accuracy of 1 meter (or less) in order to reach it with a cane
or with the hands.

In future works, it would be necessary to verify if sonfications
(and particularly BRR which was the best for short depth range
sonification) allow for accuracy of 1 meter or less over larger
depths. It would also be interesting to compare the potential
of the different sonifications to encode the depth of multiple
objects at the same time.

VI. CONCLUSION

Vision to audition sensory substitution devices that rely on
depth sensors are a promising new tool for assisting blind
people to sense their environment. A key challenge in the
design of such systems is to define meaningful and intuitive
association rules between visual features and sounds. In this
work, we quantify the effectiveness of five sonifications of depth
based on either loudness, reverberation, frequency, repetition
rate of beeps or the signal-to-noise ratio of a pure tone mixed
with white noise.

Overall, the repetition rate of beeps is the best both quantita-
tively (positioning accuracy and memorability) and qualitatively
(participants find it the most natural to encode depth). The
sonification based on sound frequency provides good accuracy
but participants did not find a natural fit to encode depth.
The mixture of a pure tone with white noise received good
qualitative feedback and could also be considered.

APPENDIX A
COMPUTATION OF THE CHANCE LEVEL

We compute the expected absolute postionning error under
the assumption that participants would have estimated the
object’s position by chance (i.e. without using the sonification).
Under this assumption, the target position as generated by the
system Pt and the position estimated by the participant Pp

would be uniformly distributed within the position range [a; b]
and would follow the probability density function:

fX(x) =

{
1/(b− a) if x ∈ [a, b]

0 otherwise,
(2)

The absolute positioning error is:

Err(Pt, Pp) = |Pt − Pp| (3)

=

{
Pt − Pp if Pt ≥ Pp

Pp − Pt if Pp ≥ Pt

(4)

Still with the same assumption, we can assume that Pt and
Pp are independent. We therefore compute the joint probability
density function as:

fPtPp
(Pt, Pp) = fPt

(Pt) fPp
(Pp) (5)

= 1/(b− a)2 (6)
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The expectation of the positioning error is :

E(Err) =

∫ b

a

∫ b

a

Err(Pt, Pp) fPtPp
(Pt, Pp) dPt dPp (7)

=
1

(b− a)2

∫ b

a

∫ b

a

|Pt − Pp| dPt dPp (8)

=
1

(b− a)2

[∫ b

a

∫ Pt

a

(Pt − Pp) dPp dPt+ (9)

∫ b

a

∫ b

Pt

(Pp − Pt) dPp dPt

]
(10)

=
1

(b− a)2
·
[

(b− a)3

3

]
=
b− a

3
(11)
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