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Leveraging High-Density EMG to Investigate Bipolar
Electrode Placement for Gait Prediction Models

Balint K. Hodossy , Annika S. Guez , Shibo Jing , Weiguang Huo , Ravi Vaidyanathan ,
and Dario Farina , Fellow, IEEE

Abstract— To control wearable robotic systems, it is critical to
obtain a prediction of the user’s motion intent with high accuracy.
Surface electromyography (sEMG) recordings have often been
used as inputs for these devices, however bipolar sEMG electrodes
are highly sensitive to their location. Positional shifts of electrodes
after training gait prediction models can therefore result in se-
vere performance degradation. This study uses high-density sEMG
(HD-sEMG) electrodes to simulate various bipolar electrode signals
from four leg muscles during steady-state walking. The bipolar
signals were ranked based on the consistency of the correspond-
ing sEMG envelope’s activity and timing across gait cycles. The
locations were then compared by evaluating the performance of
an offline temporal convolutional network (TCN) that mapped
sEMG signals to knee angles. The results showed that electrode
locations with consistent sEMG envelopes resulted in greater pre-
diction accuracy compared to hand-aligned placements (p < 0.01).
However, performance gains through this process were limited,
and did not resolve the position shift issue. Instead of training a
model for a single location, we showed that randomly sampling
bipolar combinations across the HD-sEMG grid during training
mitigated this effect. Models trained with this method generalized
over all positions, and achieved 70% less prediction error than
location specific models over the entire area of the grid. Therefore,
the use of HD-sEMG grids to build training datasets could enable
the development of models robust to spatial variations, and reduce
the impact of muscle-specific electrode placement on accuracy.

Index Terms—Artificial intelligence (AI) and machine learning,
human–robot interaction, rehabilitation robotics, sensor networks,
signal processing.
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I. INTRODUCTION

EXOSKELETONS and other wearable robotic devices are
designed to guide and support users in a variety of contexts,

from rehabilitation to movement augmentation. In most cases,
a user-driven human–machine control interface is necessary to
ensure active participation from the user [1]. By estimating
the active contribution of the subject to the desired motion,
an exoskeleton can provide the required level of assistance
synchronously with the user’s movement—i.e., assist-as-needed
(AAN) control [2], [3]. The performance of the system therefore
depends on the reliability of the signals used as inputs to the
model that estimates the intended motion.

Surface electromyography (sEMG) is a commonly used non-
invasive sensing modality for motion intent estimation due to
inherent association between muscle signals and movement [4].
A subject’s sEMG signals can be used as indicators of voluntary
effort [5] and as inputs for gait prediction models [6], [7],
which form key elements in the control schemes of wearable
robotics [8].

Despite the extensive use of sEMG in human–machine in-
terfacing and clinical practice [9], there is a limited number
of studies that assess the impact of electrode shift for lower
limb assistive devices [10], especially when employing deep
learning methods [11]. Whilst some studies have investigated
the effect of electrode placement on signal characteristics for
lower-limbs [12], this has not been done across different signal
acquisition and gait conditions, such as wearing an orthosis.
Furthermore, changes in electrode location can cause significant
distortions in the EMG signal features required for pattern
recognition [13], making previously learnt features inapplicable
unless the model is retrained or calibrated for the new loca-
tion [7].

Based on the signal’s sensitivity to electrode placement, there
are the following two main approaches that have the potential to
mitigate this effect and help the model retain high gait prediction
accuracy.

1) Determine the electrode location on each muscle that will
provide the highest sEMG signal quality.

2) Develop a model that is robust across electrode locations.
While available standards and tutorials [14], [15] provide

some indication on sEMG electrode placement, these are unspe-
cific and often do not account for the signal variability during
dynamic movements [12], [16], [17], or the changes introduced
by donning an orthosis with limited degree of freedoms (DoFs).
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Furthermore, there is no guarantee that these palpation- and
eyesight-based guidelines provide the location of the optimal
signal for pattern recognition-based control schemes [18].

Previous studies have attempted to mitigate the impact of
electrode shifts by including additional preemptive steps that
recognise and compensate for them. These are either signal
registration methods transforming signals to a predetermined
expected distribution [19], or conversely apply the appropriate
prediction model from an ensemble [20], [21]. Alternatively,
models can be trained on a distribution of locations simultane-
ously, either recorded experimentally [22] or simulated through
data augmentation [23].

In this study, we investigated both methods (selection of elec-
trode location and generalization of the model by extended train-
ing), and compared their usability in practice. For this purpose,
we used temporal convolutional networks (TCNs) as an example
of a data-driven model suited to regress time-series data [24].
This network architecture benefits from more straightforward
implementation and much faster training times than its recurrent
counterparts, while maintaining comparable performance [25].
Previously, TCNs have been successfully applied to lower limb
exoskeleton control with inertial sensor data [26], [27], and
recently for bipolar sEMG-based control [28]. Here, single
channel bipolar sEMG signals were used to estimate the knee
angle in a one-step-ahead offline prediction scheme. Muscle
signals were sampled from grids placed on knee and ankle flexor
and extensor muscles.

To compare a wide range of bipolar electrode placements,
high-density surface electromyography (HD-sEMG) grids were
used to simultaneously acquire data from a larger surface area
of the skin, which allowed sampling of bipolar signals from
various positions and orientations [29]. This diverse dataset was
then used to produce more reliable convolutional models for
exoskeleton applications under dynamic conditions, and was
also tested when a one-DOF passive orthosis was donned. The
orthosis condition was not investigated in an attempt to model
a patient user. Instead, it was used to examine whether signal
artefacts from the DoF restriction or the orthosis’ contact with
grid impact the performance of our models. While the device
used here was passive, noise from these sources is expected to
be similar in an actuated rigid exoskeleton as well. In addition
to our use of location specific models to evaluate signal quality,
we showed that TCNs are capable of learning features suitable
for robust prediction across the area of the grid. This is achieved
by randomly sampling bipolar electrode location during training.
This technique is a promising method for mitigating the effect of
electrode shift on deep learning models. Our findings highlight
the potential of using the spatial information from HD-sEMG
data to improve model robustness for bipolar signal driven
control applications.

II. MATERIALS AND METHODS

A. Subjects

Five subjects (three male, two female, mean age = 25± 4
years) were chosen for this study, with no history of neurological
or physiological conditions that could impact their natural gait.

Fig. 1. Experimental setup, showing the HD-sEMG grid placements (white
rectangles) (a) the RF and TA, (b) the BF and SO, the motion capture marker
positions (white circles). (c) Set-up with the passive orthosis strapped to the
subject’s leg.

Informed consent was obtained for all subjects. The experiments
for data acquisition were performed in compliance to ethical
documentations approved by the Imperial College Research
Ethics Committee (ICREC reference: 21IC7204).

B. Experimental Setup

1) High-Density Surface Electromyography: For all sub-
jects, HD-sEMG signals were recorded independently from the
Rectus Femoris (RF), the Biceps Femoris (BF), the Tibialis
Anterior (TA), and the Soleus (SO) using 13 × 5 electrode
grids in monopolar derivation (eight-mm interelectrode spacing;
model number GR08MM1305). When recording, the relevant
grid was connected to a Sessantaquattro acquisition system,
and the ground electrode was placed on the same leg’s lateral
malleolus, using a designated damp ankle strap. All equipment
used for the acquisition of the HD-sEMG data came from OT
Bioelettronica, Italy [30].

The positioning of the centres of the electrode grids followed
the SENIAM placement guides [14]. Throughout the article, any
mention of the “middle” or “standard” sampling will refer to the
bipolar placement following SENIAM standards.

A double-sided adhesive foam (model number
FOA08MM1305) was placed on the HD-sEMG grid, and
CC1 ac conductive cream was applied to the grid to ensure
satisfactory contact between the electrodes and the skin. Before
electrode placement, the area of skin was shaved as needed,
mildly abraded with abrasive paste, cleansed with a nonirritating
alcoholic solution, and dried.

2) Motion Capture: The knee joint kinematics were acquired
using a Vicon Motion Capture system equipped with ten 120 Hz
Vicon Vero v2.2 cameras placed around the treadmill, mounted
on the ceiling of the recording space. Trajectory data were
labeled and gap-filled in Vicon Nexus.

Rigid body segments were reconstructed using the following
set of markers (see Fig. 1).
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1) Pelvis: Two markers placed on the superficial aspects of
the left and right anterior superior iliac spines (ASISs),
and one marker on the sacrum.

2) Thigh: Two markers placed on the femoral epicondyles,
and one marker placed on the lateral side of the thigh.

3) Shank: Two markers placed on the lateral and medial
malleoli, and one marker placed on the lateral side of the
shank.

Knee flexion was defined according to [31] using all above-
mentioned segments. The hip joint centre was approximated as
a fixed position in the pelvis’ coordinate frame, scaled by the
ASIS breadth [32].

When wearing the passive orthosis (see Fig. 1), the lateral
thigh and shank markers were replaced onto the orthotic frame
after all other components had been fitted. Both the medial and
lateral epicondyle markers were placed along the axis of rotation
of the orthosis. The HD-sEMG grids were not moved or replaced
when donning the knee brace.

3) System Synchronization: Shared reference pulses, sent
from a microcontroller at the start and end of a trial, were
recorded by both data acquisition systems. These were then used
in the preprocessing phase to methodically align the sEMG and
motion capture signals in time based on the timing of the rising
edges of the pulses.

C. Experimental Procedure

Each subject was asked to walk on a treadmill at a steady-state
speed of 0.8 m/s, selected to be comfortable for all subjects. Two
three-minute trials were recorded for each muscle separately,
with rest breaks in-between to ensure muscle fatigue would not
impact the recordings. This led to a total of 40 recorded steady-
state trials (two trials × four muscles × five subjects), with
approximately 350–400 strides per trial. For the second half of
the experimental session, the user was fitted with a dual-hinged,
single DoF passive knee support brace. A single two-minute trial
was recorded for each subject and muscle, leading to a total of
20 trials with the orthosis.

D. Signal Preprocessing

Bipolar signals were extracted from the 64 channel HD-sEMG
grid by taking the monopolar voltage difference between an
electrode and its neighboring electrodes within a three-electrode
radius and a maximum angle from the longitudinal axis of 45◦

(see Fig. 2). This process was repeated for every electrode,
and repeated pairings of electrodes were ignored. A total of
360 unique bipolar combinations that would satisfy these re-
quirements for sensor placement contained within the grid were
identified.

The motion capture data were up-sampled to the EMG sam-
pling frequency (2000 Hz) using linear interpolation, and the
data were cropped to extract the steady-state walking sequence.

The consistency metric analysis was performed based on the
sEMG envelope. To obtain it, the signals were digitally band-
pass filtered (fourth order Butterworth, 20–400 Hz), rectified,
and subjected to a ten Hz low-pass filter. gait cycles (GCs) were
segmented using the peak angles of the knee, and temporally

Fig. 2. Range of neighboring electrodes considered for each electrode when
determining the bipolar combinations. This schematic shows the combinations
extracted for two example electrodes. The “origin” electrode (orange) was
eligible for pairing with all the electrodes (blue) from its region of interest.
This resulted in up to 16 possible bipolar combinations for each electrode.

normalized so that one GC corresponded to 100% of the time
axis.

During preprocessing stages, two HD-sEMG files were found
corrupted and were excluded from further analyses, reducing the
dataset from 40 available trials to 38. The remaining data still
covered all subjects and muscles investigated due to repeated
trials.

E. Bipolar Sampling Selection

Quantifying a single bipolar channel’s quality by training a
location specific TCN model takes several hours. This gives
motivation for identifying quick-to-evaluate metrics that indi-
cate suitability for regression. We selected channels to evaluate
with TCN performance based on metrics of sEMG envelope
consistency. While most studies focus on the location with
sEMG maximum amplitude [33], [34], this study investigated
the consistency of the signal across steady-state gait cycles as
a measure of quality [12]. Considering how many myoelectric
control models are based on pattern recognition mechanisms, it
was hypothesized that a consistent signal would lead to more
accurate and stable predictions.

The consistency across gait cycles was calculated from the
following three measures of signal’s envelope:

1) maximum peak amplitude;
2) integrated area;
3) the gait phase of the maximum peak’s location.
For the first two of these metrics, the inverse of the coefficient

of variation (CoV) was used to quantify the consistency of
muscle patterns across the gait cycle (a lower CoV implied
a higher consistency), expressed as the standard deviation (σ)
normalized by the cycle’s mean value (μ) and given in percentage
form

CoV(%) =
σ

μ
× 100. (1)
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Fig. 3. Illustration of the three envelope measures within a gait cycle that
were used to quantify signal consistency for the RF. Channels are considered
more consistent if these measures do not change from cycle to cycle. Phasor
representation of the continuous progress along gait cycle is shown above the
curve.

The location of the maximum sEMG peak within the gait
cycle was expressed using phasor representation calculated by

Φt =
(
ej2π/T

)t

t ∈ [0, T − 1] ∩ Z (2)

where t is the temporal index of the peak within a gait cycle
of length T . This allows description of normalized progress
in the gait cycle without discontinuity between the start and
end. The average vector was calculated across all cycles and
the variance metric was calculated using the absolute value of
the angle between the peak location vector and the normalized
average vector. An illustration of the measures used to quantify
consistency is shown on Fig. 3.

The electrode channels were ordered with ascending variation
of the three metrics to facilitate the selection of those with the
least variation (i.e., the most consistent ones), or conversely the
ones with the highest variability (i.e., least consistent). Evalu-
ating all three metrics for our entire dataset took less than two
minutes. However, the obtained rankings were different across
all three consistency metrics.

To resolve this issue, we employed a method that combined
the channel selections of all three metrics, referred to as the
Agreement approach. This procedure consisted of selecting the
first bipolar electrode combination that occurred across all met-
rics when progressing through their respective ordered consis-
tency rankings. This ensured all three metrics were considered
when selecting the electrode pair. On average, a match was found
in the first 10% of the ranked combinations.

To determine whether to rely on one of the three rankings
or the Agreement approach, preliminary tests were conducted
where one TCNs model was trained and evaluated with a 50-50
train-validation split for three subjects, across every muscle with
each sampling method. From the results shown in Fig. 4, the
Agreement approach was subsequently adopted for all following
evaluations as its chosen sampling led to the highest model
performance.

A common bipolar electrode size (64 mm2) was simulated
virtually by spatially filtering the HD-sEMG grid with a 2 × 2
averaging window before sampling bipolar signals, reducing
the grid size from 13 × 5 electrodes to 12 × 4. No signif-
icant difference in model output was observed, so remaining
experiments were conducted with the HD-sEMG signals to allow

Fig. 4. Metric selection for further analysis based on model performance on
reduced dataset. Angle prediction error on validation data is compared for one
model trained for each muscle of the first three subjects. The labels for each plot
correspond to the metric used to determine the channel locations for that group’s
TCNs. The “-Agreement” label specifies the least consistent electrode location
based on the “Agreement” method.

Fig. 5. Schematic of the 1-D TCN architecture, mapping the windowed sEMG
signal (1 × W ) to the user’s knee angle (1 × 1). W stands for the width of the
input window, either 1000 or 500 samples.

the inclusion of samplings with smaller interelectrode distance
(IED) as well (8 mm).

F. Knee Angle Prediction Model

The TCNs investigated were composed of two convolutional
layers with pooling and dilation layers between them. This was
followed by three dense layers with dropout in-between (see
Fig. 5). This architecture is similar to the one in [35].

No envelope or other feature extraction was performed on
the muscle signals, and no temporal normalization was applied.
The sEMG input was normalized using the mean and standard
deviation values from the entire training set of the given channel.
Then, it was split into windows of equal sizes, partly overlapping
at a 40 sample stride. Two window sizes were investigated, 500
and 1000 samples. The shorter (250 ms) window is similar
to window lengths from TCNs used for EMG processing in
upper limb contexts [36]. However, when compared to the upper
limb tasks, gait is a more auto-correlated process. Therefore, a
longer window (500 ms) was also explored. The windows were
paired with the flexion signal in a one-step-ahead regression
scheme. An early termination condition was used to stop training
after 100 repeats of the training data, or after performance on
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validation data has not improved or has worsened for the most
recent six repeats.

1) Connection Between Consistency Metrics and Model Per-
formance: Root Mean Square (RMS) error between the knee
angle predicted by the model and the angle from the motion
capture was calculated. The error of trained models on validation
data was compared across different spatial sampling conditions
and window sizes (250 ms and 500 ms). A five-fold split was per-
formed on each training set for cross-validation [37], performed
for each muscle and subject. The splitting of the recordings
remained consistent across conditions, and no window was
allowed in a fold of cross-validation that had any overlap with
other folds. With five subjects, four muscles, and five folds, 100
models were trained and evaluated for each condition on spatial
sampling and window size, for a total of 600 models in this
comparison. The following bipolar channel selection methods
were compared.

1) The subject and muscle specific channel with the best
cross-metric consistency based on the Agreement ap-
proach, as outlined in Section II-E.

2) The bipolar combination aligned according to the SE-
NIAM placement standard (between electrodes 31 and
33).

3) The subject and muscle specific channel with the worst
cross-metric consistency based on the Agreement ap-
proach, as outlined in Section II-E.

2) Spatially Robust Bipolar Feature Learning: Models
trained on the electrode combination in the middle (electrodes
31 and 33) were evaluated on the signals of all other valid
electrode combinations. Their performance was compared with
nonplacement specific models, which regressed signals from any
valid combination in the grid directly. During the training of
these TCNs, the bipolar channel that determines the signal was
sampled uniformly from the set of all valid bipolar channels for
each 500 ms input window. Therefore, even in this case, only a
single channel of sEMG input was used at a time. To achieve
consistent performance, the model needs to extract features that
were suitable for generalizing over the area covered by the grid,
and cannot optimize for any single placement. As such, this
method can be considered as a technique for implicit regulariza-
tion of sEMG models. Lastly, this analysis of model robustness
to placement shifts was repeated while wearing a one-DoF knee
orthosis, to simulate the impact an exoskeleton frame may have
on the signal distribution due to restrictions to the range of
motion or motion artefacts [38], [39]. A causal band-pass filter of
10–400 Hz was used, a common strategy to mitigate the impact
of these types of interference [40]. This preprocessing was also
applied for the models without the orthosis in this section, for a
fairer comparison.

Performance was evaluated similarly to the previous section.
For each training condition (training with a single location,
or randomly sample during training) and orthosis condition
(donned or doffed) a TCN is trained for each of the five subjects,
four muscles, and five folds (100 for each condition).

The discussed methods of bipolar signal sampling from grids
could potentially be used in clinical applications. Robust features
may be learnt from HD-sEMG grid data, and then deployed

TABLE I
MEDIAN VALIDATION RMS ERROR AND STANDARD DEVIATION (σ) FOR 100

MODELS TRAINED ACROSS SUBJECTS AND MUSCLES

Fig. 6. RMS error of angle predictions from TCNs trained on the combination
with the best consistency score (blue) versus the middle electrode combination
(orange), for two different input window durations. The kernel density, the box
plot, and the raw data are shown for the different conditions.

with more convenient to use traditional bipolar sEMG signal
acquisition devices. A preliminary data collection using a Delsys
Trigno electrode system with two of the subjects was used to
trial this approach. TCNs trained with bipolar signals from the
HD-sEMG grid were applied to the acquired Delsys data (see
Fig. 11 and Fig. 13).

Deep learning was performed using the Keras framework for
TensorFlow [41], on a single computer with a Intel i7 CPU and
NVIDIA GeForce 2070 GPU, taking less than 30 minutes to
train a model.

III. RESULTS

A. Connection Between Consistency Metrics and Model
Performance

The samplings chosen based on their score from the con-
sistency metrics led to higher performance of the TCN, with a
significantly lower validation Root Mean Squared Error (RMSE)
compared to the bipolar location based on SENIAM standards
and inconsistent samplings (see Table I which summarizes the
median and σ statistics). This validates the metrics as indicators
of signal quality, suggesting they could be used as a preliminary
verification method for sEMG-based models, whilst also demon-
strating the impact of electrode placement for sEMG pattern
recognition.

Fig. 6 shows the validation RMS flexion angle prediction
error distributions of models of different electrode locations and
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TABLE II
MEDIAN VALIDATION RMS ERROR AND σ FOR 100 MODELS TRAINED ACROSS

SUBJECTS AND MUSCLES, WHEN EVALUATED ON ALL VALID COMBINATIONS

input window sizes. The use of a larger window size can help
mitigate the effect of electrode position (see Fig. 6). This comes
at additional computational costs, which may be important con-
siderations for real-time applications.

The prediction error was comparable to other gait regres-
sors reported in the literature [11]. Due to the non-Gaussian
distribution, and to take intersubject variation into account,
paired nonparametric tests were used to assess differences and
interactions between groups. A Friedman test showed significant
differences in distributions, p << 0.0001, which was mostly
due to differences across window sizes.

When repeating the test within the shorter window groups,
differences remained significant (p = 0.0263), therefore further
intergroup comparisons were made. The hypothesis that sam-
plings with high consistency scores perform better than the
sampling from the middle was tested with a one-tailed Wilcoxon
signed-rank test. The “consistent” sampling has a lower mean
error of the two with p = 0.0002. Similarly, models using the
“consistent” sampling had a lower error than those trained with
“inconsistent” signals (p = 0.010).

When repeating the Friedman test within the longer window
groups, no significant differences in RMS error was detected
(p = 0.432).

B. Effect of the Orthosis on the sEMG Recorded Signals

Even though the bipolar locations with high consistency
scores performed better, this optimal placement selected during
normal walking did not transfer when donning the orthosis, as
the muscle activation patterns showed significant changes in
amplitude and spatial distribution across these two conditions.

Fig. 7 illustrates the change in behavior of the three metrics
when comparing the muscle activation patterns across the grid
with and without the orthosis. Whilst some features seem to
have some spatial similarities across conditions, the amount
of muscle activity (shown by the envelope’s integrated area)
and the peak activation amplitude intensify when wearing the
orthosis, and become significant in areas of the muscle that
were initially inactive. In addition, the main activation peak
takes place earlier in the gait cycle around the belly of the
muscle, further distorting the pattern the model was trained on.
This behavior is in conflict with the hypothesis that there exists
a subject-specific area on each muscle that will consistently
provide reliable muscle activation patterns and generalize across
conditions such as donning an orthosis.

Fig. 7. Visualization of the average cross-cycle values of the sEMG envelopes’
(a) integrated area, (b) maximum peak amplitude, and (c) maximum peak
location in terms of GC percentage (with 0% corresponding to the heel strike)
for a subject’s SO (1) without and (2) with the orthosis. Each of the graphs show
the spatial distribution of the metrics across the HD-sEMG grid, and the values
shown correspond to the vertical differential between two monopolar electrodes
(therefore showing a 12 × 5 grid as opposed to the original 13 × 5 monopolar
grid.

C. Spatially Robust Regression With Location Sampling

Table II and Fig. 10 evaluate the capability of the TCN to
generalize over the available electrode combinations on the
grid when compared to a single location training. There was a
significant drop in validation RMSE when training the model
with all the possible bipolar combinations contained within
the HD-sEMG grid. A Friedman test was used for the four
conditions to evaluate the capacity for the model to generalize,
and the improvements in performance across all conditions were
significant with Wilcoxon signed-rank tests at p < 0.01. Fig. 12
further illustrates the increased robustness of the gait prediction
model, with a significantly lower σ across different electrode
combinations.

Fig. 9 shows the four conditions investigated in Fig. 10, with
model performance scores separated based on which muscle
they were trained on. The relationships between the median
RMS error from different muscle inputs is unchanged between
conditions, with models using Soleus signals consistently per-
forming best.

The average number of epochs until termination increased
from 30 to 35. Fig. 8 illustrates the combination specific per-
formance when not using additional spatial samples compared
when the regularization is applied, visualized on the grid. This
shows an increased robustness to longitudinal shifts compared
to lateral ones, a pattern observed in all subjects and muscle
groups in these results.
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Fig. 8. R2 performance of models evaluated on every valid electrode combination on a grid, shown for TA in participant 2 (a), and BF in participant 5 (b). The
left grid in each panel shows models that were only trained with the middle combination (31–33). The right grid in each panel shows performance if the input
electrode combinations are sampled uniformly during training. R2 values are visualized with a lower limit of 0. Transparent lines are used, as the region of interest
for each electrode contains overlapping sections (see collinear combinations in Fig. 2).

Fig. 9. Predicted knee angle RMSE of each muscle group across conditions
when trained on the entire grid (Full) versus only the SENIAM bipolar com-
bination in the centre of the grid (single). The condition of wearing the knee
orthosis is also shown.

Fig. 10. Average model performance across all valid bipolar combinations
of the grid. Models were trained either with electrode combinations sampled
uniformly from the grid, or solely with the middle combination (electrodes 31
and 33). The hue determines whether the model was trained and evaluated with
data recorded while wearing a knee orthosis.

Fig. 11. Knee flexion predictions with data recorded with Delsys bipolar
electrode, with models trained on signal from the HD-sEMG grid. Two subjects
shown, subject 3 with the RF (a) and TA (b), and subject 1 with the BF (c)
and SO (d). “Full” refers sampling the input channel uniformly from the entire
grid, “Middle” refers to only training with the middle location. The angle from
motion capture is overlaid.

IV. DISCUSSION

Our chosen consistency metrics were validated as indicators
of signal quality, since electrode locations selected through them
were associated with higher prediction accuracy, when com-
pared to those hand-aligned based on guidelines. This suggests
that consistency metrics could be used for high-level analysis of
signal quality, especially in models with short input windows.
However, no distinct pattern emerged to reliably identify better
areas on the skin surface for sEMG acquisition from a given
muscle. Not only was there no clear preferred electrode position
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Fig. 12. Standard deviation of the average gait cycle across electrode combina-
tions for the BF models of participant 4. (a) The average prediction of a model
trained with just the middle sampling, showing that the uncertainty is phase
dependent. (b) The average prediction from a model trained with combinations
across the grid.

Fig. 13. Comparison of the average bipolar sEMG signal envelopes across the
HD-sEMG grid with the bipolar signals from the Delsys system for (a) the RF,
(b) the BF, (c) the TA, and (d) the SO. The HD-sEMG error band corresponds
to the spatial variation of the signal.

on the muscle, but even small electrode shifts caused signifi-
cant prediction accuracy degradation. Due to the severe impact
of electrode shifts, and the inevitable placement discrepancies
between sessions from electrode reapplication [42], relying on
optimal electrode placement is unrealistic. We must therefore
prioritize the development of spatially robust models to improve
gait prediction for exoskeleton applications. As the signal feature
landscape is heavily affected by interference from the orthosis
(Fig. 7), including this condition should be a high priority for
future studies investigating signal acquisition for neuroorthoses.
Potential causes for this difference may involve the additional
stress, shear and relative movement at the orthosis-electrode grid
interface. Alternate causes may originate from a change in the
muscle activity due to the additional weight or DoF restriction.
Lastly, a phase shift may be caused by the replacement of the
motion capture markers, necessitated by the orthosis. However,
since on Fig. 7(c) the effect is nonuniform, this does not appear to

be the dominant cause. Mitigating these effects through orthosis
design and fitting could be investigated for more reliable signal
acquisition.

The use of spatial correlations in sEMG signals can signif-
icantly improve robustness [43], however, the generalization
of spatially rich HD-sEMG data for bipolar applications has
not yet been investigated. Increasing the size of the electrode
detection surface helps reducing model sensitivity to electrode
shifts when perpendicular to the muscle fibres [18]. Hence, it can
be hypothesized that increasing the data acquisition area from
an electrode grid would improve model robustness in a similar
way.

By collecting data from all 360 possible bipolar locations
across the model, we widened the training data distribution to
include more possible scenarios that could be encountered due
to electrode shifts. A wider range of spatial samplings includes
channels where the effect of physiological features, such as
muscle cross-talk and innervation zone (IZ) effects, manifest
to different extents. As such, this could promote the recognition
and reduction of these sources by the model, leading to more
stable predictions. Another possibility is that modeling multiple
orientations encourages the TCN to favor features that are on
a longer time-scale, and are shared across various channels.
This group training approach has been met with scepticism in
the past, as it was previously associated with longer acquisition
and signal processing times [44]. However, these concerns were
partly addressed in this study with the simultaneous collection
of bipolar signals through the grid and the sampling of elec-
trode location during training. A further limitation of the group
training approach is that the additional training information can
potentially crowd the feature space and decrease model perfor-
mance for the original nonshifted location [20]. Whilst it is true
that spatial sampling methods decrease the average maximum
performance, this regularization method can still be a useful tool
in training models, especially in scenarios where electrode shifts
are inevitable. Within an exoskeleton context, due to its dynamic
application to the lower-limbs, model robustness needs to be
prioritized, and performance degradation can be moderated by
other components in the system such as a higher-level controller
or sensor fusion techniques [8], [45]. Furthermore, using grid
recordings to train spatially generalising models could facilitate
muscle selection studies by removing the impact of specific
electrode placement on signal quality, and allowing for a more
general comparison of signal reliability across muscles (see
Fig. 9).

Including bipolar samplings from across the grid does not
substantially increase the training time of the predictive network,
making this method convenient during both data acquisition and
processing. Defining a nonuniform sampling distribution may
allow the tradeoff of generalization and maximum performance
to be fine-tuned. The observation that longitudinal shifts lead to
less decline in performance is congruent with existing work [22].
Movements perpendicular to muscle fibres correspond to loca-
tions influenced by different neighboring muscles, or to areas
with different neurophysiological characteristics, such as the
anterior aspect of the tibia. Fig. 12(a) exhibits a heteroskedastic
distribution throughout the gait cycle, which further illustrates
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the nonlinearity of the signal variation across channels. How-
ever, our approach enabled the TCN to be robust to these
transformations and phase shifts, as illustrated in Fig. 12(b).

Despite many differences, such as electrode size, original
sampling frequency, and the use of electrode gel in the grid, there
is a potential for transferability of information across acquisi-
tion systems. This would enable rapid and spatially rich data
collection from grids utilized for robust bipolar applications.
The shift in the profiles of the Delsys signals relative to the
simulated bipolar signals from HD-sEMG, and the failure of
the model transfer in the case of the thigh muscles (Fig. 11)
would suggest that this regularization method would likely have
to be combined with domain adaptation techniques to fine-tune
predictions to various expected conditions [46]. Furthermore,
this method does not necessarily mitigate the requirement to
recalibrate networks due to long-term changes in the neural
interface, or application to different subjects. The combined
application of the different frameworks addressing these key
issues should be investigated [47].

The approach of deploying pretrained models may not be
as effective in cases where the signal is subjected to external
disturbances not accounted for during training; wearing an or-
thosis, changing speed, electromagnetic interference, electrode
reapplication, sweating, or fatigue [4], [48]. To account for the
signal alterations caused by external factors, data augmentation
approaches, including nonlinear transformations of the training
set, are promising. This would require in-depth analysis of the
impact of different environmental factors to reproduce them
into the training distribution, which could be accelerated by the
acquisition of spatially robust features.

Steady-state level ground walking was selected as target mo-
tion as it facilitated the efficient collection of many repetitions
of the same movement. However, the intended movement is
not without variation. A degree of variability is present in the
dependent variable due to small changes in gait patterns adopted
by the participants over the course of a trial. A well performing
model must be able to track these effects. This is a limitation
of the described consistency metrics, as they do not distin-
guish between meaningful, informative variability and noise. A
nonsteady-state locomotion setting, including transitions such
as turning or coming to a stop would be suitable to explore the
intent estimation aspect further.

Increasing the size of the input window led to an increase
in performance and a decrease in the sensitivity to specific
electrode placements (Fig. 6). However, longer input intervals
imply greater computational cost both during training and infer-
ence, making the optimal window size vary depending on the
requirements of a given application. The impact of this parameter
on the model’s sensitivity to intent changes in particular should
be examined. Lastly, in addition to the window size, the influence
of other TCN hyperparameters on prediction stability should be
investigated.

V. CONCLUSION

The investigated consistency metrics were validated as indi-
cators of signal quality, with the selected samples leading to

higher output accuracy from the TCN. This correlation could be
used to identify electrode placements that will perform better in
data-driven models. However covariate shifts due to changing
conditions and variability in intersession electrode replacement
makes optimizing for a single, high signal quality location
unreliable. The use of HD-sEMG grids for data acquisition
with the aim of bipolar applications enables the inclusion of
valuable spatial information that improves model robustness
to electrode shifts. While there appears to be transferability
between HD-sEMG and bipolar sEMG signals, future works
should focus on domain transfer methods to seamlessly re-
produce bipolar signals from HD-sEMG grids, and construct
data augmentation strategies based on expected distributional
shifts for all deployment environments. Current work involves
applying these findings to lower-limb exoskeletons in order to
achieve robust AAN control.
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