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Sensorless Field-Oriented Control for
Double-Inverter-Fed Wound-Rotor
Induction Motor Drive

Gautam Poddar and V. T. Ranganathan, Senior Member, IEEE

Abstract—A novel control technique for sensorless vector control
operation of a double-inverter-fed wound-rotor induction motor is
presented. Two current controllers control the stator-side currents
based on a vector control algorithm. Another V/ f-type flux and
frequency controller controls the rotor-side frequency directly. A
novel frequency command profile for the rotor-side controller is
suggested to make this sensorless drive operation reliable and re-
duce dependence on motor parameters at any rotor speed. A com-
plete inverter power flow analysis is presented to show that the
drive can deliver full torque from 0- to 2-p.u. speed for either di-
rection of rotation. Thus, double the rated power can be extracted
from the induction motor without overloading it. The proposed al-
gorithm allows the drive to start on-the-fly without any rotor trans-
ducer. Results from a prototype 50-hp drive are presented.

Index Terms—Double-inverter-fed drive, sensorless control,
wound-rotor induction motor.

NOMENCLATURE
WRIM  Wound-rotor induction motor.
L., L, Stator and rotor self-inductances.
Ly Mutual inductance.
s, Op Stator and rotor leakage factors.
o Total leakage factor.
R, R,  Stator and rotor resistances.
i Stator current vector in stationary reference frame.
1sd d-axis stator current.
lsq g-axis stator current or torque current.
O Rotor current vector in rotor reference frame.
Trd d-axis rotor current.
lrg @-axis rotor current or torque current.
V. Stator voltage vector in stationary reference frame.
v, Rotor voltage vector in rotor reference frame.
s Stator flux vector in stationary reference frame.
Py Rotor flux vector in rotor reference frame.
ps Rotor flux vector in stationary reference frame.
Ws Stator supply frequency with respect to stationary
frame.
Wiy Rotor flux speed with respect to stationary frame.
Wy Rotor supply frequency with respect to rotor frame.
We Actual rotor speed (electrical rad/sec)
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Estimated rotor speed.

€ Angle between rotor and stator axis.

Rotor flux angle with respect to stator axis.
Stator flux angle with respect to stator axis.

1. INTRODUCTION

ECENTLY, it has been shown that a grid-connected

wound-rotor induction motor with current injection on
the rotor side can be operated in supersynchronous mode to
produce up to two times the rated nominal power [1]. However,
such a configuration does not have the capability of smooth
speed reversal. A more versatile configuration is one wherein
the stator and the rotor of the wound-rotor induction motor
can be fed from variable-frequency inverters. In [2] it has been
shown that this configuration has the capability of operating
in all four quadrants of the speed-torque plane. The control
scheme of [2] has two separate torque-current controllers for
both stator- and rotor-side inverters. However, as shown in the
following, the stator torque current and the rotor torque current
are proportional to each other. Thus, separate torque-current
controllers for both the stator and the rotor can lead to insta-
bility problems. This scheme also shows an abnormal rise of
torque current during speed reversal and is sensitive to motor
parameters.

The problem of achieving high dynamic performance in ac
motor drives without the need for a shaft position/speed sensor
has been studied extensively in the literature. The advantages
of speed-sensorless operation of the drives are lower cost, re-
duced size of the drive machine, elimination of the sensor cable,
and increased reliability. Generally, all the sensorless control
methods for the ac machines have limitations near zero rotor
speed (more accurately, near zero supply frequency) [3]-[8].
Thus, it is important to study this sensorless double-inverter-fed
wound-rotor drive to check whether this topology can resolve
this issue for a sensorless ac drive without sacrificing the dy-
namic and steady-state performance.

In this paper, a novel sensorless vector control algorithm is
proposed to control the double-inverter-fed wound-rotor induc-
tion motor using a rotor-flux-oriented model of the motor. Two
independent current controllers control the stator currents. One
current controller controls the stator-side torque current and the
other current controller controls the magnetizing current shared
by the stator-side inverter. The rotor-side inverter has a simple
V'/ f-type scalar control. The rotor supply frequency command
of this V// f-type control is based on estimated rotor speed. The
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Fig. 1. Double-inverter-fed wound-rotor induction motor drive.

ratio of V/ f determines the total magnetizing current of the ma-
chine. The proposed algorithm is less dependent on motor pa-
rameters and eliminates the possibility of instability. This makes
the drive more reliable. This proposed algorithm runs up to
double the rated speed and, thus, enables generation of twice
the rated power from the motor without overloading the motor.

Generally, sensorless operation is unreliable near zero rotor
speed [3]-[8] because of the low frequency of operation. In the
proposed scheme, a novel frequency generator is derived, which
avoids low-frequency operation on both sides (rotor as well as
stator) at all speeds. This ensures stable and reliable operation
near zero speed including stall operation. Rotor speed/position
transducers can, therefore, be removed completely.

II. FUNDAMENTALS OF BASIC CONFIGURATION

The configuration of the double-inverter-fed induction motor
drive is shown in Fig. 1. A three-phase inverter rated 1 p.u. feeds
power to the wound-rotor induction motor through its stator ter-
minals. Another three-phase 1-p.u. inverter feeds power to the
same motor through its rotor terminals. Now, the motor analysis
is given to identify the control method suitable for this configu-
ration. In this paper, the rotor-flux-oriented model of the motor
is only considered for the vector control operation. However,
from the electrical equivalence of the stator and the rotor of the
wound-rotor motor, it can be easily shown that the stator-flux
orientation also gives a similar model of the motor.

A. Motor Model With Rotor-Flux Orientation

The stator and the rotor voltage equations are furnished below
in stator and rotor coordinates, respectively,

N A
Vs = Rysis + Lsd_j +L0% [’Lr—ej ]
Vo = Ryip + L 4 1o % [0 ). (1)

dt dt
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Fig. 2. Angular position of rotor and stator flux vector.

The rotor flux in the stator reference frame ] can be written as
Pf = el = Lo {(1+ 0,) i€’ + s} . )

Fig. 2 shows the angular position of this rotor-flux vector. Trans-
forming to a coordinate system aligned to the rotor flux and sep-
arating into real and imaginary parts

Yr =Lo{isa+ (14 04)ira}
— (14 0,) irg. 3

lgqg =

The d-axis and the g-axis voltage equations are also stated here
using (1)

Vi = Ryiva + 20"
Vg = Reirg + thrwy 4)
Via = Rfea + 0L 2 = oL omrig + 10"
Vig = Ryisq + 0L, d;;" + 0 Lsmrisd + Wmr ] fo )
Finally, the torque of the motor is calculated as
W@ o

B. Sensorless Estimation of Rotor Flux Vector

In our sensorless rotor-flux orientation, the rotor-flux position
pmr (Fig. 2) is to be estimated without the information of rotor
position e. Thus, an indirect method of estimating p,,, is em-
ployed here as given by

s = Lo {(1 +0g)is +{Tej5}
P =1p,e’® :LO{(1+UT)ETejE+ES} @)

where the stator flux (), ) and the rotor flux (¢/{) are given here
for the stationary reference frame.

Equating 4,¢’¢ from the above equations, the relation be-
tween the stator and the rotor-flux vectors can be derived as

L,

L_O {l/}s - ULsis} (8)
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where 0 = 1 —(1/(1 + 05)(1 + 0,.)) is the total leakage factor
of the machine. Now, the sEator-ﬂux vector 1), is estimated from
the stator supply voltage V as

b= [ (V- R at ©)

Substituting (9) in (8), the estimated rotor flux vector can be
written as

Ly

Py = . (10)

[ [ =Ryt oLa,

However, if the stator resistance I and the total leakage of
the motor o L are not measured accurately, the estimated stator
flux 1), may get saturated due to the effect of dc drift of pure in-
tegration. Practically, the deadband of a pulse widthmodulated
(PWM) inverter and inaccurate estimation of dc-bus voltage can
also cause similar difficulties. This problem is tackled by re-
placing the pure integration of (9) with a low-pass filter whose
cutoff frequency is very low compared to the minimum stator
supply frequency [6].

Rotor
Flux
Reference
To
Stator
Reference R

(@

Controller block diagram of sensorless vector control drive. (a) Overall controller. (b) Machine model. (c) Rotor-side controller. (d) Stator-side controller.

Now, the rotor flux magnitude (¢),.) and the unit vectors
(COS P, SIN Py ) in rotor field coordinates can be derived as

Vr =Pl + %0
br = |05] = \J i + 05
s
COS Py = 7o
[5]
"8
SiN Py = 7ot (11)
[5]

The angular velocity of the rotor flux (w,,,) can be estimated
using the following equation:

dsin pmr d cos pmyr

dt dt

The differential terms in the above equation contribute to some
noise, which can be eliminated by employing a first-order low-
pass filter. Finally, the rotor speed w, is obtained as follows:

Wiy = COS Py * — sin P - (12)

13)

We = Wy — Whe.
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Fig. 4. Rotor frequency command versus rotor speed.

III. PROPOSED CONTROL METHOD

The block diagram of the proposed controller is shown in
Fig. 3. Fig. 3(a) shows the overall control block diagram of the
drive with various sub-blocks. The block diagram of each sub-
block is presented in Fig. 3(b)—(d). These blocks are explained
in Sections III-A-D.

A. Stator-Side Controller

The d-axis and the g¢-axis voltage equations represent the
first-order dynamics of the stator currents (isa,isq) if the un-
derlined terms are removed from (5) to decouple the d-axis and
g-axis quantities. Thus, simple proportional-integral (PI) con-
trollers can efficiently control the currents (is4,%s5) as shown
in Fig. 3. The desired responses of 7., and 754 can be achieved
by choosing the proper gain values of the controllers. Finally,
the outputs of the PI controllers are added to the underlined de-
coupling terms of (5) to get the d-axis and the g-axis voltage
references.

The d-axis current reference i%, is selected such that the
stator-side inverter and the rotor-side inverter share the magne-
tizing currents equally as explained in (3). The g-axis current
reference i:q, which is equivalent to the torque command (6)
when 1, is constant, is obtained from the speed controller
output. A simple PI controller is introduced for the speed
control. The estimated rotor speed w, from (13) is used as a
speed feedback for the PI controller.

B. Rotor-Side Controller

From the rotor-side voltage (4), it is seen that the rotor-side
currents do not have any fluctuations when rotor flux magni-
tude (1) is kept constant. If the stator-side currents (isq, isq)
are controlled, the rotor-side currents (i,q4,%.,) are generated
automatically conforming to (3). Thus, the rotor-side inverter
voltage reference is generated just to keep v, constant at its
rated value at all rotor supply frequencies. A simple V/f type

I P Rotor speed

PWM controller serves this purpose easily. At any particular
rotor speed (w,), the constant V/ f-type PWM controller di-
rectly controls the rotor flux angular velocity (w,.) with respect
to the rotor. The stator supply frequency (ws), which is equal
to the rotor flux speed (wy,,) with respect to the stator, has a
unique value as in (13).

C. Frequency Command Generation for Rotor-Side Controller

From (13) it can be seen that, for any particular rotor speed
(we), there are infinite possible combinations of stator supply
frequency (ws) and the rotor supply frequency (w,). As men-
tioned earlier, the rotor supply frequency varies directly in
open loop. The direct rotor supply frequency command (w}) is
chosen in such a way that the rotor and stator supply frequen-
cies never fall below 12 Hz at any rotor speed (w, ). At very low
rotor flux frequencies, it is very difficult to maintain the rotor
flux 1, constant by simply keeping the V/ f ratio constant. This
happens since the rotor supply voltage becomes very small at
these low frequencies. Similarly, at very low stator frequencies,
the stator resistance drop becomes comparable to the stator
supply voltage. Then, the estimation of stator flux using (9) also
fails due to the variations as well as the inaccurate estimation
of stator resistance drop. Thus, all sensorless control strategies,
which depend on integration of the voltage to compute the flux
vector, do not operate satisfactorily near zero supply frequency.

Based on these criteria, a proposed rotor supply frequency
command (w) profile is presented in Fig. 4. For rotor speeds
above 35 Hz, the rotor supply frequency can be calculated as
we

= - 14
r= (14)

Below 30 Hz, the magnitude of rotor supply frequency is ei-
ther kept constant at 47 Hz or generated from the following
equation:

wr =21 X 47 — w,.

15)
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Fig. 5. Stator frequency versus rotor speed.

Now, from (13), it can be seen that the stator supply fre-
quency is automatically generated around 47 Hz throughout
the low-speed operation. This ensures a very reliable sensor-
less low-speed operation of the drive (including zero speed). At
other rotor speeds, the supply frequencies on either side of the
motor are always above 12 Hz. Hence, the inaccurate estima-
tions as well as the variations of stator and rotor resistance do
not affect the motor performance, unlike the control strategies
for standard sensorless drives. Fig. 5 shows the corresponding
supply frequency generated on the stator side.

These frequency profiles are interchangeable. The given
stator frequency plot can be used as a rotor frequency com-
mand. Then, the generated stator frequency plot will be the
present rotor frequency command.

D. Power Flow From Stator and Rotor

There are two definite operating regions of this double-in-
verter-fed wound-rotor drive. One is for operation at rotor
speeds below 30 Hz and the other is for operation at rotor
speeds above 35 Hz (Figs. 4 and 5). For rotor speeds more than
35 Hz, the rotor flux frequency and the stator flux frequency
have equal magnitude, but opposite sign. Under this condition,
the power flow from the stator and the rotor can be analyzed as
follows.

Let us assume that the power fed from the stator-side inverter
to the motor is Ps. The power fed from the rotor-side inverter to
the motor is P, and the output electrical power from the motor
is P,. For any arbitrary steady motor torque mg, Ps, and P, can
be written as

Ps =MdaWs
P. = (—mg) wy. (16)
Now, from (14), it is seen that for
We
s — W = 17
w. w 5 (17)

the sign of P and P, are the same, i.e., during motoring oper-
ation of the motor, both the stator inverter and the rotor inverter
feed the power to the motor. On the other hand, during regener-
ation, both inverters draw power from the motor and feed it to

30 100

P Rotor Speed

—

the common dc bus. This is called supersynchronous operation
of the motor.

Now, each inverter rated for 1 p.u. is capable of producing
rated torque (yated) at rated frequency (wyateq). When these
inverters operate at a condition confirming to (17), the net output
power from the motor is

Pe = Ps + Pr = 2WratedMrated- (18)

Thus, the motor output power becomes twice the rated power.
This is a very attractive advantage of this drive for high-power
applications. At this condition, the rotor speed (w.) becomes
twice the rated speed (17).

For rotor speeds below 30 Hz, the rotor supply frequency (w;-)
and the stator flux frequency (w; ) have the same sign. However,
their magnitudes are different. For any positive torque m 4, one
inverter feeds power to the motor in excess of the required output
power from the motor (16). The inverter on the other side draws
this excess power from the motor and feeds it to the common
dc bus (16). The balance power is equal to the net output power
from the motor (P.)

P, = mg(ws — wy). (19)

Therefore, there is a circulation of power from the stator to the
rotor through the motor. This is called subsynchronous operation
of the motor.

IV. EXPERIMENTAL RESULTS

The experimental verification is carried out on a 50-hp
wound-rotor induction motor. Both the stator and the rotor are
fed with three-phase insulated gate bipolar transistor (IGBT)
inverters. The switching frequency of the inverters is 2.2 kHz.
A common dc bus supplies power to both the inverters. A
digital controller carries out the control of the inverters. This
digital control board (Fig. 14) is based on a 16-bit fixed-point
digital signal processor (DSP). There are two current sensors
to measure the stator-side line currents and another set of two
line current sensors for the rotor-side line currents. There is
a voltage sensor to measure the dc-bus voltage. The control
software for the drive is written in assembly language. The
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Fig. 6. Rotor speed and torque current for sudden 2-p.u. speed reversal at no
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Fig. 7. Experimental waveform of stator current for sudden change in rotor
speed.
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speed.

Experimental waveform of rotor current for sudden change in rotor

control cycle time is set at 100 us. The experimental waveforms
are shown in Figs. 6-13.

A. Steady-State and Dynamic Performance

Fig. 6 shows the waveforms of actual speed and the torque
current when sudden 2-p.u. speed reversal is performed at no
load. It is important to note that 1-p.u. torque is maintained from
—2- to 2-p.u. rotor speed. This confirms the capability of the
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Fig. 11. Stator and rotor currents for sudden change in load at subsynchronous
speed.

drive to extract 2-p.u. power from a 1-p.u. motor without electri-
cally overloading the machine. Figs. 7 and 8 show the stator and
the rotor current waveforms during speed ramp up to 2-p.u. rotor
speed. The steady 1-p.u. current during this transient operation
ensures the good current control at all operating rotor speeds.
Fig. 9 shows the estimation of the rotor-flux vector position at
zero rotor speed. Figs. 10 and 11 show the motor currents during
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sudden loading at subsynchronous and supersynchronous oper-
ation of the motor.

B. Starting Performance

Figs. 12 and 13 show the starting performance of this sensor-
less drive under two critical conditions. The rotor position (¢) at
starting is not available to the controller. However, the proposed
algorithm estimates the rotor-flux position correctly from the
beginning since no initial value of rotor-flux position is assumed
at the start. This is justified in Fig. 12 where the motor is started
when the rotor axis makes an angle of 180° with the stator axis
at the start. Smooth starting current ensures the proper orienta-
tion at starting without any rotor position sensor. Naturally, this
allows the drive to start on-the-fly. Fig. 13 shows the on-the-fly
start when the motor is running at 2-p.u. speed. Fig. 14 is a pho-
tograph of the DSP-based digital control board.

V. CONCLUSION

A new sensorless vector control strategy has been proposed
here for a double-inverter-fed wound-rotor induction motor.
Current control is done on one side of the wound-rotor induc-
tion motor. Direct frequency control is applied on the other side

1095

Fig. 14. DSP-based digital control board.

of the same motor. The resulting control is rugged and reliable.
With the introduction of this controller, the double-inverter-fed
wound-rotor induction motor runs up to twice the rated speed
in either direction, without field-weakening operation. This, in
turn, ensures full-torque operation for the motor up to twice the
rated speed and, hence, double the rated power can be extracted
from the motor. Because of good current control on one side
of the motor, there are no current transients in the motor even
during fast changes in torque or speed. The frequency profiles,
proposed here, ensure that the frequency on either side of the
doubly fed wound-rotor induction motor never goes below
12 Hz. Because of this feature, this control scheme is not
affected by variations in motor parameters like stator and rotor
resistance. Therefore, the performance of the drive improves
considerably. This feature also ensures that high torque can
be obtained without any thermal stress on any of the inverter
legs for any rotor speed. The proposed controller estimates the
rotor speed from the motor model and performs the control
operation. Thus, it eliminates the need for a costly, unreliable
position transducer and makes the drive more rugged. This
sensorless method is very reliable even at zero rotor speed
because of the rotor frequency profile proposed in this paper.
This sensorless drive is capable of starting on-the-fly.

APPENDIX
MOTOR PARAMETERS

The parameters of the tested motor are as follows:

rated power: 50 hp;
rated frequency: 50 Hz;
rated speed: 1475 r/min;
stator voltage: 400 V;
rotor voltage: 325 V;
rated current: 63.7 A;

R, = 0.137 Q;
R, = 0.1€;
Ly = 40.1 mH,
o, = 0.033;
o, = 0.022.
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