
TIE-00219-2005.R1

1


Abstract— Fuzzy controllers are used in many applications

because of their rapid design by translating heuristic knowledge,
robustness against perturbations, and smoothness in the control
action. However, they require parallel processing and special
operators (such as fuzzification or defuzzification) which are not
available at standard digital signal processors (DSPs), thus
complicating its direct implementation. This paper describes an
efficient design methodology which allows starting with any kind
of fuzzy controller and subsequently transforming it until
obtaining a system suitable for an easy DSP implementation.
Such methodology is greatly aided by the design environment
Xfuzzy 3. The parking problem of an autonomous robot is
described to illustrate the steps of this methodology. Real
experiments with the autonomous robot ROMEO 4R
demonstrate the efficiency of the designed fuzzy controller
embedded into a stand-alone card based on a fixed-point DSP
from Texas Instruments.

Index Terms— Embedded systems, Fuzzy controllers, DSPs,
CAD tools, autonomous robots.

I. INTRODUCTION

utonomous mobile robots are capable of performing tasks
without the intervention of human operators. Hence, they

should contain built-in machine intelligence and an on-board
control system. Fuzzy logic-based techniques have been
applied successfully to build the control system of
autonomous intelligent mobile robots: from low-level
controllers for sensors and actuators and intermediate modules
that carry out simple individual behaviors to high-level
modules in charge of integrating and coordinating primitive
behaviors [1]-[6]. Advantages of fuzzy logic-based techniques
are that they allow building robust and smooth controllers
starting from heuristic knowledge and qualitative models,
considering imprecise, vague, and unreliable information, and

Manuscript received May 6, 2005. This work was supported in part by the

Spanish CICYT Projects DPI2005-02293 and TEC2005-04359, and by the
Projects TIC2006-635 and TEP2006-375 from the Andalusian regional
Government.

I. Baturone is with the Instituto de Microelectrónica de Sevilla (IMSE-
CNM-CSIC) and the Dept. de Electrónica y Electromagnetismo, Univ. de
Sevilla, Seville, SPAIN (phone: +34-955-056-666; fax: +34-955-056-686; e-
mail: lumi@imse.cnm.es).

F. J. Moreno Velo is with the DIESIA, Esc. Politécnica Superior, Univ. de
Huelva, Huelva, SPAIN (e-mail: francisco.moreno@diesia.uhu.es).

V. Blanco and J. Ferruz are with the Dept. de Ing. de Sistemas y
Automática, Univ. de Sevilla, Seville, SPAIN (e-mail:
vmblanco@cartuja.us.es, ferruz@cartuja.us.es).

integrating symbolic reasoning and numeric processing in the
same framework.

The trend in many autonomous robots (such as planetary
exploration vehicles, micro robots, etc.) is that the on-board
control system is restricted to a small size, light weight, and
low power consumption, which means the need for embedded
controllers capable of real-time operation. An embedded
system may follow different approaches: (a) embedded
software on off-the-shelf components (microprocessors or
specific processors such as microcontrollers and DSPs), (b)
programmable logic such as FPGAs (Field Programmable
Gate Arrays), and (c) full-custom or semi-custom ASICs
(Application Specific Integrated Circuits).
 Since fuzzy controllers can use complex IF-THEN rules,
they are not suitable to be implemented directly on off-the-
shelf processors. For example, rules’ antecedent parts can
contain several antecedents connected by arbitrarily complex
connectives and input variables can be related to fuzzy sets by
any kind of linguistic hedges. In addition, the use of particular
membership functions such as Gaussian functions, which
require exponential calculus, and/or defuzzification methods
that require sweeping the output universe of discourse may
increase the computational cost of the system.

In order to alleviate the limitations of standard embedded
processors, two main approaches have been applied. One of
them is to expand the processor with a set of dedicated fuzzy
logic instructions. This is the solution adopted, for instance,
by Motorola (with the 16-bit 68HC12 microcontroller family
[6]) and, more recently, by ST Microelectronics (with the ST
FIVE family [5]). The other approach is to employ a fuzzy
processor that cooperates with the main processor or works
alone. Companies such as Togai InfraLogic, Toshiba,
Siemens, Omron, and ST Microelectronics launched this kind
of coprocessors in the 90s [8]-[9]. Recent research in this area
can be seen in [4] and [10].

Another different line of action is to design the fuzzy
controller so as to be adequate for the processor capabilities.
In this way, several design environments were developed to
translate the fuzzy system definition into specific code of
microcontrollers from Motorola, Intel, etc. Some examples are
the well-known FIDE system (from Aptronix Inc.), MicroFPL
(from Togai InfraLogic), and FuzzyTECH (from Inform) [11],
and the most recent rFLASH (from Rigel Corporation) [12].
Recent research concerning this approach can be seen in [13].
However, these solutions impose constraints on the designed
systems to ease the translation and, hence, the advantages of

Design of Embedded DSP-based Fuzzy
Controllers for Autonomous Mobile Robots

Iluminada Baturone, Francisco J. Moreno-Velo, Víctor Blanco, and Joaquín Ferruz

A

TIE-00219-2005.R1

2

Xfuzzy 3

expert knowledge numerical data

Description

Verification

Identification
Tuning

Simplification

implementation

DSP
constraints

Xfuzzy 3

expert knowledge numerical data

Description

Verification

Identification
Tuning

Simplification

implementation

DSP
constraints

expert knowledge numerical data

Description

Verification

Identification
Tuning

Simplification

implementation

DSP
constraints

Fig. 1. Design flow aided by Xfuzzy 3.

fuzzy controllers to be designed rapidly from linguistic and
qualitative knowledge can be lost.

The design environment Xfuzzy 3 was developed by some
of the authors at the Instituto de Microelectrónica de Sevilla to
reduce these limitations. As far as we know, Xfuzzy 3
provides the greatest flexibility in the design and
implementation of fuzzy systems. For example, it allows
describing hierarchical systems with complex rules (e.g.
including rule weights, linguistic hedges, etc.); it can apply
more identification algorithms to extract rule bases from
numerical data than other specific fuzzy software (such as
those in [14]-[15]); it admits a wide set of learning algorithms
to tune the designed system; and it is provided with many
simplification facilities that are not available at current fuzzy
software. As a result, Xfuzzy 3 allows to start the design
process with no constraints, that is, with any kind of fuzzy
controller, and subsequently facilitates its transformation until
obtaining a system suitable for off-the-shelf processor
implementation.

The DSP-based solution is addressed in this paper since
current DSPs combine the advantageous on-chip peripherals
of a typical microcontroller with the math-intensive
computation power of a typical DSP, thus being very suitable
for robotic applications. In addition, they are provided with
development environments which ease building and
debugging the real-time software applications of an embedded
controller.

This paper describes how Xfuzzy 3 facilitates the rapid and
efficient implementation of complex fuzzy controllers into
standard DSPs. The paper is structured as follows. Section II
summarizes the design flow that can be followed with the aid
of Xfuzzy 3. Interesting guidelines to meet the constraints
imposed by standard DSPs are summarized in Section III. The
design of a fuzzy controller to park an autonomous robot is
addressed in Section IV to illustrate the steps of this
methodology. Section V describes the inclusion of this fuzzy
controller into an embedded DSP platform that controls the
autonomous robot ROMEO 4R, a car-like vehicle designed
and built at the Escuela Superior de Ingenieros de Sevilla.
Experimental results illustrate the efficiency of the controller.
Finally, conclusions are included in Section VI.

II. CAD METHODOLOGY

The classic inference mechanism of a fuzzy controller is
based on three stages: (a) fuzzification, to compute the
membership degrees of the input values to the antecedent
fuzzy sets; (b) inference mechanism, to obtain a global
conclusion of the rule base; and (c) defuzzification, to
compute the non fuzzy values of the output variables.
Triangular, trapezoidal and Gaussian functions have been
used typically as membership functions to implement the first
stage. Three steps are performed in the inference mechanism:
firstly, each rule activation degree is usually calculated by
applying conjunctive operators between the antecedents (such
as the minimum or the bounded product); secondly, an

implication function (typically the minimum or the product) is
used to obtain each rule conclusion; and, finally, the global
conclusion is calculated by an aggregation operator (such as
the maximum or the sum). The center of area and center of
sums are the typical methods employed in the defuzzification
stage [1].

In order to describe complex fuzzy systems, this structure
can be improved by the use of complex antecedent parts in the
rules, that is, by connecting the several antecedents by any
type of conjunctive and disjunctive connectives, by relating
input variables with any type of fuzzy sets by any kind of
linguistic hedges, and by even applying linguistic hedges to
some connected antecedents. As a result, the expressiveness
and linguistic interpretability of the resulting fuzzy system
increase [16]. Current fuzzy software tools do not support this
flexibility and this is why Xfuzzy 3 was developed. The
formal specification language of Xfuzzy 3, named XFL3,
facilitates the translation of complex rules expressed
linguistically into a fuzzy system. In addition, Xfuzzy 3
admits a large set of mathematical functions and algorithms,
even new ones introduced by the designer, to represent the
fuzzy concepts that appear in the fuzzy inference mechanism.
Another advantage of Xfuzzy, which is neither supported by
current fuzzy software, is the capability of describing
hierarchical systems consisting of several modules
interconnected, where each module can apply its own and
appropriate fuzzy operators and the data they interchange can
be either fuzzy or non fuzzy.

The design methodology with Xfuzzy 3 follows the flow
chart in Fig. 1. The aim of the first stage (description) is to
describe the whole fuzzy system. Xfuzzy 3 contains a CAD
tool, named xfedit, to aid in this stage. The constituent mod-
ules of the whole system usually follow the architecture
designed by the human expert who wants to solve a particular
problem. The structure of each module can also be determined
from the expert linguistic knowledge or can be identified
automatically from numerical data. In the last case, we
distinguish an identification stage. Xfuzzy 3 contains a CAD
tool, named xfdm, to automate this identification stage. It can
currently apply five algorithms based on clustering and four
algorithms based on grid techniques.

Once the whole system has been described, its behavior
should be tested at the verification stage. Three tools have
been programmed to facilitate this verification process in sev-

TIE-00219-2005.R1

3

X position

Membership degree

Left big
(LB)

Left small
(LS)

Zero
(CE)

Right small
(RS)

Right big
(RB)

Interval 1 Interval 2 …
X position

Membership degree

Left big
(LB)

Left small
(LS)

Zero
(CE)

Right small
(RS)

Right big
(RB)

Interval 1 Interval 2 …
Fig. 2. Normalized triangular membership functions.

eral ways. One of them (xfplot) allows to show two- and three-
dimensional graphics with the input/output behavior of the
fuzzy system. Another tool (xfmt) allows monitoring the
values of the internal and global variables of the system and
the activation degrees of the rules of the different modules.
The last tool, named xfsim, simulates the behavior of the fuzzy
system working in line with a model of an external system (a
plant in the case of a controller).

One way of correcting the deviations detected at the
verification stage is to apply tuning techniques. The tool xfsl
of Xfuzzy 3 includes a wide set of tuning algorithms: six
gradient-descent algorithms, five conjugate gradient, four
second-order, two algorithms without derivatives, and two
statistical algorithms. It allows tuning hierarchical fuzzy
systems with operators defined freely by the user. No other
fuzzy software provides such flexibility.

After tuning and identification stages, the resulting module
descriptions can be simplified with the tool named xfsp. It can
be applied to either the variable membership functions or the
rule bases. For the first ones, a purge mechanism, five
clustering methods, and a merging method based on a
similarity measure can be selected. The rules can be pruned
according to either a threshold in their activation degree or a
number which fixes how many should be maintained or
eliminated. Besides, all the rules sharing the same consequent
can be merged by connecting their antecedents disjunctively,
and, vice versa, the rules can be expanded. Another interesting
method available at xfsp, which is neither supported by current
fuzzy software, is a tabular simplification of the rules based
on an extension of the Quine-McCluskey algorithm of
Boolean design.

The limitations imposed by the target implementation,
standard DSPs in our case, can be considered easily by the
designer in the iterations of this design flow. The idea is to
subsequently transform the system (which initially is not
usually suitable for a direct implementation into a DSP) into a
more adequate one. Interesting transformations to consider are
summarized in the following section. Once the whole system
description has been verified, tuned, and simplified, according
to the DSP resources, it can be easily translated to C code and
compiled by using the DSP development software.

Further information about Xfuzzy 3 can be found at its
official web page (http://www.imse.cnm.es/Xfuzzy/), where
its first version is distributed under GNU General Public
License.

III. DSP CONSTRAINTS

Since the central processing unit of standard DSPs is
adequate to perform addition, subtraction, multiplication,
standard “if-then” conditional statements and standard
relational and logical operators, the objective of the design
flow is to translate the fuzzy rule bases obtained from expert
knowledge and/or numerical data into non fuzzy ones which
include these standard operators.

In the fuzzy modules that form a fuzzy system, each input
universe of discourse, Ii, is partitioned into Li linguistic labels,
so that L1x…xLu rules can be defined for u inputs (Lu in the

case of equal partitions). If  is the maximum overlapping
degree between the membership functions of the linguistic
labels, Li+1- intervals can be distinguished per input and
each input xo can activate u rules at a maximum. For
example, five labels with an overlapping degree of two (four
intervals) are shown in Fig. 2.

If the fuzzy module corresponds to a decision making-type
rule base, the output is usually calculated as the consequent of
the rule with maximum activation degree, which is adequate
for DSP implementation if these consequents are represented
by constant or symbolic values. Our objective when
transforming these rule bases will focus on obtaining: (a) a
complete rule base, that is, containing all the possible rules so
as to ensure that the decision regions can be defined as
intersections of input intervals and to exploit
complementarity, and (b) rules’ antecedents whose
expressions admit a translation to standard relational and
Boolean operators (such as “and”, “or”, and “not”). With this
transformation, each decision making-type rule base of the
initial fuzzy system can also be described by a set of standard
if-then statements in which the if parts may contain relational
and Boolean operators while the then parts contain constant or
symbolic values associated to the decisions.

If the fuzzy module corresponds to an interpolation-type
rule base, such as Takagi-Sugeno’s, the output is calculated
as:








 


u

u

1k)o(xkh

1k)o(xkc)o(xkh
)oy(x (1)

where hk is the activation degree of one of the u active rules
and ck is its corresponding consequent function.

When considering the implementation of fuzzy systems
with DSPs, multi linear expressions are preferred for the
output y(xo) so as to require only addition and multiplication
operations. Hence, our objective when transforming an
interpolation-type rule base is to end with the following
features: (a) linear and normalized membership functions to
represent the linguistic labels of the rules’ antecedents (such
as those in Fig. 2); (b) normalized product to represent the
linguistic “and” as the unique antecedents’ connective, and (c)
constant values for the rules’ consequents [17]. This means
that, given two inputs, x1 and x2, the output expression of the
final rule base we are looking for, will be as follows:

2r1llrc2l1lllc2l1rrlc2r1rrrcy  (2)

TIE-00219-2005.R1

4

x

y

x

y

x

y

x

y

x

y

 (a) (b)

Fig. 3. Example of ideal trajectories to be performed by the robot
when driving (a) forward and (b) backward.

where ri and li = 1-ri are the non-zero membership degrees
of the input xi to the two overlapping labels.

Since the membership functions are linear, (2) can also be
expressed as:

d1cx)b1ax(2xd1cx2bx2x1axy  (3)

where a, b, c, d are constants related to the parameters of the
antecedents’ membership functions and the consequents’
singleton values.

With this transformation, each interpolation-type rule base
of the initial fuzzy system can also be described by a set of
standard if-then statements in which the if parts evaluate the
pertinence of the input to each of the (L-1) input intervals and
the then parts assign the output as expressed in (3).

Additional transformations which are interesting for any
rule base are the use of hierarchical structures and exploitation
of symmetry. All these transformations are clarified in the
following with examples of different fuzzy modules.

IV. APPLICATION EXAMPLE

A. The problem of diagonal parking

Let us consider the diagonal parking problem of a car-like
autonomous robot in a constrained space. Starting from any
given position (x, y), and orientation (), the robot can drive
forward and backward but has to arrive backward at the
desired parking place at a right angle with the horizontal and
to stop there (x = y== v =0). Once known its current
configuration (x, y, , v), the robot has to control the values of
its new speed (magnitude and driving direction) and its new
curvature (v, ) to achieve a good parking maneuver.

The goal when driving forward is to lead the robot towards
a configuration with x = 0 and  = 0 (the vertical through the
center of the parking place), so as to finish the parking
maneuver by driving backward with an almost zero curvature.
The approaching to the vertical is wanted to be done by
approximating a short trajectory made up of arcs of circles of
minimum turning radius and straight lines parallel to the line
of cars (to avoid collisions and reduce the y distance traveled).
These trajectories are shown in Fig. 3a.

The goal when driving backward is that the robot reaches
the parking place with the target final configuration. Similarly
to the forward maneuvers, the desired trajectories are made up

of arcs of circles of minimum radius and straight line
segments parallel to the line of cars, as shown in Fig. 3b.

Since a human driver has heuristic knowledge to solve this
problem, our approximation has been to design a fuzzy
controller from this knowledge. In this sense, the first control
action is to decide the direction of driving (the sign of the
speed): backward or forward, and the magnitude of the speed.
This knowledge is included into a rule base that we call
“direction”. Constraints imposed when deciding the new
speed are that the change of driving direction has to be soft,
that is, the controller should never decide to go forward at a
rather high speed if previously, the vehicle was driving
backward at a rather high speed. This kind of constraints is
considered by a rule base called “brake”. The input variables
of this rule base are the speed decided by the rule base
“direction” and the previous speed. Its output is the new speed
to be adopted.

The second decision is to select the proper angle of the
wheels once we have decided to drive backward or forward.
The speed selected by the rule base “brake” together with the
x position and the orientation of the vehicle are the input
variables of another rule base that we call “wheel”.

The description tool xfedit of Xfuzzy 3 has been employed
to describe the resulting hierarchical fuzzy controller, as
shown in Fig. 4.

B. Decision making-type rule bases

The rules of the modules “direction” and “brake” are easily
defined from our heuristic knowledge. In particular, the first
description of the rule base “direction” contained 17 rules,
such as the following:
“If the y coordinate is near the cars of the parking place and
the x coordinate is not approximately zero and the robot
orientation  is greater than approximately –90º and smaller
than approximately 90º, the driving direction should be
forward to avoid collision with the parked cars”.

Table I shows how the above rule and other five ones
related to the situation ‘y near’ are easily expressed with the
XFL3 language of Xfuzzy 3. These rules are fuzzy because
our knowledge is uncertain about concepts such as near,
approximately zero, etc., and, hence, they are represented by
fuzzy sets. As a matter of fact, the universes of discourse of
the input variables x, , y, and oldv are covered initially by 3,
7, 5, and 5 membership functions, respectively. In the other
side, the output variable can take three singleton or constant

Fig. 4. Structure of the fuzzy controller described with Xfuzzy 3.

TIE-00219-2005.R1

5

values: stop (0 m/s), forward (1 m/s) or backward (-1 m/s).
The global output of the rule bases is obtained by applying a
maximum-type defuzzification process.

Some of the initial and heuristic rules may not be adequate
for the control objective. For instance, simulation results
obtained with the tool xfsim revealed that when the robot was
driving forward, it stopped too far before changing the driving
direction to backward. The monitoring tool xfmt showed that
the rule 5 and, mainly, rule 6 in Table I were responsible of
that behavior. Hence, rule 6 was eliminated as well as the
antecedent ‘oldv<stop’ in rule 5. The resulting five rules cover
all the possible situations in x and  as shown in Fig. 5
(y==near). If the tabular simplification method of the tool xfsp
is now applied, the groupings depicted with gray lines in Fig.
5 are formed, thus resulting the two rules shown in Table II.
These rules are complementary (their activation degrees
always sum the unity) if the “and” and “or” connective are
represented by the normalized product and sum, respectively.

If this simplification process is applied to the whole module
“direction”: (a) the initial 17 rules obtained from our heuristic
knowledge are reduced to 14 by using the tools xfsim and
xfmt, (b) the 14 rules are reduced to 8 by using the tool xfsp,
and (c) the 8 rules are reduced to 6 by exploiting the
complementarity between some of them. These 6 rules, which
are shown in Table III, meet the constraints commented in
Section III: they form a complete rule base and their

antecedent parts admit a translation to standard relational and
logical operators. Hence, they can also be described in a non
fuzzy way, as shown in Table IV. This non fuzzy description,
expressed in C code, is easily compiled into a DSP.

Applying the same simplification process to the module
“brake”, it could be translated into 4 standard if-then
statements.

C. Interpolation-type rule bases

Designing the rule base “wheel” to provide the short
trajectories depicted in Fig. 3 is a difficult task by applying
heuristic knowledge only. Hence, the first iteration in the
design process was to identify two single modules (one for
driving forward and another for backward) from numerical
data corresponding to the geometric analysis of desired
trajectories. The Wang&Mendel algorithm [1] available at the
tool xfdm was employed to identify these two zero-order
Takagi-Sugeno modules with two inputs (x, and ) and one
output (). In order to allow enough flexibility and
smoothness, they were selected with 7 linguistic labels to
cover the input variable x and 9 labels for the vehicle angle
(Fig. 6a), both of them represented by Gaussian membership
functions. The rule base obtained for controlling the forward
driving is shown in Fig. 6b. The labels f04, f0 and f04n
represent the three singleton values (0.4, 0 and -0.4 m-1) that
the output variable can take. The learning and simplification
tools, xfsl and xfsp, were applied in the subsequent iteration to
the identified modules. One result of this simplification is that
the membership functions of x and were reduced to 5 and 7,
respectively (because, for example, the output takes the same
value for ‘ == RM’ and ‘ == RB’, as can be seen in Fig. 6b,
so that the labels RM and RB can be merged into a unique
label, RMB). Fig. 6c shows these 7 tuned functions of the
variable . The resulting control surface when driving forward
obtained with the tool xfplot is shown in Fig. 7. From this
result, we extracted that the curvature value could be defined

TABLE II

RESULT AFTER SIMPLIFYING THE RULES IN TABLE I

1) if(y==near & ((x==CE & phi>= LS & phi <= RS) | phi<LE | phi>RI))
-> pv=backward;

2) if(y==near & (x!=CE & (phi>=LE & phi<=RI) | phi==LE | phi==RI)
-> pv= forward;

TABLE III
RULES OF THE MODULE “DIRECTION” (FINAL ITERATION)

1) if(y > far) -> pv = backward;

2) if(y >= far & oldv <= stop) -> pv = backward;

3) if(y == near & (phi < LE | phi > RI)) -> pv = backward;

4) if(y >= near & x == CE & phi >= LS & phi <= RS) -> pv = backward;

5) if(y < near) -> pv = stop;

6) else -> pv = forward;

x \  LB LE LS CE RS RI RB

CE bw fw bw bw bw fw bw

RI bw fw fw fw fw fw bw

LE bw fw fw fw fw fw bw

x \  LB LE LS CE RS RI RB

CE bw fw bw bw bw fw bw

RI bw fw fw fw fw fw bw

LE bw fw fw fw fw fw bw

x \  LB LE LS CE RS RI RB

CE bw fw bw bw bw fw bw

RI bw fw fw fw fw fw bw

LE bw fw fw fw fw fw bw

Fig. 5. Matricial representation of the rules derived from those in Table I.

TABLE I
SIX RULES OF THE MODULE “DIRECTION” EXPRESSED WITH XFL3

1) if(y == near & x != CE & phi >= LE & phi <= RI)
-> pv = forward;

2) if(y == near & x != CE & (phi < LE | phi > RI))
-> pv = backward;

3) if(y == near & x == CE & (phi < LE | phi > RI))
-> pv = backward;

4) if(y == near & x == CE & (phi == LE | phi == RI))
-> pv = forward;

5) if(y == near & x == CE & oldv < stop & phi >= LS & phi <= RS)
-> pv = backward;

6) if(y == near & x == CE & oldv >= stop & phi >= LS & phi <= RS)
-> pv = forward;

TABLE IV
FINAL RULES OF THE MODULE “DIRECTION” TRANSLATED INTO C CODE

if(y > 12.5) pv = -1;

 else if((y > 3.5) && (oldv <= 0)) pv = -1;

 else if((y > 0.0) && (y <= 3.5) && ((phi < -90) | (phi > 90))) pv = -1;

 else if((y > 0.0) && (x > -1.25) && (x < 1.25) && (phi > -12) &&

(phi < 12)) pv = -1;

 else if(y <= 0.0) pv = 0;

else pv = 1;

TIE-00219-2005.R1

6

x (m)
phi (degrees)

x (m)
phi (degrees)

Fig. 9. Control surface of the module “wheel” (final iteration).

x (m)
phi (degrees)

x (m)
phi (degrees)

Fig. 7. Control surface of the module “wheel” (at the first iterations).

Fig. 8. Structure of the module “wheel” described by Xfuzzy 3.

better depending on the relation between  and x rather than
on the values of  and x separately. Hence, the next iteration
to further simplify the module “wheel” was to select a
hierarchical structure made up of two rule bases (Fig. 8). The
first rule base (“interpolation”) provides a value  depending
on x. The second rule base (“smoothing”) generates the value
of  depending on the value of the difference (when
driving forward, and (when driving backward,
because it was detected the symmetry of the problem
regarding  (this difference is named sfu). Four rules are
included in the rule base “interpolation” and other four ones in
the rule base “smoothing”, and normalized triangular
membership functions are selected now. The eight rules are
adjusted with the same training data as before. The capability
of the tool xfsl to train hierarchical systems is exploited at this
point. The resulting control surface when driving forward is
shown in Fig. 9. It can be appreciated its similarity with the
surface in Fig. 7.

As a result, the module “wheel”, which was initially
designed as two rule bases, each with 63 rules, has been
finally translated into two rule bases, each with 4 rules. In

addition, since these final rule bases use normalized triangular
membership functions in the antecedents, their outputs are a
piecewise linear function of their inputs, and, hence, they can
be translated easily into non fuzzy rule bases, as commented
in Section III. For example, the rule base “smoothing”, can be
expressed in C code as shown in Table V. The whole module
“wheel” can be expressed in C code as 11 standard if-then
conditional statements that only include simple additions and
multiplications.

V. EXPERIMENTAL RESULTS

The above described fuzzy controller has been employed to
park the robot ROMEO 4R, an electrical car-like vehicle
designed and built at the Escuela Superior de Ingenieros de
Sevilla (Fig. 10) [18]. An embedded controller, based on the
fixed-point TMS320LF2407 DSP from Texas Instruments,
has been used to implement the low-level control loops as
well as the high-level fuzzy controller [19]. Fig. 11 shows the
components of this embedded controller. It consists of: (a) an
EVM2407 board from Spectrum Digital [20], which includes
the DSP chip, 128 K of external SRAM, four 12-bit D/A
channels and interface circuitry; (b) expansion boards that

LB LM LE LS CE RS RI RM RB LMB LE LS CE RS RI RMBLB LM LE LS CE RS RI RM RB LMB LE LS CE RS RI RMB

 (a) (c)

x \  LB LM LE LS CE RS RI RM RB

LS f04 f04 f04 f04 f04 f04n f04n f04n f04n

CE f04 f04 f04 f04 f0 f04n f04n f04n f04n

LB f04 f04 f04 f04 f04 f04 f04 f04n f04n

RS f04 f04 f04 f04n f04n f04n f04n f04n f04n

RI f04 f04 f04n f04n f04n f04n f04n f04n f04n

LE f04 f04 f04 f04 f04 f04 f04 f04n f04n

RB f04 f04 f04n f04n f04n f04n f04n f04n f04n

x \  LB LM LE LS CE RS RI RM RB

LS f04 f04 f04 f04 f04 f04n f04n f04n f04n

CE f04 f04 f04 f04 f0 f04n f04n f04n f04n

LB f04 f04 f04 f04 f04 f04 f04 f04n f04n

RS f04 f04 f04 f04n f04n f04n f04n f04n f04n

RI f04 f04 f04n f04n f04n f04n f04n f04n f04n

LE f04 f04 f04 f04 f04 f04 f04 f04n f04n

RB f04 f04 f04n f04n f04n f04n f04n f04n f04n

 (b)

Fig. 6. (a) Initial membership functions of the  variable. (b) Identified
rules for driving forward. (c) Tuned and simplified functions of the 
variable.

TABLE V
FINAL RULES OF THE MODULE “SMOOTHING” TRANSLATED INTO C CODE

if(sfu<=-30.0) gamma = 0.4;

if((sfu>-30.0) && (sfu<=-4.0)) gamma= 0.039 - 0.361*(sfu+4.0)/26.0;

if((sfu>-4.0) && (sfu<4.0)) gamma = -0.039*sfu/4.0;

if((sfu>=4.0) && (sfu<30.0)) gamma= -0.039 - 0.361*(sfu-4.0)/26.0;

if(sfu>=30.0) gamma = -0.4;

TIE-00219-2005.R1

7

Fig. 10. The autonomous robot ROMEO 4R.

provide signal conditioning, overvoltage protection and four
additional serial ports; and (c) a compact GPS module (not
used for this specific application).

The D/A channels of the EVM board are used to
communicate the outputs (v, ) of the fuzzy controller to the
traction and steering motor control boards. One of the RS-232
ports of the expansion board is used to communicate with a
gyroscope. The information from the gyro is combined by the
DSP chip with the measurements taken by the traction and
steering encoders to compute the robot position, orientation,
speed, and curvature, that is, the variables (x, y, , v, )
involved in this parking problem. The on-chip DSP hardware
offers direct interface for quadrature encoders as well as an
RS-232 port, which is used as communication link to an
external PC. At the beginning of the maneuver, this PC sends
to the controller the situation of the target parking place.
During the maneuver, it collects from the controller the data of
the path followed, as well as the potential error messages.

Texas Instruments provides several development tools for
its DSPs; in particular, ANSI C compiler, assembler/ linker,
and the Code Composer StudioTM environment. The latter has
been used to develop and load into the DSP a run-time
environment [21] which includes the low-level peripheral
drivers necessary to access the sensors and actuators of the
robot; it also contains a simple scheduler that allows to define
and run a number of time-triggered, pre-emptable software
modules, following a fixed priority scheme. Among such
modules are the low-level steering and driving PID

controllers, the position estimation algorithms and the fuzzy
controller itself. This means that the fuzzy controller was also
programmed and loaded into the DSP by using the Code
Composer Studio. Fixed-point data formats were employed in
the C code so as to maximize the accuracy (avoiding data
conversions) and minimize the size and execution time of the
code (avoiding software emulation of floating point). Care
was taken to avoid numerical errors due to truncation,
rounding, and overflow. Under this run-time environment, the
high-level fuzzy control algorithm is relieved of the task of
synchronizing the read and write processes of the different
robot devices.

The DSP core processor uses a Harvard-type architecture,
runs at 33 MHz and is capable of single-cycle 16-bit
multiplication. The on chip memory includes 32 K words of
16 bits of Flash EEPROM and 2.5 K words of 16 bits of
Data/Program RAM. The fuzzy controller described herein
occupies 851 words of 16 bits of Data/Program RAM. Once
the robot configuration is available, the time spent by the DSP
in implementing the fuzzy controller ranges from 19.3 to 21.4
s (the total time spent in computing the robot configuration,
implementing the fuzzy controller, and assigning the new
values of speed and curvature ranges from 35.0 to 37.1 s). It
is interesting to notice that the implementation of the fuzzy
controller designed at the first iteration (without considering
any DSP constraints) in a Pentium processor at 100 MHz
takes about 2 ms, that is, 2 order of magnitude slower.

Many successful experiments were performed by ROMEO
4R being controlled by the embedded DSP-based controller.
The control loop has a period of 50 ms in the experiments. In
each period, the DSP computes: (a) the new robot
configuration by using the information provided by the
encoders and the gyroscope and applying odometry, and (b)
the new curvature and speed by applying the fuzzy controller.
Three examples of experimental trajectories of different
complexity are shown in Fig. 12 and 13. All the experimental
results obtained with the embedded controller were very
similar to the simulation results obtained by Xfuzzy 3 with a
model of the robot, as illustrated in Fig. 13.

VI. CONCLUSIONS

The CAD tools of the environment Xfuzzy 3 offer more
description, identification, verification, tuning, and
simplification facilities than any other fuzzy software, thus
allowing a rapid design of complex fuzzy controllers starting
from linguistically expressed knowledge and/or numerical
data as well as easing its translation to be efficiently
implemented in low-cost DSP-based embedded platforms. A
set of guidelines have been provided to direct the efficient
translation of the different rule bases which constitute a whole
fuzzy controller. The memory resources and the processing
time required by the obtained controllers are so low that
standard DSPs can be used not only to implement the low-
level control tasks, as usual, but also the high-level ones
required by real-time embedded applications. This has been
proven by fulfilling the whole design process (from the

Expansion boards

EVM2407

GPS module

Fig. 11. Components of the embedded controller.

TIE-00219-2005.R1

8

(a)

(b)

x (m)

y (m)

x (m)

y (m)
initial configuration:
x= 1.8 m
y= 1.5 m
= 81º

(a)

(b)

x (m)

y (m)

x (m)

y (m)
initial configuration:
x= 1.8 m
y= 1.5 m
= 81º

Fig. 13. (a) Experimental and (b) simulated results.

conception of the controller to the consecution of successful
experiments) to solve a typical navigation problem in robotics.

REFERENCES
[1] L-X. Wang, A course in fuzzy systems and control, Prentice Hall,

Englewood Cliffs, New Jersey, 1996.
[2] K.-B. Sim, K.-S. Byun, F. Harashima, "Internet-based teleoperation of

an intelligent robot with optimal two-layer fuzzy controller," IEEE
Trans. on Industrial Electronics, vol. 53, no. 4, pp. 1362- 1372, June
2006.

[3] C.-L. Hwang, L.-J. Chang, Y.-S. Yu, “Network-based fuzzy
decentralized sliding-mode control for car-like mobile robots”, IEEE
Trans. on Industrial Electronics, vol. 54, no. 1, pp. 574-585, Feb. 2007.

[4] S. Sánchez-Solano, A. J. Cabrera, I. Baturone, F. J. Moreno-Velo, M.
Brox, “FPGA implementation of embedded fuzzy controllers for robotic
applications”, IEEE Trans. on Industrial Electronics, vol. 54, no. 4, pp.
1937-1945, Aug. 2007.

[5] L. Fortuna, M. Lo Presti, C. Vinci, A. Cucuccio, “Recent trends in fuzzy
control of electrical drives: an industry point of view”, Proc. Int. Symp.
Circuits and Systems, ISCAS’2003, vol. 3 pp. 459-461, Bangkok, 2003.

[6] F. Sun, L. Li, H.-X. Li, H. Liu, "Neuro-fuzzy dynamic-inversion-based
adaptive control for robotic manipulators—discrete time case," IEEE
Trans. on Industrial Electronics, vol. 54, no. 3, pp. 1342-1351, June
2007.

[7] R. Bannatyne, “Motorola's 68HC12 an evolution from 8-bit to 16-bit”,
Embedded-System Engineering, vol. 4, no. 4, pp. 32-3, June-July 1996.

[8] H. Eichfeld, T. Kunemund, M. Menke, “A 12b general-purpose fuzzy
logic controller chip”, IEEE Trans. on Fuzzy Systems, vol. 4, no. 4, pp.
460-475, Nov. 1996.

[9] A. Pagni, “Digital approaches”, in Handbook of Fuzzy Computation,
Institute of Physics Publishing, 1998.

[10] C.-F. Juang, J.-S. Chen, "Water bath temperature control by a recurrent
fuzzy controller and its FPGA implementation," IEEE Trans. on
Industrial Electronics, vol. 53, no. 3, pp. 941- 949, June 2006.

[11] C. Von Altrok, “Adapting existing hardware for fuzzy computation”, in
Handbook of Fuzzy Computation, Institute of Physics Publishing, 1998.

[12] rFLASH User’s Guide, Rigel Corporation, 2002.
[13] F. Betin, A. Sivert, A. Yazidi, G.-A. Capolino, “Determination of scaling

factors for fuzzy logic control using the sliding-mode approach:
application to control of a DC machine drive", IEEE Trans. on Industrial
Electronics, vol. 54, no. 1, pp 296-309, Feb. 2007.

[14] D. D. Nauck, “Measuring interpretability in rule-based classification
systems”, Proc. IEEE International Conference on Fuzzy Systems,
FUZZ-IEEE’2003, vol. 1, pp. 196-201, St. Louis, May 2003.

[15] J. M. Alonso, L. Magdalena, S. Guillaume, “KBCT: A knowledge
extraction and representation tool for fuzzy logic based systems”, Proc.
IEEE International Conference on Fuzzy Systems, FUZZ-IEEE’2004,
vol. 2, pp. 989-994, Budapest, July 2004.

[16] M. Sugeno, T. Yasukawa, “A fuzzy-logic-based approach to qualitative
modeling”, IEEE Trans. on Fuzzy Systems, vol. 1, no. 1, pp. 7-31, 1993.

[17] I. Baturone, S. Sánchez Solano, “Microelectronic design of universal
fuzzy controllers”, Mathware & Soft Computing, vol. 8, pp. 303- 319,
Dec. 2001.

(a)

(b)

x (m)

y (m)

x (m)

y (m)
initial configuration:
x= 8.0 m
y= 10.0 m
= 0º

initial configuration:
x= -2.5 m
y= 3.0 m
= -117º

(a)

(b)

x (m)

y (m)

x (m)

y (m)
initial configuration:
x= 8.0 m
y= 10.0 m
= 0º

initial configuration:
x= -2.5 m
y= 3.0 m
= -117º

Fig. 12. Experimental results.

TIE-00219-2005.R1

9

[18] F. Cuesta , F. Gómez-Bravo, A. Ollero, “Parking maneuvers of
industrial-like electrical vehicles with and without trailer", IEEE Trans.
on Industrial Electronics, vol. 51, no. 2, pp 257-269, April 2004.

[19] TMS320LF2407 Reference Guides, Texas Instruments, Inc, 2000.
[20] TMS320LF2407 Evaluation Module. Technical Reference, Spectrum

Digital, Inc., 2000.
[21] J. Ferruz, V. Blanco, A. Ollero, J. V. Acevedo, “An embedded DSP-

based controller for the ROMEO-4R vehicle”, Proc. 5th IFAC Int. Symp.
on Intelligent Components and Instruments for Control Applications,
SICICA’2003, pp. 101-106, Aveiro (Portugal), 2003.

Iluminada Baturone received the Licenciado en
Físicas degree (with honors) and the Doctor en Físicas
degree (with honors) in 1991 and 1996, respectively,
both from the University of Seville, Spain.

Since 1990 she has been with the Instituto de
Microelectrónica de Sevilla. From 1990 to 1991 she
had a fellowship of introduction to research for
undergraduated students and during 1992 she was a
Postgraduated Research Fellow. She also had a

fellowship from the regional government in the Dept. de Electrónica y
Electromagnetismo at the University of Seville and later a post-doctoral grant
from the Consejo Superior de Investigaciones Científicas. Currently, she is an
Associate Professor at the University of Seville.

Dr. Baturone is co-author of one book, co-editor of another book and a
journal, and author or co-author of more than 100 publications. She was the
recipient of a Best Paper Award at IECON’2002 Conf. of IEEE Industrial
Electronics Society. Her current research interests include hardware/software
codesign, neuro-fuzzy systems, autonomous robots and image processing
applications.

Francisco J. Moreno-Velo received the B.S. degree in
Physics from the University of Seville, Spain, in 1995,
and the B.S and Ph.D. degrees in Computer Science from
the University of Seville, Spain, in 1996 and 2003,
respectively.

From 1996 to 1999, he was an Assistant Professor
with the Department of Applied Physics and Electrical
Engineering, University of Huelva. From 2000 to 2003,
he was a Postgraduated Research Fellow at the Instituto

de Microelectrónica de Sevilla. Currently, he is an Assistant Professor with
the Department of Information Technologies, University of Huelva. His
current research interests include fuzzy systems, soft-computing techniques,
development of CAD tools for fuzzy systems, and compiler design.

Víctor Blanco was born in Algeciras, Spain, in 1977.
There, he achieved his basic and medium studies
focused towards the science field. He began his higher
studies at the University of Seville, where he obtained
the Telecommunication Engineering degree in 2003.

From 2003 to February 2006 he was working as a
researcher at Systems and Automation Engineering
Department at the University of Seville, especially
focused on embedded systems for motion control and

artificial perception in the scope of aerial and terrestrial robotics. Currently, he
develops his main activity in the aeronautical industry, situation that he
combines with his Ph.D. studies at the University of Seville.

Joaquín Ferruz was born in Seville, Spain, in 1961. He
received the Industrial Engineering degree and the Ph.D.
degree in Engineering from the University of Seville in
1986 and 1997, respectively.

From 1985 to 1992 he worked as a Hardware Design
Engineer at the R&D department of Fujitsu España in
Malaga, Spain, where he was involved in computer and
microelectronics design activities. In 1992 he joined the
Systems and Automation Department of the University

of Seville as a Lecturer. In 1999 he was appointed Associate Professor. His
main research interests are aerial and mobile robotics, computer vision and
real-time embedded systems.

