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 
Abstract— Fuzzy controllers are used in many applications 

because of their rapid design by translating heuristic knowledge, 
robustness against perturbations, and smoothness in the control 
action. However, they require parallel processing and special 
operators (such as fuzzification or defuzzification) which are not 
available at standard digital signal processors (DSPs), thus 
complicating its direct implementation. This paper describes an 
efficient design methodology which allows starting with any kind 
of fuzzy controller and subsequently transforming it until 
obtaining a system suitable for an easy DSP implementation. 
Such methodology is greatly aided by the design environment 
Xfuzzy 3. The parking problem of an autonomous robot is 
described to illustrate the steps of this methodology. Real 
experiments with the autonomous robot ROMEO 4R 
demonstrate the efficiency of the designed fuzzy controller 
embedded into a stand-alone card based on a fixed-point DSP 
from Texas Instruments.  
 

Index Terms— Embedded systems, Fuzzy controllers, DSPs, 
CAD tools, autonomous robots. 
 

I. INTRODUCTION 

utonomous mobile robots are capable of performing tasks 
without the intervention of human operators. Hence, they 

should contain built-in machine intelligence and an on-board 
control system. Fuzzy logic-based techniques have been 
applied successfully to build the control system of 
autonomous intelligent mobile robots: from low-level 
controllers for sensors and actuators and intermediate modules 
that carry out simple individual behaviors to high-level 
modules in charge of integrating and coordinating primitive 
behaviors [1]-[6]. Advantages of fuzzy logic-based techniques 
are that they allow building robust and smooth controllers 
starting from heuristic knowledge and qualitative models, 
considering imprecise, vague, and unreliable information, and 
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integrating symbolic reasoning and numeric processing in the 
same framework. 

The trend in many autonomous robots (such as planetary 
exploration vehicles, micro robots, etc.) is that the on-board 
control system is restricted to a small size, light weight, and 
low power consumption, which means the need for embedded 
controllers capable of real-time operation. An embedded 
system may follow different approaches: (a) embedded 
software on off-the-shelf components (microprocessors or 
specific processors such as microcontrollers and DSPs), (b) 
programmable logic such as FPGAs (Field Programmable 
Gate Arrays), and (c) full-custom or semi-custom ASICs 
(Application Specific Integrated Circuits). 
 Since fuzzy controllers can use complex IF-THEN rules, 
they are not suitable to be implemented directly on off-the-
shelf processors. For example, rules’ antecedent parts can 
contain several antecedents connected by arbitrarily complex 
connectives and input variables can be related to fuzzy sets by 
any kind of linguistic hedges. In addition, the use of particular 
membership functions such as Gaussian functions, which 
require exponential calculus, and/or defuzzification methods 
that require sweeping the output universe of discourse may 
increase the computational cost of the system. 

In order to alleviate the limitations of standard embedded 
processors, two main approaches have been applied. One of 
them is to expand the processor with a set of dedicated fuzzy 
logic instructions. This is the solution adopted, for instance, 
by Motorola (with the 16-bit 68HC12 microcontroller family 
[6]) and, more recently, by ST Microelectronics (with the ST 
FIVE family [5]). The other approach is to employ a fuzzy 
processor that cooperates with the main processor or works 
alone. Companies such as Togai InfraLogic, Toshiba, 
Siemens, Omron, and ST Microelectronics launched this kind 
of coprocessors in the 90s [8]-[9]. Recent research in this area 
can be seen in [4] and [10]. 

Another different line of action is to design the fuzzy 
controller so as to be adequate for the processor capabilities. 
In this way, several design environments were developed to 
translate the fuzzy system definition into specific code of 
microcontrollers from Motorola, Intel, etc. Some examples are 
the well-known FIDE system (from Aptronix Inc.), MicroFPL 
(from Togai InfraLogic), and FuzzyTECH (from Inform) [11], 
and the most recent rFLASH (from Rigel Corporation) [12]. 
Recent research concerning this approach can be seen in [13]. 
However, these solutions impose constraints on the designed 
systems to ease the translation and, hence, the advantages of 
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Fig. 1.  Design flow aided by Xfuzzy 3. 

fuzzy controllers to be designed rapidly from linguistic and 
qualitative knowledge can be lost. 

The design environment Xfuzzy 3 was developed by some 
of the authors at the Instituto de Microelectrónica de Sevilla to 
reduce these limitations. As far as we know, Xfuzzy 3 
provides the greatest flexibility in the design and 
implementation of fuzzy systems. For example, it allows 
describing hierarchical systems with complex rules (e.g. 
including rule weights, linguistic hedges, etc.); it can apply 
more identification algorithms to extract rule bases from 
numerical data than other specific fuzzy software (such as 
those in [14]-[15]); it admits a wide set of learning algorithms 
to tune the designed system; and it is provided with many 
simplification facilities that are not available at current fuzzy 
software. As a result, Xfuzzy 3 allows to start the design 
process with no constraints, that is, with any kind of fuzzy 
controller, and subsequently facilitates its transformation until 
obtaining a system suitable for off-the-shelf processor 
implementation. 

The DSP-based solution is addressed in this paper since 
current DSPs combine the advantageous on-chip peripherals 
of a typical microcontroller with the math-intensive 
computation power of a typical DSP, thus being very suitable 
for robotic applications. In addition, they are provided with 
development environments which ease building and 
debugging the real-time software applications of an embedded 
controller. 

This paper describes how Xfuzzy 3 facilitates the rapid and 
efficient implementation of complex fuzzy controllers into 
standard DSPs. The paper is structured as follows. Section II 
summarizes the design flow that can be followed with the aid 
of Xfuzzy 3. Interesting guidelines to meet the constraints 
imposed by standard DSPs are summarized in Section III. The 
design of a fuzzy controller to park an autonomous robot is 
addressed in Section IV to illustrate the steps of this 
methodology. Section V describes the inclusion of this fuzzy 
controller into an embedded DSP platform that controls the 
autonomous robot ROMEO 4R, a car-like vehicle designed 
and built at the Escuela Superior de Ingenieros de Sevilla. 
Experimental results illustrate the efficiency of the controller. 
Finally, conclusions are included in Section VI. 

 

II. CAD METHODOLOGY 

The classic inference mechanism of a fuzzy controller is 
based on three stages: (a) fuzzification, to compute the 
membership degrees of the input values to the antecedent 
fuzzy sets; (b) inference mechanism, to obtain a global 
conclusion of the rule base; and (c) defuzzification, to 
compute the non fuzzy values of the output variables. 
Triangular, trapezoidal and Gaussian functions have been 
used typically as membership functions to implement the first 
stage. Three steps are performed in the inference mechanism: 
firstly, each rule activation degree is usually calculated by 
applying conjunctive operators between the antecedents (such 
as the minimum or the bounded product); secondly, an 

implication function (typically the minimum or the product) is 
used to obtain each rule conclusion; and, finally, the global 
conclusion is calculated by an aggregation operator (such as 
the maximum or the sum). The center of area and center of 
sums are the typical methods employed in the defuzzification 
stage [1]. 

In order to describe complex fuzzy systems, this structure 
can be improved by the use of complex antecedent parts in the 
rules, that is, by connecting the several antecedents by any 
type of conjunctive and disjunctive connectives, by relating 
input variables with any type of fuzzy sets by any kind of 
linguistic hedges, and by even applying linguistic hedges to 
some connected antecedents. As a result, the expressiveness 
and linguistic interpretability of the resulting fuzzy system 
increase [16]. Current fuzzy software tools do not support this 
flexibility and this is why Xfuzzy 3 was developed. The 
formal specification language of Xfuzzy 3, named XFL3, 
facilitates the translation of complex rules expressed 
linguistically into a fuzzy system. In addition, Xfuzzy 3 
admits a large set of mathematical functions and algorithms, 
even new ones introduced by the designer, to represent the 
fuzzy concepts that appear in the fuzzy inference mechanism. 
Another advantage of Xfuzzy, which is neither supported by 
current fuzzy software, is the capability of describing 
hierarchical systems consisting of several modules 
interconnected, where each module can apply its own and 
appropriate fuzzy operators and the data they interchange can 
be either fuzzy or non fuzzy. 

The design methodology with Xfuzzy 3 follows the flow 
chart in Fig. 1. The aim of the first stage (description) is to 
describe the whole fuzzy system. Xfuzzy 3 contains a CAD 
tool, named xfedit, to aid in this stage. The constituent mod-
ules of the whole system usually follow the architecture 
designed by the human expert who wants to solve a particular 
problem. The structure of each module can also be determined 
from the expert linguistic knowledge or can be identified 
automatically from numerical data. In the last case, we 
distinguish an identification stage. Xfuzzy 3 contains a CAD 
tool, named xfdm, to automate this identification stage. It can 
currently apply five algorithms based on clustering and four 
algorithms based on grid techniques.  

Once the whole system has been described, its behavior 
should be tested at the verification stage. Three tools have 
been programmed to facilitate this verification process in sev-
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Fig. 2.  Normalized triangular membership functions. 

eral ways. One of them (xfplot) allows to show two- and three-
dimensional graphics with the input/output behavior of the 
fuzzy system. Another tool (xfmt) allows monitoring the 
values of the internal and global variables of the system and 
the activation degrees of the rules of the different modules. 
The last tool, named xfsim, simulates the behavior of the fuzzy 
system working in line with a model of an external system (a 
plant in the case of a controller). 

One way of correcting the deviations detected at the 
verification stage is to apply tuning techniques. The tool xfsl 
of Xfuzzy 3 includes a wide set of tuning algorithms: six 
gradient-descent algorithms, five conjugate gradient, four 
second-order, two algorithms without derivatives, and two 
statistical algorithms. It allows tuning hierarchical fuzzy 
systems with operators defined freely by the user. No other 
fuzzy software provides such flexibility. 

After tuning and identification stages, the resulting module 
descriptions can be simplified with the tool named xfsp. It can 
be applied to either the variable membership functions or the 
rule bases. For the first ones, a purge mechanism, five 
clustering methods, and a merging method based on a 
similarity measure can be selected. The rules can be pruned 
according to either a threshold in their activation degree or a 
number which fixes how many should be maintained or 
eliminated. Besides, all the rules sharing the same consequent 
can be merged by connecting their antecedents disjunctively, 
and, vice versa, the rules can be expanded. Another interesting 
method available at xfsp, which is neither supported by current 
fuzzy software, is a tabular simplification of the rules based 
on an extension of the Quine-McCluskey algorithm of 
Boolean design. 

The limitations imposed by the target implementation, 
standard DSPs in our case, can be considered easily by the 
designer in the iterations of this design flow. The idea is to 
subsequently transform the system (which initially is not 
usually suitable for a direct implementation into a DSP) into a 
more adequate one. Interesting transformations to consider are 
summarized in the following section. Once the whole system 
description has been verified, tuned, and simplified, according 
to the DSP resources, it can be easily translated to C code and 
compiled by using the DSP development software. 

Further information about Xfuzzy 3 can be found at its 
official web page (http://www.imse.cnm.es/Xfuzzy/), where 
its first version is distributed under GNU General Public 
License. 

 

III. DSP CONSTRAINTS 

Since the central processing unit of standard DSPs is 
adequate to perform addition, subtraction, multiplication, 
standard “if-then” conditional statements and standard 
relational and logical operators, the objective of the design 
flow is to translate the fuzzy rule bases obtained from expert 
knowledge and/or numerical data into non fuzzy ones which 
include these standard operators. 

In the fuzzy modules that form a fuzzy system, each input 
universe of discourse, Ii, is partitioned into Li linguistic labels, 
so that L1x…xLu rules can be defined for u inputs (Lu in the 

case of equal partitions). If  is the maximum overlapping 
degree between the membership functions of the linguistic 
labels, Li+1- intervals can be distinguished per input and 
each input xo can activate u rules at a maximum. For 
example, five labels with an overlapping degree of two (four 
intervals) are shown in Fig. 2. 

If the fuzzy module corresponds to a decision making-type 
rule base, the output is usually calculated as the consequent of 
the rule with maximum activation degree, which is adequate 
for DSP implementation if these consequents are represented 
by constant or symbolic values. Our objective when 
transforming these rule bases will focus on obtaining: (a) a 
complete rule base, that is, containing all the possible rules so 
as to ensure that the decision regions can be defined as 
intersections of input intervals and to exploit 
complementarity, and (b) rules’ antecedents whose 
expressions admit a translation to standard relational and 
Boolean operators (such as “and”, “or”, and “not”). With this 
transformation, each decision making-type rule base of the 
initial fuzzy system can also be described by a set of standard 
if-then statements in which the if parts may contain relational 
and Boolean operators while the then parts contain constant or 
symbolic values associated to the decisions. 

If the fuzzy module corresponds to an interpolation-type 
rule base, such as Takagi-Sugeno’s, the output is calculated 
as: 
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where hk is the activation degree of one of the u active rules 
and ck is its corresponding consequent function. 

When considering the implementation of fuzzy systems 
with DSPs, multi linear expressions are preferred for the 
output y(xo) so as to require only addition and multiplication 
operations. Hence, our objective when transforming an 
interpolation-type rule base is to end with the following 
features: (a) linear and normalized membership functions to 
represent the linguistic labels of the rules’ antecedents (such 
as those in Fig. 2); (b) normalized product to represent the 
linguistic “and” as the unique antecedents’ connective, and (c) 
constant values for the rules’ consequents [17]. This means 
that, given two inputs, x1 and x2, the output expression of the 
final rule base we are looking for, will be as follows: 

 

2r1llrc2l1lllc2l1rrlc2r1rrrcy    (2) 
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Fig. 3.  Example of ideal trajectories to be performed by the robot 
when driving (a) forward and (b) backward. 

 
where ri and li = 1-ri are the non-zero membership degrees 
of the input xi to the two overlapping labels. 

Since the membership functions are linear, (2) can also be 
expressed as: 

 
d1cx)b1ax(2xd1cx2bx2x1axy   (3) 

 
where a, b, c, d are constants related to the parameters of the 
antecedents’ membership functions and the consequents’ 
singleton values. 

With this transformation, each interpolation-type rule base 
of the initial fuzzy system can also be described by a set of 
standard if-then statements in which the if parts evaluate the 
pertinence of the input to each of the (L-1) input intervals and 
the then parts assign the output as expressed in (3). 

Additional transformations which are interesting for any 
rule base are the use of hierarchical structures and exploitation 
of symmetry. All these transformations are clarified in the 
following with examples of different fuzzy modules. 

 

IV. APPLICATION EXAMPLE 

A. The problem of diagonal parking 

Let us consider the diagonal parking problem of a car-like 
autonomous robot in a constrained space. Starting from any 
given position (x, y), and orientation (), the robot can drive 
forward and backward but has to arrive backward at the 
desired parking place at a right angle with the horizontal and 
to stop there (x = y== v =0). Once known its current 
configuration (x, y, , v), the robot has to control the values of 
its new speed (magnitude and driving direction) and its new 
curvature (v, ) to achieve a good parking maneuver. 

The goal when driving forward is to lead the robot towards 
a configuration with x = 0 and  = 0 (the vertical through the 
center of the parking place), so as to finish the parking 
maneuver by driving backward with an almost zero curvature. 
The approaching to the vertical is wanted to be done by 
approximating a short trajectory made up of arcs of circles of 
minimum turning radius and straight lines parallel to the line 
of cars (to avoid collisions and reduce the y distance traveled). 
These trajectories are shown in Fig. 3a. 

The goal when driving backward is that the robot reaches 
the parking place with the target final configuration. Similarly 
to the forward maneuvers, the desired trajectories are made up 

of arcs of circles of minimum radius and straight line 
segments parallel to the line of cars, as shown in Fig. 3b. 

Since a human driver has heuristic knowledge to solve this 
problem, our approximation has been to design a fuzzy 
controller from this knowledge. In this sense, the first control 
action is to decide the direction of driving (the sign of the 
speed): backward or forward, and the magnitude of the speed. 
This knowledge is included into a rule base that we call 
“direction”. Constraints imposed when deciding the new 
speed are that the change of driving direction has to be soft, 
that is, the controller should never decide to go forward at a 
rather high speed if previously, the vehicle was driving 
backward at a rather high speed. This kind of constraints is 
considered by a rule base called “brake”. The input variables 
of this rule base are the speed decided by the rule base 
“direction” and the previous speed. Its output is the new speed 
to be adopted. 

The second decision is to select the proper angle of the 
wheels once we have decided to drive backward or forward. 
The speed selected by the rule base “brake”  together with the 
x position and the orientation of the vehicle are the input 
variables of another rule base that we call “wheel”. 

The description tool xfedit of Xfuzzy 3 has been employed 
to describe the resulting hierarchical fuzzy controller, as 
shown in Fig. 4. 

B. Decision making-type rule bases 

The rules of the modules “direction” and “brake” are easily 
defined from our heuristic knowledge. In particular, the first 
description of the rule base “direction” contained 17 rules, 
such as the following: 
“If the y coordinate is near the cars of the parking place and 
the x coordinate is not approximately zero and the robot 
orientation  is greater than approximately –90º and smaller 
than approximately 90º, the driving direction should be 
forward to avoid collision with the parked cars”. 

Table I shows how the above rule and other five ones 
related to the situation ‘y near’ are easily expressed with the 
XFL3 language of Xfuzzy 3. These rules are fuzzy because 
our knowledge is uncertain about concepts such as near, 
approximately zero, etc., and, hence, they are represented by 
fuzzy sets. As a matter of fact, the universes of discourse of 
the input variables x, , y, and oldv are covered initially by 3, 
7, 5, and 5 membership functions, respectively. In the other 
side, the output variable can take three singleton or constant 

 
Fig. 4.  Structure of the fuzzy controller described with Xfuzzy 3. 
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values: stop (0 m/s), forward (1 m/s) or backward (-1 m/s). 
The global output of the rule bases is obtained by applying a 
maximum-type defuzzification process.  

Some of the initial and heuristic rules may not be adequate 
for the control objective. For instance, simulation results 
obtained with the tool xfsim revealed that when the robot was 
driving forward, it stopped too far before changing the driving 
direction to backward. The monitoring tool xfmt showed that 
the rule 5 and, mainly, rule 6 in Table I were responsible of 
that behavior. Hence, rule 6 was eliminated as well as the 
antecedent ‘oldv<stop’ in rule 5. The resulting five rules cover 
all the possible situations in x and  as shown in Fig. 5 
(y==near). If the tabular simplification method of the tool xfsp 
is now applied, the groupings depicted with gray lines in Fig. 
5 are formed, thus resulting the two rules shown in Table II. 
These rules are complementary (their activation degrees 
always sum the unity) if the “and” and “or” connective are 
represented by the normalized product and sum, respectively. 

If this simplification process is applied to the whole module 
“direction”: (a) the initial 17 rules obtained from our heuristic 
knowledge are reduced to 14 by using the tools xfsim and 
xfmt, (b) the 14 rules are reduced to 8 by using the tool xfsp, 
and (c) the 8 rules are reduced to 6 by exploiting the 
complementarity between some of them. These 6 rules, which 
are shown in Table III, meet the constraints commented in 
Section III: they form a complete rule base and their 

antecedent parts admit a translation to standard relational and 
logical operators. Hence, they can also be described in a non 
fuzzy way, as shown in Table IV. This non  fuzzy description, 
expressed in C code, is easily compiled into a DSP. 

Applying the same simplification process to the module 
“brake”, it could be translated into 4 standard if-then 
statements. 

C. Interpolation-type rule bases 

Designing the rule base “wheel” to provide the short 
trajectories depicted in Fig. 3 is a difficult task by applying 
heuristic knowledge only. Hence, the first iteration in the 
design process was to identify two single modules (one for 
driving forward and another for backward) from numerical 
data corresponding to the geometric analysis of desired 
trajectories. The Wang&Mendel algorithm [1] available at the 
tool xfdm was employed to identify these two zero-order 
Takagi-Sugeno modules with two inputs (x, and ) and one 
output (). In order to allow enough flexibility and 
smoothness, they were selected with 7 linguistic labels to 
cover the input variable x and 9 labels for the vehicle angle 
(Fig. 6a), both of them represented by Gaussian membership 
functions. The rule base obtained for controlling the forward 
driving is shown in Fig. 6b. The labels f04, f0 and f04n 
represent the three singleton values (0.4, 0 and -0.4 m-1) that 
the output variable can take. The learning and simplification 
tools, xfsl and xfsp, were applied in the subsequent iteration to 
the identified modules. One result of this simplification is that 
the membership functions of x and were reduced to 5 and 7, 
respectively (because, for example, the output takes the same 
value for ‘ == RM’ and ‘ == RB’, as can be seen in Fig. 6b, 
so that the labels RM and RB can be merged into a unique 
label, RMB). Fig. 6c shows these 7 tuned functions of the 
variable . The resulting control surface when driving forward 
obtained with the tool xfplot is shown in Fig. 7. From this 
result, we extracted that the curvature value could be defined 

 
TABLE II 

RESULT AFTER SIMPLIFYING THE RULES IN TABLE I 

1) if(y==near & ((x==CE & phi>= LS & phi <= RS) | phi<LE | phi>RI)) 
-> pv=backward; 

2) if(y==near & (x!=CE & (phi>=LE & phi<=RI) | phi==LE | phi==RI)  
-> pv= forward; 

TABLE III 
RULES OF THE MODULE “DIRECTION” (FINAL ITERATION) 

1) if(y > far) -> pv = backward; 

2) if(y >= far & oldv <= stop) -> pv = backward; 

3) if(y == near & (phi < LE | phi > RI)) -> pv = backward; 

4) if(y >= near & x == CE & phi >= LS & phi <= RS) -> pv = backward; 

5) if(y < near) -> pv = stop; 

6) else -> pv = forward; 

x \  LB      LE      LS      CE      RS     RI        RB

CE      bw fw bw bw bw fw bw

RI       bw fw fw fw fw fw bw

LE      bw fw fw fw fw fw bw

x \  LB      LE      LS      CE      RS     RI        RB

CE      bw fw bw bw bw fw bw

RI       bw fw fw fw fw fw bw

LE      bw fw fw fw fw fw bw

x \  LB      LE      LS      CE      RS     RI        RB

CE      bw fw bw bw bw fw bw

RI       bw fw fw fw fw fw bw

LE      bw fw fw fw fw fw bw

 
 

Fig. 5.  Matricial representation of the rules derived from those in Table I. 

TABLE I 
SIX RULES OF THE MODULE “DIRECTION” EXPRESSED WITH XFL3 

1) if(y == near & x != CE & phi >= LE & phi <= RI) 
-> pv = forward; 

2) if(y == near & x != CE & (phi < LE | phi > RI)) 
-> pv = backward; 

3) if(y == near & x == CE & (phi < LE | phi > RI)) 
-> pv = backward; 

4) if(y == near & x == CE & (phi == LE | phi == RI)) 
-> pv = forward; 

5) if(y == near & x == CE & oldv < stop & phi >= LS & phi <= RS) 
-> pv = backward; 

6) if(y == near & x == CE & oldv >= stop & phi >= LS & phi <= RS)   
-> pv = forward; 

 

TABLE IV 
FINAL RULES OF THE MODULE “DIRECTION” TRANSLATED INTO C CODE 

if( y > 12.5 ) pv = -1; 

 else if( (y > 3.5) && (oldv <= 0) ) pv = -1; 

 else if( (y > 0.0) && (y <= 3.5) && ((phi < -90) | (phi > 90)) ) pv = -1; 

 else if( (y > 0.0) && (x > -1.25) && (x < 1.25) && (phi > -12) && 

(phi < 12) ) pv = -1; 

 else if( y <= 0.0 ) pv = 0; 

else pv = 1; 
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Fig. 9.  Control surface of the module “wheel” (final iteration).
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Fig. 7.  Control surface of the module “wheel” (at the first iterations). 

 
Fig. 8.  Structure of the module “wheel” described by Xfuzzy 3. 

better depending on the relation between  and x rather than 
on the values of  and x separately. Hence, the next iteration 
to further simplify the module “wheel” was to select a 
hierarchical structure made up of two rule bases (Fig. 8). The 
first rule base (“interpolation”) provides a value  depending 
on x. The second rule base (“smoothing”) generates the value 
of  depending on the value of the difference (when 
driving forward, and (when driving backward, 
because it was detected the symmetry of the problem 
regarding  (this difference is named sfu). Four rules are 
included in the rule base “interpolation” and other four ones in 
the rule base “smoothing”, and normalized triangular 
membership functions are selected now. The eight rules are 
adjusted with the same training data as before. The capability 
of the tool xfsl to train hierarchical systems is exploited at this 
point. The resulting control surface when driving forward is 
shown in Fig. 9. It can be appreciated its similarity with the 
surface in Fig. 7. 

As a result, the module “wheel”, which was initially 
designed as two rule bases, each with 63 rules, has been 
finally translated into two rule bases, each with 4 rules. In 

addition, since these final rule bases use normalized triangular 
membership functions in the antecedents, their outputs are a 
piecewise linear function of their inputs, and, hence, they can 
be translated easily into non fuzzy rule bases, as commented 
in Section III. For example, the rule base “smoothing”, can be 
expressed in C code as shown in Table V. The whole module 
“wheel” can be expressed in C code as 11 standard if-then 
conditional statements that only include simple additions and 
multiplications. 
 

V. EXPERIMENTAL RESULTS 

The above described fuzzy controller has been employed to 
park the robot ROMEO 4R, an electrical car-like vehicle 
designed and built at the Escuela Superior de Ingenieros de 
Sevilla (Fig. 10) [18]. An embedded controller, based on the 
fixed-point TMS320LF2407 DSP from Texas Instruments, 
has been used to implement the low-level control loops as 
well as the high-level fuzzy controller [19]. Fig. 11 shows the 
components of this embedded controller. It consists of: (a) an 
EVM2407 board from Spectrum Digital [20], which includes 
the DSP chip, 128 K of external SRAM, four 12-bit D/A 
channels and interface circuitry; (b) expansion boards  that 
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Fig. 6.  (a) Initial membership functions of the  variable. (b) Identified 
rules for driving forward. (c) Tuned and simplified functions of the  
variable. 

TABLE V 
FINAL RULES OF THE MODULE “SMOOTHING” TRANSLATED INTO C CODE 

if( sfu<=-30.0 ) gamma = 0.4; 

if( (sfu>-30.0) && (sfu<=-4.0) ) gamma= 0.039 - 0.361*(sfu+4.0)/26.0; 

if( (sfu>-4.0) && (sfu<4.0) ) gamma = -0.039*sfu/4.0; 

if( (sfu>=4.0) && (sfu<30.0) ) gamma= -0.039 - 0.361*(sfu-4.0)/26.0; 

if( sfu>=30.0 ) gamma = -0.4; 
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Fig. 10.  The autonomous robot ROMEO 4R. 

provide signal conditioning, overvoltage protection and four 
additional serial ports; and (c) a compact GPS module (not 
used for this specific application). 

The D/A channels of the EVM board are used to 
communicate the outputs (v, ) of the fuzzy controller to the 
traction and steering motor control boards. One of the RS-232 
ports of the expansion board is used to communicate with a 
gyroscope. The information from the gyro is combined by the 
DSP chip with the measurements taken by the traction and 
steering encoders to compute the robot position, orientation, 
speed, and curvature, that is, the variables (x, y, , v, ) 
involved in this parking problem. The on-chip DSP hardware 
offers direct interface for quadrature encoders as well as an 
RS-232 port, which is used as communication link to an 
external PC. At the beginning of the maneuver, this PC sends 
to the controller the situation of the target parking place. 
During the maneuver, it collects from the controller the data of 
the path followed, as well as the potential error messages. 

Texas Instruments provides several development tools for 
its DSPs; in particular, ANSI C compiler, assembler/ linker, 
and the Code Composer StudioTM environment. The latter has 
been used to develop and load into the DSP a run-time 
environment [21] which includes the low-level peripheral 
drivers necessary to access the sensors and actuators of the 
robot; it also contains a simple scheduler that allows to define 
and run a number of time-triggered, pre-emptable software 
modules, following a fixed priority scheme. Among such 
modules are the low-level steering and driving PID 

controllers, the position estimation algorithms and the fuzzy 
controller itself. This means that the fuzzy controller was also 
programmed and loaded into the DSP by using the Code 
Composer Studio. Fixed-point data formats were employed in 
the C code so as to maximize the accuracy (avoiding data 
conversions) and minimize the size and execution time of the 
code (avoiding software emulation of floating point). Care 
was taken to avoid numerical errors due to truncation, 
rounding, and overflow. Under this run-time environment, the 
high-level fuzzy control algorithm is relieved of the task of 
synchronizing the read and write processes of the different 
robot devices.  

The DSP core processor uses a Harvard-type architecture, 
runs at 33 MHz and is capable of single-cycle 16-bit 
multiplication. The on chip memory includes 32 K words of 
16 bits of Flash EEPROM and 2.5 K words of 16 bits of 
Data/Program RAM. The fuzzy controller described herein 
occupies 851 words of 16 bits of Data/Program RAM. Once 
the robot configuration is available, the time spent by the DSP 
in implementing the fuzzy controller ranges from 19.3 to 21.4 
s (the total time spent in computing the robot configuration, 
implementing the fuzzy controller, and assigning the new 
values of speed and curvature ranges from 35.0 to 37.1 s). It 
is interesting to notice that the implementation of the fuzzy 
controller designed at the first iteration (without considering 
any DSP constraints) in a Pentium processor at 100 MHz 
takes about 2 ms, that is, 2 order of magnitude slower. 

Many successful experiments were performed by ROMEO 
4R being controlled by the embedded DSP-based controller. 
The control loop has a period of 50 ms in the experiments. In 
each period, the DSP computes: (a) the new robot 
configuration by using the information provided by the 
encoders and the gyroscope and applying odometry, and (b) 
the new curvature and speed by applying the fuzzy controller. 
Three examples of experimental trajectories of different 
complexity are shown in Fig. 12 and 13. All the experimental 
results obtained with the embedded controller were very 
similar to the simulation results obtained by Xfuzzy 3 with a 
model of the robot, as illustrated in Fig. 13.  

 

VI. CONCLUSIONS 

The CAD tools of the environment Xfuzzy 3 offer more 
description, identification, verification, tuning, and 
simplification facilities than any other fuzzy software, thus 
allowing a rapid design of complex fuzzy controllers starting 
from linguistically expressed knowledge and/or numerical 
data as well as easing its translation to be efficiently 
implemented in low-cost DSP-based embedded platforms. A 
set of guidelines have been provided to direct the efficient 
translation of the different rule bases which constitute a whole 
fuzzy controller. The memory resources and the processing 
time required by the obtained controllers are so low that 
standard DSPs can be used not only to implement the low-
level control tasks, as usual, but also the high-level ones 
required by real-time embedded applications. This has been 
proven by fulfilling the whole design process (from the 

 

Expansion boards 
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GPS module 

 
Fig. 11.  Components of the embedded controller.  
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Fig. 13.  (a) Experimental and (b) simulated results. 

conception of the controller to the consecution of successful 
experiments) to solve a typical navigation problem in robotics. 
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