
Copyright (c) 2009 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

08-TIE-0882 1

Abstract—In this paper we introduce a System on Chip (SoC)

designed to run a particular Web Service (WS) in an
Application-Specific Integrated Circuit (ASIC). The system has
been designed devoid of processor and software and conceived as
a hardware pattern for a trouble-free design of network services
offered as WS in Service-Oriented Architecture (SOA).
Therefore, the chip is not only able to act as SOAP Service
Provider but, it is also capable of registering the service on its
own in an external Broker Server using the UDDI Standard
publication protocol as well. This proposal has been named Web
Service on Chip (WSoC) and its main goal of is to implement
more cost effective and zero-management SOA network devices.
To validate this approach, a prototypical device has been
developed using FPGA technology. The particular network
service selected has been WoL over Internet thus allowing any
WS Client to wake up any network node compatible with WoL
technology. A full SOA scenario also has been developed to test
the prototype functionalities and show the proposal validity.

Index Terms—System Administration, Web Services, System
on Chip.

I. INTRODUCTION
HE importance of Information Technologies (IT) in all
areas of human activity in today’s world is an indisputable

fact. The simpler these technologies are for end users the more
intricate become the backend systems which support them.
These technologies provide the technological foundation on
which most business processes are grounded, so the
importance of providing the necessary mechanisms to ensure
these infrastructures flawless operation is paramount.

Although IT services may become extremely complex, they
tend to be supported by small, more or less standardized
services, which carry out repetitive, quite clearly defined
tasks, usually playing supporting roles for high level
applications like names services, network configuration, time

Manuscript received May 29, 2008. Accepted for publication July 2, 2009.
Copyright (c) 2009 IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org

The authors are with the Department of Computer Science and
Technology, University of Alicante, P.O. Box 99, 03080 Alicante, Spain (e-
mail: pmacia@dtic.ua.es).

This work was funded by the Spanish Ministry of Education and Science
as research project TIN2006-04081 and by the Generalitat Valenciana as
research project GV/2007175.

synchronization, activity monitoring, route calculations or
discovery services for instance. As a result of that, all these
services involve a certain number of simple but recurrent
managing tasks (configuration, monitoring, update and the
like); and require such a high number of infrastructures for
their deployment that, from a practical viewpoint, they end up
becoming a real headache for system administrators.

One increasingly popular proposal for the simplification of
these infrastructures and IT services management can be
summarized as follows: (1) to design services as Web
Services (WS), providing a loosely coupled infrastructure,
consisting on several standards and protocols, which enables
the easy integration of different services from dissimilar
providers in spite of technological support disparities; (2) to
design services and systems with a zero-maintenance
approach and; (3) to incorporate physical devices designed to
provide some of the services described in a self-sufficient
manner.

Because of its complexity, WS are mainly implemented on
PC-oriented architectures. However, during the last decade,
huge advances have taken place in the realm of technologies
to develop small network devices with a more than acceptable
capacity for computation, autonomous operation and able to
carry embedded intelligence [1], [2], [3].

Our initial proposal was to provide specific network
services with minimal administration and attention
requirements, based on self-configuring management models
compatible with WS technology, all of which embedded in
extremely small and cost-effective network devices [4], [5],
[6]. However, although the current trend towards increasingly
small devices, with greater computation and communication
capabilities and competitive prices, has led to a seemingly
ideal scenario, in fact, some significant problems still remain:
(1) from an economic point of view, the use of embedded
platforms affects the bottom-line of network services; (2)
technically speaking, although it is true that with the proposed
based on embedded systems and Service-Oriented
Architecture (SOA) approach the administration tasks are
dramatically reduced, still a hardware and software platform
remains to be managed; therefore, there are still several tasks
that cannot be completely phased out.

In this paper we aim to present a System on Chip (SoC)
architecture designed to run a particular Web Service (WS) in
an Application-Specific Integrated Circuit (ASIC). The system

Wake on LAN over Internet as Web Service
System on Chip

Francisco Maciá-Pérez, Member, IEEE, Juan A. Gil-Martínez-Abarca, Héctor Ramos-Morillo,
Francisco J. Mora-Gimeno, Member, IEEE, Diego Marcos-Jorquera, Member, IEEE

and Virgilio Gilart-Iglesias, Member, IEEE

T

Copyright (c) 2009 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

08-TIE-0882 2

has been designed totally devoid of processor and software,
but imitating software architecture of an application server
instead. The SoC has been devised as a hardware pattern for a
trouble-free design of network services that are offered
themselves as WS under the Service-Oriented Architecture
style. Thus, the chip is not only able to act as SOAP Service
Provider but, it is also capable of registering the service on its
own in an external Broker Server using the UDDI Standard
publication protocol as well.

Of course, not all the network services will be appropriate
for this approach, they will be: simple, based on request-
response protocols and with low resources requirements, for
instance: gateways between Web Services and other existent
services, name resolution services, time synchronization
services or light network management services.

To be consistent with the line of thought applied for the
term SoC, we have named this proposal WSoC (Web Service
on Chip). Its main goal is to be able to develop more cost-
effective and zero-management network devices.

To validate this approach, a prototypical device was
developed using FPGA technology. The particular network
service chosen as WSoC Core for the prototype is WoL over
Internet. This network service allows the handling of the
remote booting of nodes in a LAN from any location by
means of a standard WS client. Incorporating a service of this
kind into any organization or even at home is reduced to a
matter of connecting the appropriate device to the relevant
network.

A full SOA scenario has also been developed to show the
proposal viability by means of testing the following prototype
functionalities: service publication, discovery and requester.

The paper is organized as follows: section 2 consists of an
overview of the current status of technologies and latest
research; section 3 presents a general vision of the proposal;
section 4 describes the WSoC chip architecture; in sections 5
and 6, the selected WoLI service and the test approach are
described; section 7 addresses the prototype implementation
developed with FPGA technology and a performance scenario
is proposed to carry out the test to validate the WSoC
capabilities; and, finally, section 8 summarizes the main
conclusions.

II. BACKGROUND
The first open standards which attempted to address

problems of IT management in a global manner were SNMP
(proposed by the IETF) and CMIP (proposed by ISO and
ITU-T). Both protocols were mainly network monitoring and
control oriented, and both shared a similar downside: its lack
of platform independence.

Based on those pioneers and in the pursuit of integration
with heterogeneous systems, two major lines of work were
taking shape: On the one hand, the attempt to achieve
integration of the systems using the same network
management protocol, as is the case of [7] and [8] with the use
of CORBA; and, even more ambitiously, on the other, the

proposal of a network management protocol infrastructure-
dependency free.

The staggering number of tasks associated with network
management, as well as their extremely diverse and complex
nature, increase maintenance costs of these systems in terms
of resources, time and manpower.

The use of multi-agent systems for computer network
management provides a series of characteristics which favor
automation and self reliance in maintenance processes [9]
[10]. The creation of projects such as AgentLink III, the first
Coordinated Action on based on Agents financed by the 6th
European Commission Framework Program [11] is a clear
indicator of the substantial degree of interest gained by the
field of software agents’ research.

More recently, with the development of Web technologies,
further progress towards self-management has been made. As
a result, self organization models based on ontologies as
information models and on SOA as an operational model has
being created, providing administrators with ubiquitous,
platform-dependency free interfaces [12].

The diversity of existing network management models leads
us to an obvious conclusion: we are in dire need for the
creation of mechanisms which interoperate between all the
management domains involved [13]. This relation may reach a
semantic level using ontologies in such a way that renders
possible to work with an abstract, model-independent view of
the network management information, enabling administrators
(persons or software) to automate management tasks [14].

In [15], a standardization proposal has been made for a
group of Web Service operations, all of them essential from a
network management point of view. This proposal is made in
a similar way like the standardization of the SNMP
information model under XML was showed in [16].

There are several different embedded platforms in the
market able to support a Web Service, like RabbitCore, SHIP,
or Digi ConnectMe to mention a few. These systems,
generally based on 32 bits microprocessors, implement a
whole Web server with a software-written TCP/IP stack, all of
them supported by an embedded operating system. Due to
software complexity issues, these low cost solutions present
clear drawbacks in terms of performance and liability.

Aiming to adjust production costs even further in order to
keep the project on budget without sacrificing performance
[17], [18], Systems on Chip have also been included in: basic
network services [19], Web Services [20] and general network
applications [21].

Web Services technology constitutes the implementation
vehicle of choice for service-oriented architectures [22]. As a
matter of fact, several authors [23], [24], [25] have developed
models based on the Devices Profile for Web Services
(DPWS) stack for low resources level devices. The profile
arranges several Web Service specifications such as WS-
Addressing, WS-Discovery, WS-Metadata Exchange, and
WS-Eventing. Due to the FPGA technology inherent resource
limitation we opted for Web Services Interoperability (WS-I)
basic profile version 1.0 implementation although the

Copyright (c) 2009 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

08-TIE-0882 3

inclusion of new WS-* in upcoming works is still open to
discussion. DPWS has been ruled out from this work on
account of its local scope [23] without including another
network components as discovery proxies which is bound to
limit some of the offered network functionalities.

In [4], [5] and [6] we develop network administration Web
Services as embedded software devices; technology whose
usage allowed us to develop cost effective prototypes for the
proposed network administration model. However, in order to
further on our research and from the mass production process
point of view, is important to take into account that: (1)
becoming dependant of third-party technologies is a
constrainers that must be avoided; (2) although its usage
might be cost wise advisable during the prototype
development phase, it backfires when it comes to mass
production [26]. In a technical report from the ITEA SIRENA
Project (within the Eureka framework) a $5 processor on chip
can be achieved, which means a huge improvement as
compared to the approximately $40 you have to pay for an
equivalent embedded solution [26].

It is precisely along these lines that we can frame our
proposal: the development of single chips capable to provide
more cost effective and self-managed network services as
Web Services.

III. PROPOSAL DESCRIPTION
The main purpose of this work is the design of hardware

architecture for a chip which, by itself, is able to provide
everything required to develop embedded network devices
which offer network services in the form of Web Services
under SOA model. However, the approach is only suitable for
certain type of network services with features like: lightness,
based on request-response protocols or with low resources
requirements. According to this, the proposal is appropriated
to the design of gateways between Web Services and other
existent services (NTP, ICMP, SNMP, DHCP, etc.), name
resolution services, time synchronization services, light
network management services, etc. For this same reason, the
proposal would not be suitable to offer complex services like:
web servers, file system servers or application servers.

A. SOA approach
SOA implies some additional elements for the device

providing the services (see Fig.1). For this reason we begin
the overview of our proposal by reviewing the most important
components:
1) Embedded WS Device. In SOA terminology, this device is

known as the Service Provider and it has been designed
using the WSoC chip which is the subject of this work.
The device runs a Web Service and publishes its interface
and access information in the service registry. Each
provider must decide which services to expose, how to
formulate trade-offs between security and easy
availability, how to price services, or, when free, how to
exploit them for other value. The provider also has to
decide what category the service should be listed in for a
given broker service and what sort of trading partner
agreements are required to use one particular service.

2) UDDI Registry. In order to ensure genuine client-server
independence, SOA incorporates a Service Broker or
Service Registry which will contain a formal description
of the various network services provided. This description
is made by the Web Services Description Language
(WSDL) and contains information on service addresses,
accepted parameters and how to return results. In the case
of Web technology, the Universal Description Discovery
and Integration (UDDI) specification is in charge of
making both the publication of the service and its
subsequent inquiry.

3) WS Client. The Web Service client o service requester
locates entries in the broker registry using various find
UDDI operations, getting the WSDL page in which the
service is described, and then binds to the Embedded
Web Service Device in order to invoke one of its Web
Services by means of SOAP protocol.

B. Embedded WS Device
Although all the above mentioned elements are essential for

the development of a fully uncoupled Web Service under the
SOA model, one of the main objectives of this work is to
accomplish the capacity to design embedded Web Service
devices using the WSoC chip described in the following
section.

An embedded WS Device consists of a Storage Memory, a
Network Interface and the WSoC chip (Fig 1). Let’s take a
more comprehensive look at each of its elements:
1) WSoC Chip: The WSoC (Web Services on Chip) is the

device kernel that also provides a hardware framework
with all the functional elements needed by a Web Service
to register itself in a UDDI registry and to offer their
services to a Web Service client. The functionality, in
terms of Web Services of each WSoC, as it will be
analyzed in the following section, is implemented in its
WS Core.

2) Storage Memory: Is an external storage memory that
allows configuration and work information to be stored.
The memory has been divided into two main blocks: an

Fig. 1. SOA scenario based on WS Technologies and standards.

Copyright (c) 2009 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

08-TIE-0882 4

area for the system files and a user area. The system area
will harbor system files, WSDL sheets with services
descriptions, system registry files and other auxiliary
files. The user area can store files defined by the specific
service implemented in each WSoC chip.

3) Network Interface (MAC/PHY): Is a communication
module with the Network Interface Card (NIC) that
provides physical access to the TCP/IP network.

Of course, since this WSoC Chip is the most important
component and the essence of this article we will describe it in
further detail in the next section.

IV. WSOC CHIP PROPOSAL
After this general overview of the system we may now

proceed to the fundamental purpose of the work, namely, the
WSoC architecture of the chip providing the Web Services.

One of the proposal’s main features is that its architecture is
not processor or software applications oriented. Due to the
power of current design tools it is relatively easy to propose
solutions based totally on architectural blocks of hardware.

Anyway, lack of processor or software notwithstanding, the
chip's design hardware has been created based on a similar
architecture to the typical software architecture for this type of
system.

Fig. 2 shows a graph with the main hardware blocks which
constitute the chip. Further considerations about the
functionality of each of these blocks are coming next.

A. Init, Configuration manager and DHCP client
The init module is the first to take control once the chip has

begun to act. Its functionality is analogous to the UNIX-like
init process, since it is the first process which loads and

executes the operating system and whose process identifier
(PID) is always 1. This module reads from the non-volatile
memory of the device through the file system management
module, both in the status in which the chip was initiated and
the inittab file which contains a description of the modules to
be activated by the chip based on its status. Currently, three
different states are defined (see Table 1).

As soon as the chip has been initialized it takes over the init
module, whose function is to decide which ones among the
rest of the modules is going to be active at any given time. At
first, it assumes the configuration status (enabling the
configuration manager module) to make readable from the FS
configuration parameters such as IP address, mask, default
Gateway, UDDI server address, etc. In the event of those
parameters non-existence, they will be searched outside by
means of a DHCP protocol (managed by the DHCP client
module). Once the chip has been successfully configured, the
init module assumes the publication status (enabling the
publication service module) to make possible the Web Service
registration in an external UDDI server. Finally, the init
module assumes the service status (enabling the WS Container
module) giving way to the WS feature contained in the WS
Core.

In a UNIX operating system, which we have used as a base,
the first process (with PID 0) is actually a planner (generally
the sched process) which enables multitasking. Since the
present design does not consider this characteristic, we opted
for its elimination from our proposal.

B. FS Manager
The File System Manager administrates the File System I/O

located at the storage memory. It allows read/write file
operations on the storage memory. The files type may vary
(HTML, WSDL, logs, user parameters, and system status or
configuration files) depending on the nature of the service. In
order to obtain the best out of the reduced storage space
available, optimized versions of each type of file are
proposed. The FS Manager is in charge to conceal these
details from the rest of the modules.

TABLE I
WSOC CHIP POSSIBLE SYSTEM STATES

State Description Active hardware block
0 Config state Configuration Manager
1 Publication state Service Publication
2 Service state WS Container

Fig. 2. Web Service on Chip Architecture.
Fig. 3. Communication Manager block flow diagram.

Copyright (c) 2009 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

08-TIE-0882 5

C. Communication Manager
The Communication Manager Module provides

communication standards like TCP/IP stack and ARP protocol
through the MAC/PHY to communicate the platform with
other nodes over the data network.

Fig. 3 shows a graph with the main hardware blocks in the
module, together with the main data flows between the blocks.
Since there is no explicit processor or software in our
proposal, the physical connection between the blocks is very
similar to the data flow. As may be seen, one of the points of
entry to this block is in the Read Packet which is part of the
Network R/W module. Based on type, each frame is
transferred to the block required to handle it. If the type of
frame cannot be processed by the chip, the chip eliminates the
frame. The ARP block implements the ARP protocol in
response to the WSoC Chip IP address requests as well as
giving support to the TCP/IP stack.

The IP module manages the IP traffic and if necessary, it
will pass the packet to the Handle Read TCP block in order to
continue its processing.

In addition, the communications module may receive
requests through the Handle Write TCP block included in the
TCP module in order to send information through the
communications network. This block builds a TCP packet and
transfers it to the IP module (Handle Write IP block) which
adds the corresponding information to its network protocol
level, subsequently sending it to the Write Packet block which
will convert it into an appropriate network frame for the type
of network interface implemented by the embedded device.
Due to current FPGA constrainers, we have not included in
this version the implementation of a Transport Security Layer
(TSL) between the TCP transportation protocol and the
application layer in order to pass on the information with the
adequate levels of privacy and authenticity, but that’s a
possibility that remains open to future discussions.

D. Application server
This module imitates the behavior of a conventional

application server based on hardware and software (processor,
operating system, libraries, software applications, etc.). For

this purpose, taking this model as reference, a block was
designed for managing the request-response protocols
(basically HTTP and SOAP); a block which acts as a Web
Server for managing conventional HTML requests; a block for
self publication management provided through the UDDI
protocol; and last but not least, the most important block for
the purpose of this work, namely a WS container known as
WS Core (Fig. 4), where services to be provided by the chip
are located.

As mentioned at the beginning of this article, the design
principle behind the WSoC chip was to serve as hardware
pattern for the creation of different Web Services embedded in
a chip, so that the designer may focus solely on the service
details to be implemented. Furthermore, all the architecture
was conceived mimicking conventional software architecture.
This way, developers of WS Cores may make use of an
interface with specified resources. This interface is very
similar to the one usually employed by conventional
applications server.
1) Request/Response Protocol

This block contains the functions that implement the
request-response application protocol on which services
communication (executed within the applications server) will
be based. In our case the protocols are: HTTP and SOAP,
which will act as transport and application protocols
respectively. We do not rule out for the future
communications support via based-on TLS HTTPS, currently
discarded due to FPGA limitations.
2) Web Server

The web server in our design is significant solely in terms
of design compatibility. Since the aim is a hardware design
which imitates software architecture of an application server,
the task of the web server is to act as the chip’s front-end. It
will receive the HTTP requests, and will evaluate and directly
resolve or redirect them to the applications server in case of
invocations on static or dynamic objects respectively.

Another purpose of the web server is to enable the
provision of an agreeable, easily-configurable, standards-
based administration interface for the device and the service.
3) Publication Service

When a device is connected for the first time, the init block
detects this situation reading its status from the initialization
file and activating this block. The service’s task is to
automatically register the services to be provided by the chip
in a UDDI Registry. One of the first aspects which we need to
address is how to represent the service offered by each
machine and how to describe each of the activities and
processes which are part of this service. To do so, we shall use
a WSDL sheet which describes each of the processes that the
device can do.

The implementation of the protocol is based on a series of
WSDL templates stored in the non-volatile memory. The
UDDI Manager module is responsible for recovering these
sheets and using them to compose SOAP messages for the
communication with the UDDI server. Our proposal is based

Fig. 4. Application Server flow diagram.

Copyright (c) 2009 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

08-TIE-0882 6

on WS-I basic profile 1.0 with synchronous request-response
interactions over HTTP transport protocol.

Whenever we want to register or update services in a UDDI
server it’s sufficient to configure the chip in publication state
(see Table I) and restart it. After a satisfactory registration,
this module situates the device status in service state and
restarts it.
4) WS Container

The WS container’s main function is to isolate the WS Core
of the hardware implementation details, providing a familiar
interface for the Web Services designer, so that with the
present hardware design and development tools, its
implementation will be similar to standard WS programming.

Since self-sufficiency is a device prerequisite in order to
make clients able to discover and operate it, it is necessary to
register its service before activating the WS container. This
block is activated when the init block detects that the device
status is 2 (see Table I). At this point, it will take over the chip
and provide the WS interface through which the WS clients
will be able to contact the device, not only to administrate it,
but also to access the services it provides.

V. WOLI WEB SERVICE
In order to provide the proposal with enough functionality

to facilitate comprehension of its functioning, and aiming to
develop a functional prototype to test it, we will propose a
specific network service offered as WS. This service is known
as WoLI Service and its thorough description will be the goal
of this section.

The WoLI service is a Web Service which enables boot
control of the network nodes with WoL support via Internet
standard protocols and Service-Oriented Architectures, which
renders the service regardless the administrator’s location or
used platform.

The main convenience of the WoLI service is to facilitate
system nodes remote management throughout a wide area
network in general, and the Internet in particular, where the
simple impracticality of start up, disconnect or restart distant
nodes notably restricts the systems administrators’ ability to
act remotely.

Fig. 5 shows a diagram of the main elements and agents
involved in the service, as well as the existing relationships
between them. They will be, in a nutshell: WoLI clients,
WoLI schedulers, WoLI device and the network nodes to
which are the service destined. A more detailed explanation of
each one of them will ensue on the next paragraphs.

The WoLI client provides the user, via service
management agent, access to the service, both for schedule,
and in order to generate WoL instructions via Internet. Orders
are transmitted to the WoLI scheduler or to the WoLI device
embedded in SOAP messages by means of the WoLIP
application protocol (Wake on LAN over Internet Protocol)
defined for this purpose. This agent will generally be external
to the device.

The WoLI Scheduler usually acts as a control panel for all
the possible WoLI devices distributed throughout the Internet.
This control is implemented via the scheduler agent which
carries out, executes and verifies all the previously established
tasks on the WoLI devices (switches on an individual or a
group of nodes, verifies its status, updates the firmware and
even plans the work of the WoLI devices). This agent may
either reside in an external node outside the LAN, generally at
the location of the service or communications provider, or be
integrated in a WoLI device. From a WoLI client point of
view, the scheduler agent behaves like a Web Service which
can be located thanks to the UDDI register.

The WoLI Device is the cornerstone of the service. This is
an embedded network device designed with a miniaturized
WSoC chip conceived to act as a WoLIP-WoL pathway
between the broad area network and the local area network in
which it is located.

In the specific case of an instruction to remotely boot a
network node, the agent undertakes the task to translate the
request to a WoL datagram.

The WoLI agent always acts from within the LAN and
behaves differently, depending on whether it acts in active or
passive mode. In passive mode, the agent awaits reception of
WoLIP requests from a management agent, generally external,
in order to execute them on demand (Fig. 6). However, in

Internet
(TCP/IP)

LANWAN
Discovery
Service WSDL

Description

Register
Agent

Search/UDDI
Network

Node

Network
Node

Network
Node

Network
Node

Network
Node

WoLI
Client

Management
Agent

WoLWoLIP/SOAP

WoLI
Planner SCHEDULING

Planning
Agent

WoLIP/SOAP

WoLI Agent

WoLIP/SOAP-WoL
Gateway

WoLI
DeviceWoLIP/

SOAP

Fig. 5. Scenario for WoLI device performance.

Fig. 6. WoLI passive mode service sample sequence diagram.

Copyright (c) 2009 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

08-TIE-0882 7

active mode, it is up to the agent to make the first move and
request a work plan from a scheduler agent (Fig. 7). Its
operation in active mode is fundamental, given that it enables
the independent work of all the possible security and
protection intranet policies implemented, since, for this
purpose, it would use standard HTTP requests as a base for
the WoLIP protocol.

This agent acts as a Web Service, receiving instructions
defined in the WoLIP protocol, encapsulated in SOAP
messages and defined by means of WSDL pages. In our
proposal, this agent’s functionality is, in fact, the same that the
one we will implement as WS Core of the WSoC Chip.

Network nodes are the object of the administration and this
term comprises all those devices connected to the system with
WoL support in their adapting cards. We are talking about
PCs, network servers, networking devices or any other piece
of equipment which fulfils the conventional requirements.

The Discovery Service comprises a standard UDDI registry
service. It is responsible for maintaining the pages that
describe the WoLI services in WSDL format, as well as make
available that information to service access-seeking clients.

VI. WOLIP SERVICE PROTOCOL
The WoLIP service protocol defines a series of instructions

used by users and by the system’s manifold components in
order to communicate with each other. This protocol is based
on messages and is supported by SOAP, which acts as an
information exchange mechanism allowing remote procedure
calls.

Each WoLIP protocol command is embedded in the body of
a SOAP message which contains the name of a remote
procedure, which, in turn, implements the functionality of the
command and the arguments required for its execution.

SOAP Envelope
SOAP Msg Header
SOAPMsg Body

WoLIP Command
Action level 1
Action level 2
Arguments

It is possible to distinguish the following elements:
• Command defines the service actions in terms of request.

It corresponds to the name of the remote procedure
which implements the functionality of the WoLIP
command.

• Action level 1 and Action level 2 are special parameters
which profile the functionality of the request.

• Argument represents the necessary information for
executing the application.

For each WoLIP request message there will be a
corresponding SOAP response, the body of which will be
formed by the request made or by an error message should
any execution problem arises.

The requests defined in the protocol (see Table II) may be
grouped into three major types: configuration orders, basic
orders and control orders.

The configuration of the internal variables of the device
determines their function mode. These variables are managed
using the SET command. The basic service provided by the
WoLI is invoked using the WAKE command. We present an
example below of a SOAP request which invokes the WAKE
command.

<?xml version=”1.0” encoding=”UTF-8”?>
<soap:Envelope xmlns:soap= \

 ”http://schemas.xmlsoap.org/soap/envelope/”
Soap:encodingStyle= \
 ”http://schemas.xmlsoap.org/soap/”>
<soap:Body>

<wp:wake xmlns:wp= \
 ”http://www.dtic.ua.es/wolip”>

<host>192.168.1.23</host>
</wp:wake></soap:Body>

</soap:Envelope>

Table II.
Main commands supported by WoLIP Protocol.

CMD ARG FUNCTION

SET MODE Reports the current operation mode.
MODE PASSIVE
 [puerto]

Sets the passive mode and,
optionally, the listening port
number.

MODE ACTIVE
 <ip> [:Puerto]

Sets the active mode, specifying the
server’s IP address and port
number.

RUN Reports the current WoL service
state.

RUN <STARTS | STOP> Starts or stops the WoL service.
UPDT FIRM <file> Updates the device’s firmware,

from the specified file.
GET SCHDL Returns the list of scheduled tasks

in the device.
PUT SCHDL Adds a task or a set of tasks to the

scheduling.
VALIDATE <user> <pass> User identification and

authentication.
WAKE <host> Boots a network node through

WoL.
PING <host> Checks if the specified network

node is running.

Fig. 7. WoLI active mode service sample sequence diagram.

Copyright (c) 2009 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

08-TIE-0882 8

The PUT and GET commands, combined with the SCHDL

argument for programming and obtaining the programming of
a device, enable the connection process of one or several sets
of equipment to be planned in an autonomous manner.

The service permits access control by means of a user-
password type list. These variables are managed via the
VALIDATE command.

All the WoLIP protocol orders provide a response: OK, if
the order is properly executed or, conversely, ERROR if it is
not, except GET SCHDL which returns the list of tasks
programmed for the device and the PING command which
will asynchronously return the status of the network node it
has attempted to switch on.

Fig. 7 shows a simple sequence diagram in which a WoLI
client or a previously programmed Scheduler requests remote
boot of network device through a WoLI device, which
translates the request so that its LAN nodes understand it. In
addition the WoLI device can verify that the node did, in fact,
start up, communicating this to the requester.

VII. IMPLEMENTATION AND EVALUATION

A. Prototype implementation
FPGA technology has been chosen as a rapid and

appropriate design tool for the implementation of the
prototype. The Celoxica RC203E board was used for the
implementation of WoLI SoC. This board has one Xilinx
XC2V3000 FPGA, two ZBT 4MB memory banks and a
SmartMedia Flash memory for permanent storage. The net-
work interface included in this board is the MicroSystems
LAN91C111 which includes a MAC+PHY full-duplex
controller with a 16KB buffer.

In order to simplify the process we declined to implement
the DHCP client given that, for all validation tests effects, the
chip is able to operate using the FS stored configuration. The
WoLI planner has not been implemented because the active
mode of this service has not been implemented in the
prototype.

The whole WSoC design uses 8,936 slices of the FPGA
(63%), one block RAM (1%) and works at 40 MHz. Only

10KB of external SRAM are used for temporal storage of
auxiliary data. Usual estimates agree that, once the DHCP
client is added, only about 70% of FPGA slices remain
occupied, leaving the remaining 30% free for WS-Core
implementation.

Although this margin may sound a little bit narrow to
specialists, it is important to point out that this platform is
oriented to undertake only simple network management
applications, meaning that most of the necessary functions
will be supplied by the already wired inferior layers. The fact
that the WS-Core developed for our tests only made use of a
meager 3% of the available FPGA is evidence of that.

Handel-C high level description language was used for the
system coding, allowing a fast and incremental development
by means of Celoxica DK4 Design Suite development
environment. The DK validates, compiles and generates an
EDIF file used by the Xilinx ISE 7.1 tool to synthesize,
implement the Place & Route and generate the bitstream
necessary for FPGA reprogramming. Some libraries included
in PDK v4.1 (Platform Development Kit) were used as drivers
for the external devices. The SmartMedia is used to store the
bitstream of the whole design. The design uses nor
microprocessor neither software. It draws on the architecture
shown in section 3.

B. Prototype Evaluation
In order to evaluate the proposal, a scenario has been

recreated such as that indicated in Fig 5. This scenario has
incorporated the prototype implemented based on the Celoxica
RC2003E plaque, a UDDI registry service, a WS client for
accessing the system and a PC network compatible with WoL.

1) Publication Evaluation
An Apache jUDDI v0.9rc4 server able to support UDDI

v.2.0 has been used to check the auto-registration module. It
allows the service registration in a standard way. Besides, we
could check the correct communication by connecting the
prototype to a network and sniffing the network traffic
between the device and the server. The device seeks the
service in the jUDDI server as shown in Fig.9. If it doesn’t
find it, it will publish the service by doing the authentication
to deal with jUDDI server private functions.

SOAP:Not FoundSOAP:Not Found

WoLI
Device
WoLI
Device

WoLI
Device
WoLI

Device
WoLI
Device

Discovery
Service

Discovery
Service

SOAP:Find WoLISOAP:Find WoLI

SOAP:auth-tokenSOAP:auth-token

SOAP:authSOAP:auth

SOAP:savedSOAP:saved

SOAP:save tM.SOAP:save tM.

Fig. 9. Publication service test sequence diagram.

Fig. 8. Celoxica RC203E board.

Copyright (c) 2009 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

08-TIE-0882 9

The TCPDump tool installed in the server has been used to
sniff network traffic during the evaluation and the generated
information has been analyzed using The Wireshark Network
Protocol Analizer. With these tools it was possible to verify
the correct device-server communication. The tools have also
allowed us to capture network traffic similar to the one shown
next. In this traffic fragment, the network device sends a
SOAP message with the protocol UDDI command
save_tModel.

POST /juddi/publish HTTP/1.1
Content-length:260
Content-Type: text/xml; charset=utf-8
Host: 172.19.32.39

<?xml version="1.0" encoding="utf-8"?>
 <soapenv:Envelope xmlns:soapenv="http://schemas

 .xmlsoap.org/soap/envelope/">
 <soapenv:Body>
 <save_tModel generic="2.0" xmlns="urn:uddi-

 org:api_v2">
 <authInfo>
authToken:E98101F0-4656-11DC-81F0-FA34E9DBA31E
 </authInfo>
 <tModel tModelKey="">
 <name>wolifpgadtic</name>
 <description>WoLI Service</description>
 <overviewDoc>
 <description>
 WoLI service by FPGA
 </description>
 <overviewURL>
 http://172.019.032.151/index.wsdl
 </overviewURL>
 </overviewDoc>
 </tModel>
 </save_tModel>
 </soapenv:Body>
</soapenv:Envelope>

2) Service Evaluation
The service has been successfully tested using, on the one

hand, a PHP client using a NuSOAP library and, on the other,
a command line standard client developed by the Apache
group known as WSIF. This standard command line client is
able to use services through an invoker by writing the
function, the parameters and the address where the WSDL
sheet is stored; after which it builds a correct call to the
prototype service and shows the obtained response.

The procedure carried out by PHP and WSIF clients when
the auto-registration process has finished is as follows:
• Firstly, the client seeks the service in the jUDDI server to

obtain the address of the WSDL sheet that, in this case, is
stored in the FPGA for testing the device web server
capabilities.

• Secondly, the client requests the WSDL description sheet
through a HTTP GET request. After that the FPGA replies
with the WSDL sheet.

• Once the WSDL description is obtained, the client builds
valid SOAP requests that will be sent through HTTP
POST messages to the FPGA Web Services server. And it
will reply with the corresponding SOAP messages,
according to the described WoLIP commands in Table II.

In order to validate the proposal, a small selection of

commands from the WoLIP protocol was implemented,
including the protocol's WAKE command, and a variation of
the VALIDATE command which does not require a password
and which we have termed LOGIN <user>. A small portion of
the source code of the service logic is specified bellow. As
you could see, in order to execute the WAKE command
correctly it is necessary for the invoking host to have
previously executed the LOGIN command. The session will
be valid until the host invokes the LOGOUT command.

switch(command) {
 case 1: // LOGIN
 if(user==0x64746963 && logedHost==0)
 {
 //Test If Correct user and send Response
 SendTCPData(&IpInfoPtr,&TcpInfoPtr,LOGIDIR,1);

 logedHost=IpInfoPtr.SourceAddress;
 }
 else
 SendTCPData(&IpInfoPtr,&TcpInfoPtr,LERRDIR,1);
 break;
 case 2: // LOGOUT command
 // Test previous login and send WoLIP response
 if(IpInfoPtr.SourceAddress==logedHost)
 {

SendTCPData(&IpInfoPtr,&TcpInfoPtr,LOGODIR,1);
logedHost=0;

 }
 else
 SendTCPData(&IpInfoPtr,&TcpInfoPtr,LOERDIR,1);
 break;
 case 3: // WAKE command
 if(IpInfoPtr.SourceAddress==logedHost)
 {//Send Wake Packet if previous LOGIN
 SendUDPWol(&IpInfoPtr,TcpInfoPtr.IpsCheck,mac);
 //Send WoLIP Response
 SendTCPData(&IpInfoPtr,&TcpInfoPtr,WAKEDIR,0);}
 else
 SendTCPData(&IpInfoPtr,&TcpInfoPtr,WAKERDIR,1);
 break;
 }

As in the registry process evaluation, a network monitor has

been used to capture the network traffic between the client and
the FPGA. As a result, we have been able to verify that the
communication between both is carried out in a correct way,
as can be seen by means of the message sent from the client
that is shown next.

POST /woli.wsdl HTTP/1.0
Host: 172.19.32.151
User-Agent: NuSOAP/0.7.2 (1.94)
Content-Type: text/xml; charset=ISO-8859-1
SOAPAction: "urn:woliwsdl#wake"
Content-Length: 507
<?xml version="1.0" encoding="ISO-8859-1"?>
<SOAP-ENV:Envelope
SOAP-ENV:encodingStyle

 =”http://schemas.xmlsoap.org/soap/encoding/”
 xmlns:SOAP-
 ENV="http://schemas.xmlsoap.org/soap/envelope/"xml
 ns:xsd="http://www.w3.org/2001/XMLSchema"xmlns:xsi
 ="http://www.w3.org/2001/XMLSchema-
 instance"xmlns:SOAP-
 ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:tns="urn:woliwsdl">

<SOAP-ENV:Body>

Copyright (c) 2009 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

08-TIE-0882 10

 <tns:wake xmlns:tns="urn:woliwsdl">
 <host xsi:type="xsd:string">
 000D88270A36
 </host>
 </tns:wake>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Obviously, having sent the SOAP response to this message,

it was observed that the magic packet WoL frame, generated
by the FPGA and sent across the network, caused the boot up
of the specified host.

VIII. CONCLUSIONS
In this paper we have presented a SoC to design cost

effective and zero-maintenance embedded network devices
that run Web Services in a SOA style. Due to the
characteristics of the proposal, the offered services should be
simple and with minimum resource requirements.

The main advantage of this approach is that it can provide
services, which are common in today’s network environments
without any need for specialized system administrators,
neither for the initial deploy and setting up tasks nor for the
subsequent maintenance tasks.

A WoL over Internet FPGA-based prototype has been also
developed in order to test the functionalities and to assess the
proposal. The device is able to auto-register and to work
independently or integrated with other services from existing
networks, regardless of whether they are provided with other
similar devices or not, or as conventional network services.

From a user’s perspective, each service represents a small
network device which simply requires connection to the
network of their organization or home to make the required
service available.

We are currently working in the implementation of the
TLS/SSL security protocols in order to provide support to
HTTPS, as well as developing other WS cores that implement
network services and integrate them all into a model based on
Semantic Web Services, so that in the future they not only will
be compatible with existing services, but also with new
services or configurations which were not considered in its
initial design as well.

REFERENCES
[1] J. Roy and A. Ramanujan. “Understanding Web Services.” IEEE

Internet Computing, vol. 3, no. 6, pp. 69–73, Nov.-Dec. 2001.
[2] L. Jóźwiak and S. Ong, "Quality-driven model-based architecture

synthesis for real-time embedded SoCs,” Journal of Systems
Architecture, vol. 54, pp.349-368, March-April 2008.

[3] J.J. Rodriguez-Andina, M.J. Moure, and M.D. Valdes, "Features, Design
Tools, and Application Domains of FPGAs," Trans. on Industrial
Electronics, vol. 54, no. 4, pp. 1810-1823, Aug. 2007.

[4] V. Gilart, F. Maciá, J.A. Gil, and D. Marcos, “Services and networks
management through embedded devices and SOA,” in Proc. of the 10th
IEEE International Enterprise Distributed Object Computing
Conference EDOC 2006, Hong Kong, Oct. 2006, pp395-398.

[5] J.A. Gil, D. Marcos, F. Maciá, and V. Gilart, “Wake on LAN over
Internet as Web Service,” in Proc. of the 11th IEEE International

Conference on Emerging Technologies and Factory Automation ETFA
2006, Prague, September 2006, pp1261-1268.

[6] F. Maciá, D. Marcos, and V. Gilart, “Industrial TCP/IP Services
Monitoring through Embedded Web Service,” Journal on Embedded
Systems, Vol. 2008, pp 1-10, 2008.

[7] M.S. Jeong, K.H. Kim, J.H. Kwon, and J.T. Park, “CORBS/CMIP:
Gateway Service Scheme for CORBA/TMN Integration." Knom Review,
Vol.2, No. 1, pp. 55-62, 1999.

[8] G. Aschemann, T. Mohr, and M. Ruppert, "Integration of SNMP into a
CORBA- and Web-Based Management Environment," in Proc.
Kommunikation in Verteilten Systemen, Heidelberg, 1999, pp. 210-221.

[9] T.C. Du, E.Y. Li, and A.P. Chang, "Mobile Agents in Distributed
Network Management,” Communications at the ACM, vol. 46, no. 7, pp.
127-132, 2003.

[10] J. Guo, Y. Liao, and B. Parviz. "An Agent-Based Network management
system" in Proc. of the 2005 Internet and Multimedia Applications,
Honolulu (Hawai), Aug. 2005.

[11] European Co-ordination Action for Agent-based Computing [Online].
Available: http://eprints.agentlink.org/. [Accessed: March 20, 2009].

[12] R. Boutaba and I. Aib, "Policy-based Management: A historical
perspective" Journal of Network and Systems Management, vol. 15,
Issue 4, pp. 447-480, December 2007.

[13] J.E. López. V.A. Villagrá, and J.I. Asensio, "Ontologies: Giving
Semantics to Network Management Models," IEEE Network, vol. 17,
no. 3, pp. 15-21, May-June 2003.

[14] J. Peer, "A POP-Based Replanning Agent for Automatic Web Service
Composition," in proc. of the 2005 Second European Semantic Web
Confenrece, LNCS, pp 47-61, May 2005.

[15] J. Sloten, A. Pras, and M. Van Sinderen, "On the standardisation of Web
Service management operations," in proc. of the 2004 X EUNICE
Summer School and IFIP WG 6.3 Workshop, Tampere, Finland, June
2004, pp. 143-150.

[16] T. Klie, and F. Straub, "Integrating SNMP agents with XML-based
management systems," IEEE Communications Magazine, vol. 42 Issue
7, pp. 76-83, July 2004.

[17] L.S. Indrusiak, M. Glesner, and R. Reis, “On the Evolution of Remote
Laboratories for Prototyping Digital Electronic Systems,” Trans. on
Industrial Electronics, vol. 54, no. 4, pp. 3069-3077, Dic. 2007.

[18] R. Marau, P. Leite, P., M. Velasco, P. Marti, L. Almeida, P. Pedreiras,
and J.M. Fuertes, “Performing Flexible Control on Low-Cost
Microcontrollers Using a Minimal Real-Time Kernel,” Trans. on
Industrial Informatics, vol. 4, pp. 125-133, 2008

[19] O. Laouamri and C. Aktouf, “Remote Testing and diagnosis of System-
on Chips Using Network Management Frameworks,” In Proc. of Desing,
Automation & Test in Europe Conference & Exhibition, Nice, France,
April 2007, pp. 1-6.

[20] S. Cuenca, A. Grediaga, H. Llorens, and M. Albero “Performance
Evaluation of FPGA-Embedded Web Servers,” in IEEE International
Conference on Electronics Circuits and Systems, Marrakech, Marocco
December, 2007, pp. 1187-1190.

[21] R. Koch, T. Pionteck, C. Albrecht, and E. Maehle, “An Adaptive
System-on-Chip for Network Applications,” in Proc. 20th Parallel and
Distributed Processing Symposium, April 2006, pp. 8.

[22] F. Jammes and H. Smit, "Service-Oriented Paradigms in Industrial
Automation,” IEEE Trans. on Industrial Informatics, vol. 1, pp. 62-70,
February 2005.

[23] F. Jammes, A. Mensch, and H. Smit, “Service-Oriented device
communications using the Device Profile for Web Services,” IEEE 21st
International Conference on Advanced Information Networking and
Aplications, Canada, May. 2007, pp. 956-963.

[24] K.C. Thamboulidis, G.V. Koumoutsos, and G.S. Doukas, “Semantic
Web Services in the Development of Distributed control and Automation
Systems,” IEEE International Conference on Robotics and Automation,
Rome, Italy, April 2007, pp. 10-14.

[25] L. Ribeiro, J. Barata, A. Colombo, and J. Jammes, “A generic
Communication Interface for DPWS-based Web Services,” IEEE
International Conference on Industrial Informatics, Daejeon, Korea,
July, 2008, pp. 13-16.

[26] S. Cuenca, H. Ramos, H. Llorens, and F. Maciá, “Reconfigurable
Architecture for Embedding Web Services,” IEEE. 4th Southern
Conference on Programmable Logic, San Carlos de Bariloche, March
2008, pp. 119-124.

Copyright (c) 2009 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

08-TIE-0882 11

Francisco Maciá Pérez (M’08) was born in
Spain in 1968. He received his engineering
degree and the Ph.D. degree in Computer
Science from the University of Alicante in 1994
and 2001 respectively.

He worked as System’s Administrator at the
University of Alicante form 1996 to 2001. He
was an Associate Professor from 1997 to 2001.
Since 2001, he is an Assistant Professor and
currently he is the Director of the Department of
Computer Science and Technology at the

University of Alicante. His research interests are in the area of network
management, computer networks, smart sensor networks and distributed
systems, which are applied to industrial problems.

Juan Antonio Gil Martínez-Abarca was born in
Spain in 1970. He received his engineering degree
in Computer Science from the University of
Alicante in 1994.

Since 1998, he is System’s Administrator at the
University of Alicante and, since 1999, he has
been an Associate Professor at the Department of
Computer Science and Technology at the
University of Alicante. His research interests are
in the area of network management, computer

networks and distributed systems.

Héctor Ramos-Morillo was born in Alicante,
Spain, in 1978. He received the engineering
degree in computer science from the University
of Alicante in 2004, where he has been working
toward the Ph.D. degree in the Department of
Computer Science and Technology since 2005.

He is currently a System’s Administrator at
the Department of Computer Science and
Technology, University of Alicante. His research
interests are in the area of network management,
computer networks, embedded systems and smart

sensor networks.

Francisco J. Mora-Gimeno (M’08) was born in
Spain in 1967. He received the M.Sc. degree in
computer science from the Polytechnic
University of Valencia, Valencia, Spain, in
1995. Since 2004, he has been working toward
the Ph.D. degree in the Department of Computer
Science and Technology, University of Alicante,
Alicante, Spain.

Since 2002, he has been an Assistant
Professor with the Department of Computer
Science and Technology, University of Alicante.

His main topics of interest include intrusion detection systems, network
security, computer networks and distributed systems.

Diego Marcos Jorquera (M’08) was born in
Spain in 1974. He received his engineering
degree in Computer Science from the University
of Alicante in 1999, where he has been working
toward the Ph. D. degree in the Department of
Computer Science and Technology since 2004.

He is currently an Assistant Professor with
the University of Alicante. His research interests
are in the area of network management,
computer networks, and distributed systems

Virgilio Gilart-Iglesias (M’09) was born in Spain in
1976. He received his engineering degree in computer
science from the University of Alicante in 2001,
where he has been working toward the Ph.D. degree
in the Department of Computer Science and
Technology since 2004.

He is currently an Assistant Professor with the
Department of Computer Science and Technology,
University of Alicante. His research interests are in
the area of e-Business, Business Processes
Management Systems, Service Oriented Architectures

and distributed systems, which are applied to industrial domain.

