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Neuro-symbolic Alerting Rules
Rosemarie Velik, Member, IEEE, Harold Boley

Abstract—Future building automation will require complex (human-like) perception and decision-making processes not being feasible

with classical approaches. In this paper, we address both the perception and the decision-making process and present an alerting

model that reacts to perceived situations in a building with decisions about possible alerts. Perception is based on the neuro-symbolic

information processing model, which detects candidate alerts. Integrated with perception, decision-making is based on the rule model of

RuleML, which computes alerts to relevant building occupants about current opportunities and risks. A general model of neuro-symbolic

alerting rules is developed and exemplified with a use case of building alerts.

Index Terms—building automation, neuro-symbolic networks, RuleML, perception, decision-making.

✦

1 INTRODUCTION

Building automation has matured over the last decades
towards an indispensable contribution to everyday life.
Classical approaches in building automation are con-
cerned with simple monitoring of the environment (e.g.,
temperature), making this information accessible for the
user, and adjusting it to predefined value ranges tar-
geting comfort and energy preservation. Alerting and
control strategies are based on input data from a small
number of uniform sensors. However, future applica-
tions will target to “understand” the human users of
a building and thus make it a safer, more secure, more
comfortable, and more (energy-)efficient place [1], [2]. To
do so, buildings will have to be equipped with a large
number of diverse sensors, whose information has to be
merged in order to get a robust representation of the en-
vironment, as studied in sensor fusion [3]. However, this
research field is still quite recent and existing approaches
are challenged by this abundance of data and the ways
in which it should be analyzed and responded to [4],
[5]. There is thus a need for new concepts to handle
future demands [6]. One solution introduced recently to
process and interpret such a flood of sensory information
is the neuro-symbolic information processing principle
[7]. This approach is inspired by how information is
processed in the perceptual system of the human brain,
which is able to cope with information from millions
of diverse sensory receptors. On the other hand, only
perceiving the environment is not sufficient. Adequate
reactions in form of alerts or the activation of actuators
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have to be triggered depending on what is currently
perceived. This calls for a decision-making process [8]
which translates the perception results into an appropri-
ate (re)action selected from a number of rule-encoded
possibilities.

In this paper, we address both the perception and the
decision-making process and present an alerting model
that reacts to perceived situations in a building with
decisions about possible alerts. By such alerts, users can
be informed about opportunities (e.g., social event taking
place on second floor), about safety and security relevant
issues (e.g., entrance door left open during night), or
they can be encouraged in energy and resource saving
behavior (e.g., close windows while heating or air condi-
tioning is on). Perception is based on the neuro-symbolic
information processing model. Decision-making em-
ploys Rule Markup Language (RuleML) derivation rules,
which are used by RuleML reaction rules that can alert a
particular occupant or group of occupants about current
opportunities and risks. The main decision to be taken is
what messages, if any, to send to which users, depending
on what is currently happening in the perceived envi-
ronment. The concepts used will be clarified by means
of concrete, easily comprehensible use cases concerning
certain situations arising in an office building.

2 ALERTING MODEL

In figure 1, an overview of the general alerting model
is given. It consists of two main modules: perception
followed by decision. The task of the perception module
is to classify the situation of a system. Based on the
perception results, the decision module infers any alerts
about risks or opportunities to be selectively communi-
cated to a human. The alerting model economizes by
using the same processing techniques for both risks and
opportunities.

The architecture of the perception module is inspired by
neuro-physiological and neuro-psychological research
findings about the perceptual system of the human brain.
The perception process uses sensor values from different
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Fig. 1. Overview of Alerting Model

sensory receptors as inputs, which are then processed in
a so-called neuro-symbolic network (see section 3.2). A
conceptual classification of the environment encoded as
activations of neuro-symbols constitutes the perception
output. The perception process is additionally supported
by mechanisms called memory, knowledge, and focus of
attention. We will emphasize here the neuro-symbolic
network as well as its interaction with memory and
knowledge. For a more detailed description of focus of
attention see [7].

The architecture of the decision module is inspired by
the use of condition-conclusion and condition-action
rules in cognitive science. The decision process takes
neuro-symbols encoding perceptual results as input,
which are then matched by the instantiated premises of
applicable rules in a so-called rule engine. The instanti-
ated conclusions of selected rules can trigger other rules
etc., leading to a cycle of rule applications for decision-
making about alerting actions as output. Rules constitute
one ‘half’ of knowledge representations often comple-
mented by ontological (e.g., taxonomic) knowledge as
the other ‘half’, as well as by (mass) databases. We
will write such rules in the POSL (POsitional-SLotted)
presentation syntax of RuleML, which are then inter-
changed on the Web in XML. For an introduction to
Web rules and their relation to ontologies see [9]. For
an introduction to POSL and the automatic conversion
of POSL to XML see [10] and go to www.jdrew.org/
oojdrew/demo/translator.

While rule systems could be implemented by neuro-
symbolic networks, we will consider the other map-
ping direction here: Neuro-symbolic networks can be
described by rule systems, where each network node
becomes a rule with the node inputs as premises and
the node outputs as conclusions. This will permit a high-
level specification of neuro-symbolic networks and the
reuse of the RuleML format for network interchange.

3 USE CASES AND MODEL DESCRIPTION

For testing and evaluating the alerting model, two test
environments have been studied which provide sensor

data based on what is currently going on in an office
building. These sensor values are used as input data
for the presented model. The first test environment is
the kitchen of an office building – the SmartKitchen of
ICT – which is equipped with different sensors [11]. The
second one is a simulator that generates sensor values
based on a virtual environment. It was developed to
simulate sensor values in order to perceive scenarios
in a virtual office environment [12]. The development
took place based on the data already obtained from the
SmartKitchen environment. The reason for simulating
the sensor values is the cost reduction for testing in
comparison to real physical installations. For our pur-
poses, the office environment consists of a floor of the
office building with a number of offices and one kitchen.
The offices all have the same floor plan. The kitchen has
a distinct floor plan and is used (in the simulation as
well as in the real physical implementation) for informal
social interaction, but also for holding official meetings.
Both the SmartKitchen and the simulator were already
successfully used to test the outcome of a number of
related research projects [1], [2]. In the following sections,
the concepts of the alerting model are illustrated both in
general and by presenting concrete use cases. One use
case is the “kitchen party scenario”, which is discussed
here in detail.

3.1 The Kitchen Party Scenario

The kitchen party scenario generically describes a get-
together of a number of people in the kitchen not for
the purpose of a meeting but as an informal gathering.
Such informal gatherings benefit social networking and
the quick exchange of ideas. By using the alerting model,
the formation of such more or less spontaneous “kitchen
parties” can be favored in a catalytic manner. For this
purpose, it has to be perceived by the system that there is
currently an informal gathering of a core of people in the
kitchen. As consequence of this, other employees have
to be selectively invited/informed about the opportunity
of participating by sending them a message. It is impor-
tant to precisely select under what circumstance and to
whom these messages should be sent in order not to let
them inflate to the point of useless spam. Furthermore, it
has to be ensured that the system cannot be misused for
unauthorized surveillance of employees. This problem
can be mitigated on the one hand by only using data of
persons that voluntarily participate in the program and
on the other hand by not transmitting and logging the
perceived data for any other purpose than the evalua-
tion of the performance of the system under test. The
perception and decision-making processes according to
the alerting model are described in the following first in
general and then for the occurrence of the kitchen party
scenario. Figure 2 presents the information flow of this
use case in a graphical form. A description and a rule
based formulation of different parts follow in the next
section.
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Fig. 2. Use Case Kitchen Party

3.2 Neuro-symbolic Network

The first main module of the alerting model is the
neuro-symbolic network, which uses so-called neuro-
symbols as basic information processing units. The idea
for creating neuro-symbols arose from the following
consideration: Information in the brain is processed by
neurons. However, people do not think in terms of action
potentials and firing nerve cells (low level) but in terms
of symbols [13] representing, e.g., a face, a person, a
melody, or a voice (high level). Neural and symbolic
information processing should thus be considered as in-
formation processing in the brain at two different levels
of abstraction. This raises the question of how the neural
and the symbolic level are connected, which could be an-
swered as follows: in the brain, neurons have been found
which react, for example, exclusively to the perception
of faces [14], [15]. This means that certain neurons or
groups of neurons in the brain are responsible for the
coding of certain symbolic information. As sketched in
figure 3, neuro-symbols combine characteristics of neural
and symbolic information processing.

Neuro-symbols represent perceptual images (symbolic
information like, e.g., a person, a face, a voice, or a
melody) and additionally show a number of analogies
to neurons. Each neuro-symbol has a so-called activation
grade with a value between 0 and 1 for indicating the
degree (probability) to which the perceptual image that

Fig. 3. Function Principle of Neuro-symbols

the neuro-symbol represents is currently present in the
environment. A neuro-symbol has a number of inputs
and one output. Via the inputs, information about the
activation grade of other neuro-symbols is collected,
among other things. These activation grades are then
summed up and normalized according to the number
of inputs to guarantee that the activation grade always
has a value between 0 and 1. If this sum exceeds a certain
threshold value, the neuro-symbol is activated and the
information about its activation is transmitted to other
neuro-symbols via its output. Principally also activation
functions different from a pure threshold function are
possible. For a discussion on how to select the thresh-
old values and other possible neuro-symbolic activation
functions see [7]. In a neuro-symbol, not only informa-
tion can be processed that is received concurrently via
the inputs, but also information that is coming in, asyn-
chronously, within a certain time window or in a certain
temporal succession, as in Complex Event Processing
(CEP) [17]. Inputs can also be weighted differently. The
purposes of weights are however different from the use
of weights in artificial neural networks, and will be
discussed in more detail later on in this section. Besides
this, neuro-symbols can carry so-called properties, which
specify the neuro-symbol in more detail. Each property
can have a range of different values. An example would
be the location property, which indicates where in the
environment a perceptual image was perceived. The use
of properties reflects the principle of population coding
according to which related perceptual images are not
always represented by separate neurons, but often by
a group of neurons [14].

In order to perceive complex situations, neuro-
symbols need to be arranged in an architecture to ex-
change information. To do so, the structural organization
of the perceptual system of the human brain is consid-
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Fig. 4. Structural Organization of Perception

ered as the archetype [15]. This system is layered as
depicted in figure 4. In the brain, the starting point of
perception is information from the sensory receptors of
the different sense organs. The information coming from
these receptors is processed in three stages. The primary
cortex is responsible for the first stage, the secondary
cortex for the second, and the tertiary cortex for the third
one. Each sensory modality has its own region in the
primary and secondary cortex. This means that in the
first two steps, information of different modalities is pro-
cessed separately and in parallel. In the tertiary cortex,
the information of all modalities is merged and results
in a unitary multimodal (modality-neutral) perception of
the environment.

The primary cortices have a topographic structure
which means that spatially neighbouring receptors of
sensory modalities project their information on neigh-
bouring neurons in the primary cortex. Taking the exam-
ple of the visual system of the human brain, in this first
level, neurons would fire to features like edges, lines,
colours, movements of a certain velocity and into a cer-
tain direction, etc. In the second level, a combination of
extracted features results in a quite complex perception
of all aspects of the particular modality. For the visual
system, perceptual images like faces, a person, or other
objects would be perceived. Finally, on the highest level,
the perceptual aspects of all modalities are merged.

According to this modular hierarchical organization
of the perceptual system of the human brain, neuro-
symbols are structured into so-called neuro-symbolic
networks (see figure 5). Sensor data are processed in
different hierarchical levels into more and more com-
plex neuro-symbols until they result in a multimodal
perception of the environment. The neuro-symbols of
the different hierarchical levels are labelled according
to their function as feature symbols, sub-unimodal sym-
bols, unimodal symbols, multimodal symbols, and sce-
nario symbols.

On the feature symbol level, simple features are ex-
tracted from sensory raw data and result in the activation
of certain feature symbols, which are topographic in
structure can consist of a number of sub-layers. This level
corresponds to the primary cortex of the brain. In the
next two processing stages, sub-unimodal and unimodal
symbols are derived from feature symbols. These two
levels correspond to the functions of the secondary
cortex of the brain. In fact, each sensory modality can
consist of a number of sub-modalities like for example

Fig. 5. Modular Hierarchical Arrangement of Neuro-

symbols

the somatosensory system which consists of the tactile
sense, the pain sense, the temperature sense, etc. Similar
to this, there can exist a sub-unimodal level between
the feature symbol level and the unimodal symbol level.
The multimodal and the scenario symbol layer have
their analogy in the tertiary cortex of the brain. In the
multimodal level, information of all unimodal symbols
is combined and merged to multimodal symbols. On the
scenario symbol level, different sequences of multimodal
symbols can be merged to scenario symbols in order to
code longer temporal sequences of events. The multi-
modal level and the scenario symbol level are the output
levels of the perception model and transmit information
about what is currently happening in the environment
to the decision model.

Concerning the used sensory modalities, there can be
sensor types that have an analogy in human sense organs
like video cameras and microphones for visual and
auditory perception, tactile floor sensors, light barriers,
or motion detectors for tactile perception, and chemical
sensors for olfactory perception [18]. Additionally, sensor
types can be used which have no correspondence to hu-
man sense organs like sensors for perceiving electricity
or magnetism [19]. By using data from different modal-
ities, a certain degree of redundancy and therefore fault
tolerance is achieved. For a discussion about various
examples what sensors to use and the appearance of
these sensor data see [7].

Neuro-symbols of one level can be considered as
“symbol alphabet” for the next higher level. In combina-
tion with other neuro-symbols, one and the same neuro-
symbol of a certain level can contribute to the activation
of different neuro-symbols of the next level. Which sen-
sors trigger which neuro-symbols and which lower-level
neuro-symbols activate which neuro-symbols of the next
higher level is defined by the connections between them.
For this purpose, forward connections and feedback
connections are possible. Forward connections always
reach from one layer to the next higher layer. Feedback
connections exist within a layer and go from outputs
of neuro-symbols to inputs of other neuro-symbols of
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the same level and modality. The connections depicted
in figure 5 indicate schematically what connections be-
tween neuro-symbols of different levels and modalities
are principally possible. In reality, these connections do
not exist in such a bus-like form but are point to point
connections between particular neuro-symbols.

It was already briefly mentioned that inputs and
connections, respectively, can have different weights.
Concerning forward connections, weights are always
positive as the information being transmitted by them
originates from sensor data of perceptual images, which
always increase the probability of image detection.
The weights correspond to the reliability of a sensory
modality. For example, if the visual modality generally
provides the most accurate information, inputs from
this modality will have a higher weight than inputs
from other modalities. When using inputs with different
weights, this has of course to be considered when nor-
malizing the sum of all inputs of a neuro-symbol. For
feedback connections, weights are negative and can re-
duce or inhibit the activation of a certain neuro-symbol.
That way, undesired activations of neuro-symbols can be
suppressed.

Connections between neuro-symbols need not have a
fixed structure but can be learned from examples in a
supervised learning process. This learning principle also
supports the subsequent addition of sensors and neuro-
symbols that were not foreseen at the beginning and the
removal of neuro-symbols such as in cases where they
turn out to be redundant. The major idea of the applied
learning algorithm is the following: First, correlations
between the sensor values and the feature symbols (and
in some cases also the sub-unimodal symbols) are ex-
plicitly defined. Correlations between higher levels are
then learned stage by stage during a number of learning
phases starting with the sub-unimodal level and ending
with the scenario symbol level. To learn correlations,
examples have to be available that comprise all objects,
events, and situations that shall be perceived by a certain
modality and level. Examples include input data and
target data. Input data are data from sensors that are trig-
gered when certain objects, events, or situations occur
in the surroundings. Target data indicate the meaning of
the input data. They specify the object, event, or situation
that is currently occurring and assign it to a certain
neuro-symbol of the current level. For details about the
learning methods used we refer to [7] and [16].

In our representation as perception rules, neuro-
symbols become predicates defined via a rule conclusion
by a rule condition. A rule condition is composed of
a conjunction of other such neuro-symbol predicates.
These predicates use the grade from (0,1) as their single
argument. The rules sum up the grade arguments of the
condition predicates and, if the sum exceeds the thresh-
old, assign it to the grade argument of the conclusion
predicate. Properties of neuro-symbols become optional
extra arguments in the form of key-value slots.

For example, the neuro-symbol for a kitchen party can

be represented by a predicate kitchenParty defined
by POSL rules including the following camera- and
microphone-based ones1:

kitchenParty(?grade;start->?S;num->?N) :-

kitchenCam(?g1;people->?N),

greaterThan(?N,1),

kitchenCam(?g2;food->?F;drinks->?D;

location->table),

kitchenMicro(?g3;noise->?V;source->voice),

isEqual(?V,high),

add(?grade,?g1,?g2,?g3),

greaterThan(?grade,THRESHOLD).

For the neuro-symbol “kitchen party”, properties are
amongst others the number of people participating in
the party and the time at which the party started. Input
arguments of the neuro-symbol could be the conditions
that at least two people are perceived in the kitchen, that
food and drinks are present on the kitchen table, and that
the noise level of voices is high.

The kitchen party scenario should not be mistaken
for a meeting scenario (see also section 3.3). For this
purpose, an inhibitory feedback connection can exist
from the output of the neuro-symbol “kitchen party” to
the neuro-symbol representing the meeting scenario.

meeting(?grade;start->?S;num->?N) :-

kitchenParty(?g1;start->?S;num->?N),

kitchenCam(?g2;people->?N),

greaterThan(?N,1),

kitchenCam(?g3;papers->?P;laptops->?L;

location->table),

kitchenMicro(?g4;noise->?V;source->voice),

isEqual(?V,moderate),

add(?grade,?g1,?g2,?g3,?g4),

greaterThan(?grade,THRESHOLD).

In our rule representation, neuro-symbolic networks
become rule chainings where the conclusion of a rule
can be connected to one of the conditions of another
rule, etc., in any layered or feedback topology. Each
connection is established by the use of the same vari-
able name in the grade arguments of conclusion and
condition predicates. The grade variable in a conclusion
thus represents the output of its neuro-symbol, and –
when equated to the grade variable in a condition –
also represents an input of its neuro-symbol. For exam-
ple, the above rules for the predicates kitchenParty

illustrate a rule chaining since the conclusion of the
kitchenParty rule is used as the first of four neuro-
symbol conditions of the meeting rule. Thus, the output
variable ?grade of kitchenParty will be equated to
an input ?g1 of meeting.

As will be shown in section 3.3, neuro-symbols can
not only receive information from sensory receptors or
other neuro-symbols, but also from information stored in
the knowledge module. To represent this fact, decision
rules are used. Decision rules are similar to the rules just
mentioned but use n-ary knowledge predicates, which
do not represent neuro-symbols, in the conclusion. They

1. The rule is simplified here for presentation purposes. The “:-”
separates a conclusion from conditions. Arithmetic predicates such as
add bind their first argument to the result. Predicate arguments can be
preceded by a name via a “->”. Variables are prefixed by a question
mark. THRESHOLD is assumed to be a global neuro-symbolic threshold
constant.
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use condition predicates that are either neuro-symbolic
or knowledge predicates in the condition. For example,
it could be stored in the knowledge module that the
kitchen party scenario is most likely to occur between
2 and 3 pm. In this case, the predicate kitchenParty
can be defined by a POSL rule whose condition uses,
in addition to the neuro-symbolic predicates, the knowl-
edge predicate inTimeInterval, for a time between 2
and 3 p.m., as follows:

kitchenParty(?grade;start->?S;num->?N) :-

. . .

greaterThan(?grade,THRESHOLD),

inTimeInterval(?S,1400,1500).

3.3 Memory Symbols, Alerting Profiles, and Knowl-

edge

As described before, based on sensor data from cam-
eras, microphones, etc., the test environment is equipped
with, neuro-symbolic information processing is per-
formed in the neuro-symbolic network. This results in
the activation of certain neuro-symbols on the differ-
ent hierarchical levels. Finally, the multimodal and the
scenario symbol level provide the output information
of the perception module. However, bottom-up sensor
data processing alone is not always sufficient to un-
ambiguously perceive what is currently going on in
the environment. In the brain, perception is not only
based on sensor information but also on stored knowl-
edge and information about what happened before. This
knowledge can be factual knowledge, e.g., that objects
generally fall down, context knowledge, e.g. that certain
objects and events generally occur at certain places or
at a certain time of day, or the expectation that certain
events or situations are likely to happen after certain
other ones. Knowledge can facilitate perception if sensor
data are ambiguous or could be assigned to different
objects, events, or situations [20]. It also allows a certain
degree of fault tolerance [7]. Inspired by this concept,
knowledge in the introduced model can influence the
activation grade of neuro-symbols. To realize this prin-
ciple, so-called memory symbols interact with stored
knowledge.

Memory symbols have the function to store informa-
tion about occurring objects, events, and situations or
consequences of them that are relevant for future percep-
tions. Memory symbols receive information from mul-
timodal and scenario symbols, extract and store certain
important features of this information, and transmit it to
the knowledge module. The knowledge module contains
rules defining what influence these former perceptions
have on the current ones and can increase, decrease, or
inhibit the activation of certain neuro-symbols. Interac-
tion again takes place at the multimodal level and the
scenario level.

Memory symbols can be represented as facts stor-
ing the current grade of a predicate as its single ar-
gument, augmented by possible properties such as a
timestamp as its slots. They can be used as condition

predicates of rules some of whose other condition pred-
icates (re)invoke a neuro-symbol.

In case of the kitchen party scenario, when considering
only sensor data, this scenario could in some cases be
mistaken for a meeting scenario. In both cases, a group of
people is present in the kitchen. Differences are that in a
meeting, it is more likely that people are seated regularly
around the table, that they have papers or laptops to
read and tools to write with them, that the number
of people talking at the same time is smaller, that the
overall noise level is lower, and that they have less food
and drinks. However, in some situations, the borderline
between a kitchen party and a meeting might not be
evident to the perception system. In such a case, stored
knowledge can help to resolve an ambiguous perception.
One example would be that the system knows that on
Wednesdays around 2 p.m., certain people generally
meet for a break and have coffee and cake together. In
this case, influenced by this knowledge, the activation
grade of the neuro-symbol representing the kitchen party
scenario would be increased and (via feedbacks) the
activation grade of the neuro-symbol representing the
meeting scenario would be decreased – ideally in a way
that the former rises above the threshold value and the
latter falls below it.

As already mentioned, properties of the neuro-symbol
representing the kitchen party scenario are the number
of people participating and the time when the party
started. Further properties could be the identity of the
persons participating. Neuro-symbols, however, only
store information about what is currently perceived in
the environment. It might occur that some persons are
not identifiable at a certain moment, because they stand
with the back to the video cameras and do not talk to be
identified by their voice. This problem can be solved by
using memory symbols. Memory symbols can store the
identity of persons who have entered the kitchen and
have been identified until they leave the kitchen again.

Knowledge is an important factor not only on the
perception side but also on the decision side. For this
purpose, the knowledge module contains general facts
and rules necessary for deciding in what cases to inform
users about activities going on in the building. The
represented facts and rules are relevant for all users of
the building or at least a large subset of them.

To enable decisions concerning particular users, so-
called alerting profiles are employed. The alerting profile
of each user represents that user with properties rep-
resenting the various opportunities and risks he/she
wants to be alerted about. Alerting profiles are repre-
sented in the form of facts and rules, as explored earlier
for expert finding [21] and eTourism [22]. These user-
specific alerting profiles are employed in the conditions
of alerting rules whose other conditions are the currently
perceived opportunities and risks in the building. When
such derivation rules have decided that a particular user
is to be alerted, a top-level reaction rule is triggered to
send him/her the actual alerting message.
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Based on the perception that a party is currently
emerging in the kitchen, the identity of persons partici-
pating, the time of day, etc., certain other persons should
now be informed about this fact and invited to join.
This decision is made in the rule engine, which employs
rules and facts from the knowledge module and the
alerting profiles. In the knowledge module, general facts
are stored, which concern all employees. Concerning
the kitchen party scenario, it does not make sense, for
instance, to invite further employees to the party if a
meeting of the whole office staff will start in a different
room in ten minutes. In the alerting profiles, rules and
facts for particular users are stored. Such a profile can
store, for example, that a user John only wants to be
informed about a potential kitchen party if it takes place
between 2 and 5 p.m., if the probability that the event
really is a kitchen party rather than a meeting is higher
than 90%, and if a certain person, Mary, is participating
in it. The probability for a kitchen party scenario equals
the activation grade of the neuro-symbol representing
the kitchen party scenario. In this case, John can have
a rule for the predicate myAfternoonGossip in his
profile.

myAfternoonGossip(?grade;start->?S;num->?N) :-

kitchenParty(?g1;start->?S;num->?N),

matchOccupant(?g2;room->kitchen;find->Mary),

add(?grade,?g1,?g2),

greaterThan(?grade,THRESHOLD)

greaterThan(?g1,0.9),

inTimeInterval(?S,1400,1700).

For example, a top-level reaction rule in John’s profile
can specify his alerting preference via emails (rather
than pop-up windows, automated mobile phone calls,
etc.). Once the above myAfternoonGossip predicate is
fulfilled, the action of the alerting rule will send John
an alerting message about the kitchen party giving its
grade, start time and number of participants (including
Mary).

At another level of filtering the system has to avoid
situational spam by, for instance, not informing users
who already participate in the party, who are currently
not in their office, or who currently are in another
meeting. This can partly be determined by the perception
module and partly be derived by the rule engine from
stored knowledge, e.g., about the agendas of different
users. As a further step towards high-precision alerting,
unread alert messages could also be eliminated again
from the mail boxes of users in case their validity has
expired.

3.4 OO jDREW Rule Engine

The decision module is based on the rule interpreter
OO jDREW [23] www.jdrew.org/oojdrew, a deductive
reasoning engine for the RuleML Web rule language,
which also permits the interchange of neuro-symbolic
networks of the perception module. OO jDREW can
execute positional rules of RuleML both bottom-up and
top-down. It also implements object-oriented extensions
to RuleML, which include slots (as used here) as well as
order-sorted types and object identifiers. OO jDREW is
written in the Java programming language and available

via Java Webstart and for LGPL download. The alerting
rules described here benefitted from earlier implemen-
tations of NBBizKB, FindXpRT, and eTourPlan in OO
jDREW as well as from the Rule Responder use case for
symposium planning [24].

4 NEURO-SYMBOLIC ALERTING VERSUS AR-
TIFICIAL NEURAL NETWORK APPROACHES

In the alerting model, a neuro-symbolic network was
introduced as central processing element of sensor in-
formation. Between neural networks and the proposed
concept of neuro-symbolic networks, certain similarities
can be found. In both cases, weighted input information
is summed up and compared to a threshold in the basic
processing units. Both combine basic processing units to
perform complex tasks and process information in par-
allel. Nevertheless, besides these similarities, there exist
crucial differences between neural networks and neuro-
symbolic networks. Unlike in neural networks, where
information is represented in a distributed and generally
not interpretable form via weights of connections, every
single neuro-symbol has a certain interpretable semantic
meaning as each neuro-symbol represents a certain per-
ceptual image. Neuro-symbols can contain properties,
which specify a perceptual image in more detail. This
allows the correct merging of information and offers a
mechanism for error detection. In artificial neural net-
works, only the structure and function of a single nerve
cell serves as biological archetype. In contrast to this, in
neuro-symbolic networks, also the structural organiza-
tion of the perceptual system of the human brain is used
as archetype for their architecture. Whereas weights in
neural networks are altered by a learning algorithm to
achieve a mapping of input values to output values, in
neuro-symbolic networks, weights are used to consider
different reliabilities of sensor modalities. In contrast to
neural networks, in neuro-symbolic networks, learning
is performed in several steps and phases for differ-
ent sensory modalities and hierarchical levels. Neuro-
symbols comprise mechanisms to process information
arriving asynchronously within a certain time window
or in a certain succession. Information exchange between
neuro-symbols is event-based meaning that information
is only processed if a new input message is received. This
allows it to reduce the communication and information
processing effort.

5 CONCLUSION AND FUTURE WORK

In this article, we presented an alerting model consisting
of a perception module and a decision module in order
to inform users about activities going on in a build-
ing, which are currently relevant for particular users.
Perception is based on the neuro-symbolic perception
module being represented by rules. Decision-making is
based on the rule model of Derivation RuleML. The
test environment for the model was a floor of an office
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building. The described use cases show that the alerting
model has a great variety of potential applications to
inform users about opportunities and risks.

The presented approach offers a flexible framework
adaptable to very different domains and environments
such as homes, offices, and public buildings (stations,
airports, stadiums, shopping malls, museums, etc.). Due
to its modular hierarchical organization, its overall struc-
ture always remains the same, irrespective of the con-
crete sensor types used, the perceptual images and sce-
narios to be detected, the stored knowledge about the
environment and its users, and the types of alerts.

Besides the kitchen party scenario, which was illus-
trated in detail here, many other scenarios are conceiv-
able. Examples that are in preparation for future work
are in the field of energy end resource saving, safety and
security, entertainment, and increase of comfort. Besides
for alerting, it is also planned to use the neuro-symbolic
rule concept for the control of actuators.

Concerning the perception part of the model, the
use of unsupervised learning in addition to supervised
learning will be the subject of further investigations.
Concerning the decision part of the model, which is
currently based on explicitly defined rule profiles, one
future research topic will be the investigation of learn-
ing the behavior of users to automatically extract rule
profiles. Another issue currently studied is the transfer
of neuro-psychological and neuro-psychoanalytical find-
ings about emotions and drives to autonomous decision
agents.
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