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Abstract— Transient motor current signature analysis is a recently developed technique for motor 

diagnostics using speed transients. The whole speed range is used to create a unique stamp of each 

fault harmonic in the time-frequency plane. This greatly increases the diagnostic reliability when 

compared with non-transient analysis, which is based on the detection of fault harmonics at a single 

speed. But this added functionality comes at a price: the well established signal analysis tools used in 

the permanent regime, mainly the Fourier transform, cannot be applied to the non-stationary 

currents of a speed transient. In this paper, a new method is proposed to fill this gap. By applying a 

polynomial-phase transform to the transient current, a new, stationary signal is generated. This 

signal contains information regarding the fault components along the different regimes covered by 

the transient, and can be analyzed using the Fourier transform. The polynomial-phase transform is 

used in radar, sonar, communications and power systems fields, but this is the first time, to the best 

knowledge of the authors, that it has been applied to the diagnosis of induction motor faults. 

Experimental results obtained with two different commercial motors with broken bars are presented 

to validate the proposed method. 

 

Index terms—Fourier transforms, fault diagnosis, induction motors, signal analysis, frequency 

modulation, polynomial transforms. 
 

NOMENCLATURE 

 

A Amplitude of a signal. 

am  m-th coefficient of the polynomial approximation of the instantaneous phase of a signal. 

b Modulation rate of a linearly modulated frequency (LMF) signal.  

𝑏̂ Estimation of the LMF rate. 

𝑏̂1 Estimation of the LMF rate of the descending branch of the Left Sideband Harmonic during startup 

(LSHst). 

𝑏̂2 Estimation of  the LMF rate of the ascending branch of the LSHst. 

f Frequency. 

f1 Power supply frequency. 

fb Frequency of the fault components produced by bar breakages. 

fi Frequency of the fault components produced by inner race damage in the bearing. 

fLSH Frequency of the LSH. 
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fME Frequency of the fault components produced by mixed eccentricity. 

fo Frequency of the fault components produced by outer race damage in the bearing.  

fs Sampling frequency. 

M Order of the polynomial approximation of the instantaneous phase of a signal. 

N Number of samples of the sampled signal. 

Nb Number of balls in a bearing. 

nf Decomposition level of the approximation signal that includes the LSHst. 

p Number of pole pairs. 

PM M-order polynomial-phase transform. 

s Slip. 

T Upper limit of the interval which is defines the polynomial-phase signal. 

t Time. 

x Vector containing the N samples of a sampled signal. 

x(t) Generic signal with constant amplitude and continuous phase.  

 Time delay 

op Optimal value of the time delay 

(t) Instantaneous phase of a signal. 

´(t) Instantaneous frequency of a signal. 

 

I. INTRODUCTION 

otor current signature analysis (MCSA) is a well established [1]-[8] and reliable methodology for 

detecting machine faults. It is non-invasive, can operate on-line, without perturbing the normal operation 

of the motor being diagnosed, and it is simple to apply because only a current probe is needed to capture 

the motor current. Each type of fault produces oscillations in the motor current whose characteristic 

frequencies have been established theoretically. In particular, rotor bar breakages generate oscillations of 

frequency 

 

 1( ) ( (1 ) ) with  1,3,5...bf s k p s s f k p   
          (1) 

  

where f1 is the power supply frequency, s is the slip and p is the number of the machine pole pairs. The 

harmonic with the lowest order in (1), known as the Left Sideband Harmonic (LSH), is the most commonly 

used in MCSA to detect a broken bar fault. Its frequency is given by 

 

 
1( ) (1 2 )LSHf s f s  .              (2) 

 

Other types of faults also generate harmonics whose frequency varies linearly with the slip. For example, 

in the case of mixed eccentricity, 

 

 1 1( ) (1 )  MEf s f s f p  
              (3) 

 

or, in the case of cyclic faults in the outer and inner races of bearings (for bearings with between 6 and 12 

balls), the rate of variation of the characteristic frequencies is [9] 

 

 1Outer race:   ( ) 0.4 (1 )o bf s N s f p             (4) 

 

 1Inner race:  ( ) 0.6 (1 )i bf s N s f p             (5) 

M 



 

where Nb is the number of balls. 

Fault diagnostic is based on the identification of fault characteristic patterns in the current spectrum: 

firstly, the presence of a given fault harmonic is detected as a distinct spectral peak; and, secondly, its 

magnitude is used either to perform a simple threshold test to diagnose the presence/absence of a fault [10], 

or to quantify its severity [1], [11]. But the dependence of the frequency on the slip (2) can make the 

application of MCSA difficult in some industrial situations, because the diagnostic indicators change with 

the motor load [12]. So, a stable regime during the sampling time is required for reliable diagnostics using 

MCSA. Load oscillations (including those caused by the broken bar itself), imbalances, misalignments, or 

defective transmissions, can smear the current spectrum [10] and hide the sideband components [13]. Wind 

generation, motors operating valves [14] or conveyor drives are examples of applications where the 

continuous changes in the load make diagnosis based on the conventional MCSA techniques difficult. 

Other cases as belt drives, coal pulverizers, gearboxes, or even specific rotor structures have been reported 

generating sideband frequencies that behave just like those from breakages in the rotor cage winding [7], 

[13]-[15]. Diverse solutions have been proposed to overcome these problems: advanced signal processing 

techniques [16], [17]; the use of other magnitudes such as partial power [18]; reactive current [7]; reactive 

power [19]; motor efficiency [9]; slot harmonics [8]; repeating the same analysis at two significantly 

different load levels to discriminate the effect of oscillations induced by the load [13]; or using on-line 

model-based strategies as in [20]. 

Transient MCSA (TMCSA) offers a different approach to overcome these difficulties: it relies on the 

same fault-related harmonic components as MCSA, such as (2), (3), (4) and (5); however, instead of 

detecting them at a single slip, the whole range of slip values during a speed transient is taken into account 

to diagnose the fault. Therefore, this approach can be a helpful complement in cases when MCSA fails. 

However, new tools are needed in TMCSA, because traditional Fourier based techniques are not valid for 

non-stationary signals. Characteristic patterns generated by different faults in the time-frequency plane 

have been obtained recently using time-frequency transforms of the stator current, such as the discrete 

wavelet transform (DWT) [21]-[23]; the continuous wavelet transform (CWT) [24]-[26]; the wavelet 

packet transform (WPT) [27], [28]; or the Wigner Ville distribution (WVD) [28]-[31]. 

The use of a full range of slip values gives much more information than analysis at a single slip value. 

However, this fact complicates the computation and interpretation of fault indicators because it adds a new 

dimension to spectral analysis: time. Time-frequency representations of the stator current, such as those 

generated by CWT or WVD, are complex 3D (time, frequency and amplitude) images. They have a high 

computational cost: the spectrogram used in MCSA has a computational complexity of O(NlogN) using the 

fast Fourier transform (FFT) (where N is the number of samples of the current), while time-frequency 

transforms must perform an FFT at every time slice, thus requiring O(N2logN) operations for the case of 

maximum overlap between time slices [32]. Moreover, 3D images in the time-frequency domain are more 

difficult to interpret than a simple frequency-only spectral plot. Neural networks have been used to interpret 

them in [2], [27], [33]; but extensive training data must be given to the neural network in order to improve 

its fault recognition capabilities. Wavelet coefficients have been used in [14], [25], and [34]; but, as [14] 

remarks, the challenge is to be able to distinguish which wavelet coefficients represent a particular faulty 

condition. The reduction from a 3D to a 2D image using ridge lines has been proposed in [35], but the 

simultaneous occurrence of different faults can generate false ridge lines. 

All the referenced TMCSA methods also require from the MCSA user a drastic change in how the 

diagnostic data is interpreted, due to the shift from simple spectrum plots to complex 3D time-frequency 

images. And in addition to changes in qualitative representation of the fault, the indicators that quantify the 

fault severity must also be redefined: namely, commercial equipment available for MCSA-based broken 

bar detection used in the field recommends -50dB ~ -35dB of the sideband harmonics as the threshold level 

for generating a warning or alarm. In TMCSA there is not even a reference quantity for establishing a 

threshold.  



To overcome the difficulties that arise in TMCSA (high computing cost and difficult interpretation of the 

diagnosis data), a new TMCSA method is presented in this paper. It is based on a specific transform of the 

time-varying current, the polynomial phase transform (PPT), and generates a simple Fourier spectrum, 

which reduces the computation effort down to MCSA levels, instead of generating a 3D time-frequency-

amplitude image. At the same time, this transform allows the user to ‘see’ the diagnosis information in the 

same way as in the well known MCSA, which is not possible with the other referenced TMCSA methods. 

However, in sharp contrast with conventional MCSA, where each spectral line is generated by the fault at a 

single slip, the spectral lines in the proposed approach concentrate the information collected from a wide 

range of motor regimes (from stand still to nominal regime). This concentration of information increases 

the robustness of the diagnostic system, drastically reducing the possibility of false positive diagnostics.  

Instead of detecting a single fault frequency, this new method detects the rate of variation of the fault 

frequency versus slip during a speed transient. In the case of the LSH (2), this rate is simply 

 

 1

( ( ))
2LSHd f s

f
ds

              (6) 

 

which, for a supply frequency f1=50 Hz, has a constant value of 2x50 = 100 Hz per slip unit, 

independently of the motor load and speed. The other types of previously mentioned faults also generate 

harmonics whose frequency varies linearly with the slip, so giving constant frequency slopes. For example, 

in the case of a two pole pair IM fed with a supply frequency of 50 Hz, and with bearings of nine balls, the 

characteristic frequency slopes of faults (2), (3), (4) and (5) are shown in Table I. 

 

TABLE I 

CHARACTERISTIC FREQUENCY SLOPES OF DIFFERENT TYPES OF IM FAULTS 

Type of fault 
Characteristic 

frequency slope 

Value for a IM 

with f1=50Hz, 

p=2, Nb=9 

(Hz / slip unit) 

Broken bars 

(2) 1

( ( ))
2LSHd f s

f
ds

  100 

Mixed 

eccentricity 

(3) 

1( )MEdf s f

ds p
  25 

Outer race 

(4) 
1

( )
0.4· ·o

b

df s f
N

ds p
  90 

Inner race  

(5) 
1

( )
0.6· ·i

b

df s f
N

ds p
  135 

 

 Harmonics components such as (2), (3), (4) and (5) are linearly frequency modulated (LFM) signals, also 

known as chirps. So, among all the various transformations that can operate on non-stationary signals, it is 

advisable to choose one that can detect the LFM components of the motor current, and evaluate their 

parameters (initial frequency and frequency variation rate). The PPT [36] is a mathematical transform that 

can perform this task using a simple, standard Fourier spectrum: the LFM signal generated by the faulty 

motor during a speed transient is transformed by the PPT into a signal with a constant frequency, which is 

processed with a FFT algorithm to obtain the signal’s parameters and detect the fault. This method can be 

applied to any motor fault that generates a frequency which depends linearly on the slip, such as (2), (3), 

(4) and (5). The PPT has been extensively used in the fields of radar, optics and acoustics for target 



identification. Nevertheless, the authors have not found in the literature any application of this tool for the 

diagnosis of electrical machines. 

A similar approach to generate a constant-frequency signal in transient regime has been recently 

proposed in [12] by applying a frequency shift to the current, different at each time slice, and proportional 

to the rotor slip. In contrast, in the method proposed in this paper, this signal is obtained directly by 

applying the PPT, which relies only on the current values.  

The aim of this paper is to introduce the PPT and its application for detecting LFM signals produced by 

different types of IM faults. The suitability of this diagnostic tool is experimentally tested in the diagnosis 

of a broken rotor bar. 

The structure of this paper is as follows: in Section II, the theoretical basis of the PPT is presented, and 

its application for detecting LFM signals is discussed. Section III deals with the use and optimization of the 

PPT for the detection of the LSH produced by a broken bar during the startup transient (LSHst). This is a 

special case for an LFM signal; previously, the LSHst is characterized in the time-frequency domain. 

Section IV applies the proposed method to the experimental analysis of two different commercial three-

phase motors, both with broken bars, and one healthy motor. Section V presents the conclusions. 

 

II. THE DISCRETE POLYNOMIAL-PHASE TRANSFORM  

A. The continuous polynomial-phase transform of a polynomial phase signal 

Let’s consider a signal having constant amplitude and continuous phase, such as 

 

 ( ) exp( ( ))    0x t A j t t T   .                 (7) 

 

According to the Weierstrass approximation theorem, any continuous function (t) on a closed interval 

[0, T] can be uniformly approximated by polynomials, so 

 

1

( ) exp( ( )) ·exp( 2 ) 0
M

m

m

m

x t A j t A j a t t T 


   
         

   (8) 

 

what is known as a signal with polynomial phase (PP). The M-order polynomial-phase transform (PPTM) 

is designed to estimate the coefficients of the polynomial phase in (8). It is defined [36] as the Fourier 

transform (FT) over the interval [0,T] of the function 

 

 

1
1

$

0

[ ( ), ] ( )

M
M q

q

M

q

x t x t q 

 
 
 



   P
              

 (9) 

where  

 
$

*

( ), if  is even
( )

( ), if  is odd

q
x t q

x t
x t q


 
               

 (10) 

 

τ is the delay time, and (.)* denotes complex conjugation. So, the PPTM of the real function ( )x t is a 

function of two variables, frequency f and delay τ, given by 

 

 
0

PPT [ ( ), , ] [ ( ), ] exp( 2 )

T

M Mx t f x t j f t dt   P .          (11) 



B. The continuous PPT of an LFM signal 

LFM signals, such as (2), (3), (4) and (5),  are a particular case of polynomial phase signals, with (t) 

being a polynomial of degree M=2 (8). Their phase and instantaneous frequency (which is the derivative of 

the phase), are given by 

 

 
2( ) exp( 2 ( / 2 )) LFMsignalx t A j bt at 

          (12) 

 
2( ) 2 ( / 2 ) Phase       t bt at  

          (13) 

 '( ) 2 ( ) Instantaneousfrequencyt bt a             (14) 

 

where b is the LFM rate in Hz/s, and a is the initial LFM frequency. 

The PPT of order 2 of the signal x(t), PPT2[x(t), f, τ], known  as the ambiguity transform, is the FT over 

the interval [0, T] of the function (9) with order M=2. This function has a particularly simple expression 

 

 
*

2[ ( ), ] ( )· ( )x t x t x t  P                (15) 

 

and its FT is given by 

 

 
*

2

0

PPT [ ( ), , ] ( ) ( )exp( 2 )

T

x t f x t x t j f t dt     .         (16) 

The effect of the transform (15) is to reduce in one order the degree of the phase polynomial of the LFM 

signal x(t). This generates a new signal with a constant frequency 
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2 2
*

2
2

[ ( ), ]

( )
·exp( 2 ( ))· ·exp( 2 ( ( ))

2 2

exp( 2 ( )) ·exp( 2 ( ) )
2

·exp( 2 ( ) ).

x t

bt b t
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b
A j a j b t

B j b t




  


   

 




     

 
   
 



P

      

(17) 

 

The frequency of this new signal is simply the product of the LFM rate b and the delay τ 

 

 

2

2

( ) exp( 2 ( / 2) )

[ ( ), ] exp( 2 ( ) ).

x t A j bt at

x t B j b t



  

 



P

              (18) 

 

 The LFM rate, b, can then be estimated with the following procedure: firstly, fix τ>0; and, secondly, 

compute the FT of 
2[ ( ), ]x t P . The spectrum will show a peak exactly at a frequency f=b·τ, which gives an 

estimation of b as f/τ. That is 

 

  2

1ˆ arg max PPT [ ( ), , ]   Hz/s
f

b x t f 


 .           (19) 



C. The discrete PPT (DPT) of a LFM signal 

If the LFM signal x(t) is sampled with a sampling interval Δt, giving a vector x of N samples, then its 

discrete polynomial-phase transform of order 2, 
2DPT [ , , ]f x  [37] is defined, in close analogy with (11), as:  

 

   
*

2

1

DPT [ , , ] [ ] [ ]exp( 2 ) 
N

n

f x n x n j n f t


  
 

   x .           (20) 

 

For a given value of delay samples τ (positive integer), (20) is just the Discrete Fourier Transform (DFT) 

of the sequence 
2[ , ]xDP , defined as 

 

 
*

2[ , ] [ ] [ ]     x n x n n N     xDP .             (21) 

 

The estimation of the LFM rate b is then 

 

  2

1ˆ argmax DPT [ , , ]   Hz/s
f

b f
t







x
           

 (22) 

 

which is valid for any positive integer τ. In [36] it has been shown that the optimal value of τ is 

 

 0.5opt N                     (23) 

 

where τopt is the value that best approximates the Cramer-Rao lower bound for the variance of the 

estimated phase coefficients in the presence of additive noise [36]. In [38] this choice is confirmed when 

based on a resolution capability analysis. This procedure has been applied to estimate the parameters of 

LFM signals in [39]. Signals with random amplitude, such as 

 

 ( ) ( )exp( ( ))    0x t A t j t t T                (24) 

 

have been analyzed in [40]. [38] estimates the parameters of multicomponent polynomial-phase signals, 

such as 

 

 ,1
1

( ) ( exp( 2 ))
K

M m

k k mm
k

x t A j a t




  .             (25) 

 

To assess the suitability of the described procedure to characterize the LSHst, the procedure will be first 

applied first to a pure, synthetic LFM signal; and then, in the next section, to the LSHst produced by a 

broken bar. In the case of a real signal, such as the LSHst extracted from the motor current, the signal is 

first converted into a complex form similar to (7) (analytic signal), using the Hilbert transform, as in [17], 

[41]. This eliminates the negative frequencies (symmetrical to the positive frequencies) in real signals, and 

avoids interference terms in the DPT spectrum. 

D. Characterization of a pure LFM signal using the DPT 

A synthetic LFM cosine signal, with an initial frequency of 50 Hz and sweep rate of -50 Hz/s,  

 

 2( ) cos(2 50( 2))x t t t               (26) 

 



has been sampled during one second at 1 kHz, giving N=1000 samples and 310t   seconds. It has been 

represented in  

Fig. 1, together with its FT. 

 

 
 

Fig. 1.  LFM cosine (top) and its spectrum (bottom). 

 

 The spectrum of the DPT2 of the LFM cosine signal (26), using a delay of τ=500 samples, is shown in 

Fig. 2. It presents a sharp peak at a frequency value of -25 Hz. The estimation of the LFM rate (19) gives 

 

 2 3

1 -25ˆ arg max DPT [ ( ), , ]  = = -50 Hz/s
500·10f

b x t f
t


 




      (27) 

 

which is exactly the LFM rate of the signal (26). 

 

 
 

Fig. 2.  Spectrum of the DPT2 of the LFM cosine signal. 

 

III. THE DISCRETE PPT OF THE LSHST 

In this section, the DPT is applied to establish the characteristic pattern of a broken bar fault using a 

synthetic LSHst. Before the application of the DPT to the LSHst it is worthwhile analyzing the time 

frequency evolution of this component. 

A. Time-frequency characterization of the LSHst 

Fig. 3 shows the evolution of the frequency of the LSHst (2) during the startup transient, from slip s=1 to 

s≈ 0. 

 



 
 

Fig. 3.  Evolution of the frequency of the LSHst as a function of the rotor slip. 

 

 The evolution of the LSHst has been analyzed by Riera-Guasp et al. [42]. Fig. 4 shows this evolution 

during the startup transient of a simulated two pole pair machine rated 1.1 kW, 400V, with a broken rotor 

bar, considering only the fundamental space harmonic of its windings, and sampled during two seconds at 5 

kHz. Both the speed and the slip of the motor during the transient are also shown in Fig. 4. A detailed 

description of the numerical model and of the simulated machine can be found in [42]. In this reference 

some characteristics of the LSHst relevant for the method proposed in this paper are justified: the LSHst 

consists of two consecutive chirps, the first with decreasing frequency and the second with increasing 

frequency. The end of the first chirp coincides with the origin of the second, at s=0.5; at this time the 

frequency of the LSHst is null. 

 

 
 

Fig. 4.  Amplitude of the LSHst (top), motor speed (middle), and motor slip (bottom) during the startup 

transient of a simulated motor. The vertical line corresponds to the time when the slip s=0.5 is reached. 

 

B. DPT2 of the LSHst 

The LSHst, shown in Fig. 4, is not a pure, constant amplitude LFM signal, but a V-shaped FM signal, so 

it would be necessary to approximate the signal using (25) and not (12). As [36] states, this type of signal is 

very difficult to estimate, since the second derivative of the phase is discontinuous at the vertex, and the 

higher order derivatives do not exist at this point. For this type of signals, [36] proposes the use of a 7-th 

order phase polynomial, and the reduction of τopt (23) to a small value, in order to localize the effect of the 

discontinuity. Moreover, the LSHst is a V-shaped FM signal with respect to the slip, not to time; although 

during most of the startup transient the slip is approximately proportional to time. 

One of the goals of the present work, carried out in this subsection, is to evaluate the feasibility of 

estimating the LSHst parameters as two consecutive LFM signals with a second order DPT instead of a 

much more complex 7-th order transform. 



 The LSHst, shown in Fig. 2, has been sampled during two seconds at 5 kHz, which gives N=10000 

samples, and Δt=2·10-4 seconds. As [36] indicates, a value of τ smaller than (23) must be used with this 

signal, in order to localize the effect of the discontinuity at the vertex of the V-shape. After extensive 

numerical simulations, a value of τ=0.1·N=1000 delay samples has been selected, instead of τ=0.5·N=5000 

delay samples given by (23), which coincides with [36]. 

The DPT2 of the LSHst (Fig. 5) clearly shows the presence of two LFM signals with opposite frequency 

rates, the positive rate signal being the most energetic. This pattern fits perfectly with the theoretical 

evolution of the LSHst during startup, as stated in Section III.  

 

 
 

Fig. 5.  Spectrum of the DPT2 of the LSHst. 

 

Once the presence of this characteristic pattern has been detected, the variation rate of the frequency 

versus the slip can be computed to assess if the detected LFM signals verify (6). This method can be used 

to confirm the diagnosis of broken bar failure. The first LFM component of the LSHst has been selected to 

this end, because it is easily located in the time axis: from t=0 to the time at which a slip s=0.5 is reached 

(vertical line in Fig. 4). The LFM rate of this component (19) is 

 

 1 4

1ˆ  (-11.26)= -56.3 Hz/s
1000·(2·10 )

b


 .           (28) 

 

The LFM rate is measured in Hz/second. To assess the presence of a broken bar fault using (6), this value 

must be converted from Hz/second to Hz/slip unit. To perform this conversion, it is necessary to know the 

seconds/slip unit ratio. The average value of this ratio can be approximately obtained using the time at 

which a slip value s=0.5 is reached. In this case, this time is 0.92 seconds, so 

 

1
1

1

0.92 0.92ˆ 56.3 =103.59 Hz/slip unit
0.5 0.5

LSHstf
b

s


 


.        (29) 

 

The theoretical rate of variation of the frequency versus the slip is (6) 2f1=100 Hz/slip unit. The first LFM 

signal approximates very well this value, so the diagnostic of bar breakage is confirmed. 

These results suggest that the combined use of, first, the detection of the characteristic pattern of two 

LFM signals with rate of variation of opposite sign, and, second, the measurement of the frequency-slip 

rate of the first LFM component of the LSHst (in case of a positive detection), allow for the correct 

diagnosis of bar breakages using the proposed method. The results also show that this process can be 

accomplished with a simple DPT of degree two applied to the LSHst in the time domain, using the slip 

information to confirm the fault in case of a positive detection. In the following section, this method will be 

validated experimentally by testing commercial induction motors. 

 



IV. EXPERIMENTAL VALIDATION 

The proposed method has been applied to the analysis of two commercial induction motors, one with two 

pole pairs and the other with one pole pairs. Their data are given in the appendixes A and B, respectively. 

The test equipment, displayed in Fig. 6, consists of a current transformer, a Yokogawa DL750 oscilloscope 

and a personal computer connected to it via an intranet network. Experimental tests have been carried out 

under two different conditions: healthy state and faulty condition (in which a single bar has been broken by 

drilling a hole).  

 

 
Fig. 6.  Experimental setup (left) and motor with a broken bar (right) used for the validation of the proposed 

methodology. 

 

A limit of the method is the need of a minimum length for the startup to avoid both the influence of the 

initial electromagnetic transient, taking place after the connection of every machine, and the border effects, 

which in the earlier stage of the startup transient can mask completely the sideband components. As a 

guideline, with starting times above 0.5 seconds, the method is suitable. 

A. General schema of the analysis via DPT2 of a motor with broken bars  

The proposed method to detect bar breakages in a squirrel cage motor using the DPT2 can be summarized 

as: 

1) Extraction of the LSHst from the startup current of the motor, using the DWT of the current [42], [43]. 

2) Computation of the DPT2 of the LSHst, by means of the squared modulus of the FFT of the 

transformed signal (21). This transform reduces the order of the phase polynomial by one order, 

converting a chirp into a constant frequency signal. This stage is very fast and easy to compute, 

because it involves just a single product of the original signal and a copy delayed by a fixed number of 

samples, followed by the FFT of this product. 

3) Identification of the broken bar pattern in the spectrum of the DPT2: two peaks with opposite frequency 

rates. This method is akin to the well known identification procedure of the same fault in MCSA, the 

detection of two sideband components around the fundamental component. 

4) In case of positive identification, the presence of the fault can be further assessed by comparing the 

slope of the detected chirp components with the theoretical value (6). Again, this process parallels the 

one employed in MCSA, where the frequency of the sideband harmonics is compared with the 

theoretical harmonic, (which depends on the motor slip, unlike in the proposed method). 

B. Analysis via DPT2 of the two pole pair IM with one broken bar  

Fig. 7 shows the current of the first commercial motor (Appendix A) with a broken bar, tested during a 

startup transient. The motor is unloaded and has been fed with a reduced voltage of 160 V to achieve a 

longer startup transient. The startup current was recorded during two seconds using a sampling frequency 

of 10 kHz, giving N=20000 samples and Δt=10-4 seconds. 



 
 

Fig. 7.  Current (top) and speed (bottom) of the experimental two pole pair motor with a broken bar during 

the startup transient. The vertical lines mark the time when the slip s=0.5 and the end of the startup 

transient. 

 

1) Extraction of the LSHst from the startup current  

The LSHst must be first extracted before performing an analysis with the DPT2. There are several 

methods proposed in the literature, including [29], [41]-[45], for extracting components from transient 

signals. In this work, we use the method proposed in [41] and [42], which is specifically designed for 

extracting the LSHst from the startup transient current. In this work the LSHst is extracted using the DWT, 

with the dmeyer wavelet as the mother wavelet and nf=7 decomposition levels. As demonstrated in [42], 

the decomposition level of the approximation signal that includes the left sideband harmonic is given by  

 

  1log( / ) log(2) 7f Sn Integer f f   (30) 

where fs denotes the sampling frequency of the current signal (fs=10 kHz). Fig. 8 shows the 

approximation signal with level 7 of the wavelet decomposition of the startup current, which contains the 

LSHst; as demonstrated in [42], in the case of rotor asymmetry, this approximation signal fits the LSHst; so 

it will be used as the experimental LSHst of the faulty machine to validate the proposed approach. 

 

 
 

Fig. 8.  LSHst of the two pole pair motor with a broken bar extracted using the approximation signal of the 

DWT of the motor current. The first vertical line marks the estimated time when the motor reaches a slip 

s=0.5. 

 

2) Computation of the DPT2 of the LSHst 

The DPT2 of this experimental LSHst has been computed using τ=0.1·N=2000 delay samples.  

 

3) Identification of the broken bar pattern in the spectrum of the DPT2 

The spectrum of the DPT2 of the experimental LSHst of the faulty machine (Fig. 9) shows a 

characteristic pattern, very easy to identify, which can be described qualitatively as follows: the pattern 

consists of two clear predominant peaks, one corresponding to a negative frequency and the other 

corresponding to a positive frequency, with the positive peak being higher than the negative peak.  



 

 
 

Fig. 9.  Spectrum of the DPT2 of the experimental LSHst in the two pole pair motor with a broken bar. 

 

These two peaks have a clear physical meaning; they are produced by the presence in the analyzed LSHst 

of two predominant LFM signals with opposite sweep frequency rates, the signal with the positive rate 

being the most energetic. This pattern clearly indicates the presence of a broken bar fault as was justified in 

Section III.  

 

4) Confirmation of the detected fault by comparing the estimated chirp rate of harmonics with the 

theoretical rate 

Once detected the presence of this characteristic pattern, the rate of variation of the frequency versus the 

slip can be computed to assess if the detected LFM signals verify (6). This can be used to confirm the 

failure diagnostic. The rate of the LFM component of the LSHst with negative slope can be calculated by 

means of Fig. 9 and (19) 
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This component presents a change in slip from 1 to 0.5 in 0.63 seconds (see Fig. 7), so the ratio  
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gives the variation rate of the experimental LSHst frequency vs. slip in Hz per slip unit. This value is 

very close to the theoretical value (6), which confirms that this pattern corresponds to a broken bar fault. 

These considerations are also applied to the analysis of the positive peak of the spectrum of the 

experimental LSHst. From Fig. 9 we obtain 
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so, from Fig. 7 
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  which is a value that is also very close to the theoretical value (6). 



In some industrial facilities the speed of the motor during the startup transient may be unavailable. A 

single current probe is sufficient to measure the motor current, and this can easily be inserted in the power 

line. However, to measure the motor speed it is necessary to connect an encoder to the motor shaft and this 

is more difficult to implement. So, in some facilities, the motor speed is not measured. Reliable speed 

estimators can be used to calculate the motor speed, such as the one based on slot harmonics proposed in 

[16], [44], [46] or the adaptive scheme, based on the measured currents and voltages, used in [20]. 

Nevertheless, it is still possible to confirm the diagnosis of broken bars fault without measuring or 

estimating the instantaneous motor speed: it suffices to obtain, from the graphical representation of the 

LSHst, the duration of both chirp components (which vanish at slips s=0.5 and s=1, respectively, as stated 

in Section III). In Fig. 8 these times have been estimated as t=0.65 seconds for the component with a 

negative slope, and t=1.2-0.65 seconds for the component with a positive slope, being slightly different 

from the measured values. This gives a variation rate of the LSHst frequency vs. slip unit of  
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for the negative slope component and 
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for the positive slope component These values are again very close to the theoretical values (6), which 

confirms that the detected pattern corresponds to a broken bar fault. 

C. Analysis via DPT2 of the one pole pairs IM with one broken bar  

The second commercial motor that has been tested is a one pole pair IM, with a broken bar. In this case, 

instead of testing it unloaded and with a reduced supply voltage, it has been fed with nominal voltage 

supply and mechanically connected to a high inertia load (a dynamo machine electrically disconnected), to 

achieve a longer startup transient, as shown in Fig. 10. The startup current and the speed (Fig. 11) have 

been recorded during 10 seconds using a sampling frequency of 10 kHz, giving N=100000 samples and 

Δt=10-4 seconds. 

 

 
 

Fig. 10.  Experimental test rig for the one pole pair motor (left), coupled mechanically to a high inertia 

dynamo machine (right).  

 

To diagnose the motor, the four steps of the method are applied to this motor. 

 



 
Fig. 11.  Current (top) and speed (bottom) of the experimental two pole pair motor with a broken bar during 

the startup transient. The vertical lines mark the time when the slip s=0.5 and the end of the startup 

transient. 

 

1) Extraction of the LSHst from the startup current of the motor 

The method for extracting the LSHst harmonic has been applied exactly as explained in Section IV.B.1. 

The approximation signal with level seven of the previous wavelet decomposition is shown in Fig. 12. 

 

 
Fig. 12.  LSHst of the one pole pair motor with a broken bar extracted using the approximation signal of the 

DWT of the motor current.  

 

2) Computation of the DPT2 of the LSHst 

The DPT2 of this experimental LSHst has been computed using τ=0.1·N delay samples, as explained in 

Section IV.B.2. In this case τ=0.1·105=104 samples. 

 

3) Identification of the broken bar pattern in the spectrum of the DPT2 

The spectrum of the DPT2 of the experimental LSHst is shown in Fig. 13. 

 

 
Fig. 13.  Spectrum of the DPT2 of the experimental LSHst in the one pole pair motor with a broken bar. 

 



These two peaks are produced by the presence in the analyzed LSHst of two predominant LFM signals 

with opposite sweep frequency rates, where the positive rate signal is the most energetic. This pattern 

clearly indicates the presence of a broken bar fault as was justified in Section III. 

 

4) Confirmation of the detected fault by comparing the estimated chirp rate of harmonics with the 

theoretical rate 

Once detected the characteristic pattern of a broken bar fault in the spectrum of the DPT2, the rate of 

variation of the frequency versus the slip can be computed to assess that the detected LFM signals verify 

(6). The rate of the LFM component of the LSHst with negative slope can be calculated from Fig. 13 and 

(19) as 
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This component presents a change in slip from 1 to 0.5 in 3.05 seconds (see Fig. 11), so the ratio  
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gives the rate of variation of the experimental LSHst frequency vs. slip in Hz per slip unit. This value is 

very close to the theoretical value (6), which confirms that this pattern corresponds to a broken bar fault. 

These considerations are also applied to the analysis of the positive peak of the spectrum of the 

experimental LSHst. From Fig. 13 we obtain 
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so, from Fig. 11 
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  a value which is also very close to the theoretical value (6). 

D. Analysis via DPT2 of a healthy motor 

A healthy motor, with the same characteristics and operating conditions as the faulty motor tested in 

section IV.B (two pole pair, Appendix A), has also been analyzed using the procedure outlined in Section 

IV.A. Fig. 14 shows the current and the speed during the startup transient, sampled using the same 

parameters as in the case of the faulty motor. To diagnose the motor, the four steps of the method are 

applied. 



 
Fig. 14.  Current (top) and speed (bottom) of the experimental healthy motor during the startup transient. 

The vertical line corresponds to the time when slip s=0.5 is reached. 

 

1) Extraction of the LSHst from the startup current 

The method for extracting the LSHst harmonic has been applied exactly as explained in Section IV.B.1. 

The approximation signal with level seven of the previous wavelet decomposition, which should contain 

the expected LSHst, is shown in Fig. 15. 

 

 
Fig. 15.  LSHst of the healthy motor using the approximation signal of the DWT of the motor’s current. 

 

2) Computation of the DPT2 of the LSHst 

The DPT2 of this experimental LSHst has been computed using τ=0.1·N delay samples, as explained in 

Section IV.B.2. 

3) Identification of the broken bar pattern in the spectrum of the DPT2 

The spectrum of the DPT2 of the LSHst is shown in Fig. 16, where a single peak appears. This pattern 

does not correspond to the characteristic pattern of a broken bar fault (two LFM signals with opposite 

sweep rates), so in this case the diagnostic is the absence of a broken bar fault, as verified by visual 

inspection of the machine’s rotor. In this case, it is therefore not necessary to proceed to step 4 

(confirmation of the fault). 

 
Fig. 16.  Spectrum of the DPT2 of the experimental LSHst in the experimental healthy motor. 

E. Representation of the DPT2 spectrum amplitudes in db 

To facilitate the recognition of the fault patterns the amplitudes of the sideband harmonics of Fig. 9 and 



Fig. 16 can be represented as dB values with respect to the signal’s energy (Fig. 17), in a similar way to 

MCSA, where the broken bars fault appear as sideband harmonics with respect to the grid frequency mains 

component. 

 
 

Fig. 17.  Spectrum of the DPT2 of the healthy (top) and fault (bottom) two pole pair motor, with the 

amplitudes represented as dB with respect to the signal energy.  

V. CONCLUSIONS 

In this paper, a new methodology for the diagnosis of induction motors based on the discrete polynomial 

transform has been presented. Firstly, it has been shown that different types of faults such as mixed 

eccentricities, bar breakages or bearing damage produce components in the stator current whose frequency 

varies linearly with the slip. When the machine undergoes a transient regime with variable speed, the fault 

components behave as linear frequency modulated signals. Each type of fault has a characteristic constant 

frequency-slip slope which is independent of the load conditions and motor characteristics. The new 

diagnostic method proposed in this paper relies on the ability of the DPT to detect and discriminate LFM 

components in the current signal, under time-varying conditions. The feasibility of the proposed approach 

has been experimentally tested in the particular case of broken bars detection during a startup transient.  

It has been also shown that the computational complexity of the DPT is very low, compared with other 

TMCSA methods, because it does not need to generate any 3D time-frequency-amplitude image; just a 

single FFT of the transformed current signal is sufficient to obtain the characteristic pattern and frequency-

slip slope of the fault components. This feature enables a reliable diagnosis. Another advantage of the 

proposed method is that the results are presented in a very similar manner to the classical Fourier spectrum: 

the measured slopes appear as distinct peaks in the DPT spectrum, where each type of fault generates 

characteristic spectral lines. So this method can complement the classical MCSA method for detecting 

motor faults in cases when the diagnostic is not clear (due to load oscillations, etc.). 



A limitation of the method is the need for a minimum startup time, to avoid both the influence of the 

initial electromagnetic transient and the border effects of the transform. As a guideline, startup times need 

to be greater than 0.5 seconds. This method has a clear application field in the diagnosis of high power 

machines that start under heavy conditions. 

APPENDIX A 

Machine parameters: Three-phase induction motor of 1.1 kW, 50 Hz, 230/400 V, 2.7/4.6 A, 1410 rpm, cos 

φ=0.8. 

APPENDIX B 

Machine parameters: Three-phase induction motor of 1.5 kW, 50 Hz, 230/400 V, 3.25/5.65 A, 2860 rpm, 

cos φ=0.85. 
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