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Abstract—The ill-convergence of multi-parameter estimation 

due to rank-deficient state equations of permanent magnet 
synchronous machines (PMSM) is investigated. It is verified that 
the PMSM model for multi-parameter estimation under id=0 
control is rank-deficient for simultaneously estimating winding 
resistance, rotor flux linkage and winding inductance, and cannot 
ensure them to converge to correct parameter values. A new 
method is proposed based on injecting a short pulse of negative id 
current and simultaneously solving two sets of simplified PMSM 
state equations corresponding to id=0 and id≠0 by using Adaline 
neural network. The convergence of solutions is ensured, while the 
minimum |id| is determined from the error analysis for non-salient 
pole PMSM. The proposed method does not need the nominal 
value of any parameter and only needs to sample the winding 
terminal currents and voltages, and the rotor speed for 
simultaneously estimating the dq-axis inductances, the winding 
resistance and the rotor flux linkage in non-salient pole PMSM. 
Compared with existing methods, the proposed method can 
eliminate the estimation error caused by the variation of rotor 
flux linkage and inductance as a result of state change due to 
injected d-axis current in the surface-mounted PMSM (SPMSM). 
The method is verified by experiments and the results show that 
the proposed method has negligible influence on the output torque 
and the rotor speed, and has good performance in tracking the 
variation of PMSM parameters due to temperature variation. 
Index Terms— temperature, Adaline, parameter estimation, 
PMSM, stator winding resistance, rotor flux linkage, 
identification 

NOMENCLATURE 

R:  Stator winding resistance (Ω). 

Rp:  External resistance added in series with winding (Ω). 
Ld, Lq:  dq-axis inductance (H). 
∆L:  Lq−Ld= ∆L(H). 
id0:  Actual d-axis current (A) under id=0 control. 
ψm(id): Rotor flux linkage (Wb).  
T:  Rotor magnet temperature (oC). 
T0:  Nominal rotor magnet temperature (oC). 
ψm0(T) =ψm(id=0, T): Actual rotor flux linkage (Wb) under id =0 
control at rotor magnet temperature of T.  
ψme(T): Estimated rotor flux linkage (Wb) by proposed method 
under id =0 control at rotor magnet temperature of T.  

( )m diψ∆ = ψm0−ψm(id): Rotor flux linkage variation (Wb) due 
to id ≠0. 
ψmerror: Estimation error (Wb) caused by mψ∆  and ∆L. 
η: Convergence factor of Adaline NN.  

I. INTRODUCTION 
ermanent magnet synchronous machines (PMSM) are now 
widely employed in industrial servo drives, electric/hybrid 
electric vehicles, and wind power generators, etc., due to 

high power/torque density. It is important to obtain accurate 
machine parameters for online fault diagnosis and rotor/stator 
temperature monitoring, as well as for achieving high control 
performance, e.g. in determining the optimal current profile in 
order to achieve maximum torque per ampere control for 
electric vehicle application. Many methods have been proposed 
to obtain the parameters from the terminal signals and can be 
categorized and reviewed as follows.  

A. Online estimation 
Modern control theories, such as extended Kalman filter 

(EKF), model reference adaptive system (MRAS) and recursive 
least-square (RLS) algorithm and neural network (NN), can be 
used for online parameter estimation [1]-[12][14]-[24]. For 
example, [1]-[4] estimated the winding resistance and 
inductances without considering the rotor flux linkage 
estimation. [1] proposed a method based on the Lyapunov 
stability theorem for identifying the winding resistance and 
inductance in surface-mounted PMSM (SPMSM); [2] proposed 
a MRAS based resistance identification method for sensorless 
control; [3] proposed an online computing method for 
identifying the dq-axis inductances and winding resistance 
while the rotor flux linkage was set to the nominal value; In [4], 
the rotor flux linkage was regarded as a constant and a RLS 
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method was applied for estimating the winding resistance and 
dq-axis inductances of surface-mounted and interior PMSM, 
respectively. Other works, such as [5]-[7], focused on 
estimating the rotor flux linkage as well as other parameters. In 
[5], two sensorless MRAS schemes were proposed for 
estimating the rotor flux linkage and winding resistance, 
respectively. However, [5] found that it was impossible to 
simultaneously identify three parameters (rotor speed, winding 
resistance and flux linkage) by two variables. Hence, [5] 
proposed to estimate the winding resistance and rotor flux 
linkage by two independent schemes. The problem in [5] also 
occurred in [6], in which an EKF was used for simultaneously 
identifying the winding resistance and rotor flux linkage. In 
addition, [7] proposed an online multi-parameter identification 
method based on addition power and torque measurement 
technique. Parameters such as copper loss, stator loss, 
mechanical loss and stray loss were correctly estimated 
although high accuracy digital power meter and torque 
transducer are required.  

B. Offline estimation  
Offline parameter estimation is easier for methods which 

require intensive computation, such as fast Fourier transform 
(FFT), evolutionary computation and EKF. Many researchers 
have focused on testing the parameters offline at standstill state 
of the machine since the standstill PMSM steady-state 
equations can eliminate the rotor flux linkage and hence the 
winding resistance can be easily estimated. For example, a DC 
step voltage [8] and AC square wave voltages [9] were injected 
into the PMSM machine at standstill for estimating the winding 
resistance and dq-axis inductances. In [10], a Particle Swarm 
Optimization based PMSM parameter identification method 
was proposed to offline estimate the resistance and rotor flux 
linkage. In [11], the fundamental components of phase current 
and voltage waveforms were extracted by FFT and the winding 
resistance was set to the nominal value, the dq-axis inductances 
were estimated by offline derivative computation. In [12], it 
proposed how to generate multi-sinusoidal test signals for 
identifying the PMSM parameters by a voltage-source inverter. 
In [13], it proposed how to offline estimate the iron loss of an 
induction machine by time-stepping finite element method. 

C. Hybrid estimation 
Hybrid offline and online parameter estimation was 

introduced recently [14][15]. In [14], the standstill rotor 
position was firstly obtained by injecting high-frequency 
current. With the estimated standstill rotor position, the 
winding resistance and dq-axis inductances were also estimated 
at standstill, while the rotor flux linkage was estimated at rotor 
rotating condition. In [15], the PMSM inductance, resistance 
and equivalent iron loss resistance were measured at standstill 
while the rotor flux linkage, inertia and viscous constants were 
estimated at rotating condition by an adaptive algorithm. 
Clearly, the offline hybrid estimation [8]-[14] method could not 
online track the parameter variation which may be caused by 
neglecting the magnet temperature rise and core loss [11]. 

D. Rank-deficient problem 
If the rank of the steady state dq-axis equation is less than the 

number of parameters to be identified [1]-[6], the equation will 
be rank-deficient and the estimated results may not be ensured 
to converge to the correct values and exhibit significant error.  
For example, in [3][4][6], one equation was used for online 
estimating more than two parameters. Consequently, it was 
found in [3] that the estimated R (6.3Ω) was much smaller than 
the nominal value (7.5Ω). Therefore, some online estimation 
methods [1][2][5] were proposed to fix one or two parameters 
to nominal values in order to reduce the number of parameters 
to be estimated. Similarly, in [4], the dq-axis inductances and R 
were estimated by setting the flux linkage to the nominal value.  

In the control of PMSM, id=0 vector control is often 
employed. However, as will be shown later in Section II, when 
id=0 it is rank-deficient to simultaneously estimate R and ψm 
although the inductance can be independently estimated. When 
id≠0 it is also rank-deficient to simultaneously estimate R, ψm 
and the inductance. However, in this case (id≠0) if the 
inductance is set to be constant, the machine equation will be of 
full rank and can be used for simultaneously estimating R and 
ψm [17][18]. However, as will be shown in section II, the 
accuracy of such method will suffer from the actual variation of 
parameter(s) which is (are) fixed in the estimation.  

In this paper, a new online estimation method is proposed by 
employing two sets of simplified non-salient pole PMSM state 
equations corresponding to id=0 and id≠0, whose solutions will 
not be ill-converged, while the accuracy of estimation is 
ensured by employing the minimum |id| which is obtained from 
the error analysis for non-salient pole PMSM. Compared with 
existing methods using id≠0 [17][18][22], the proposed method 
can ensure the estimation errors in winding resistance and rotor 
flux linkage due to Lq≠Ld and the assumption of 
ψm(id≠0)=ψm(id=0) to be negligible. Furthermore, the proposed 
method does not need the nominal value of any parameter and 
only needs to sample the winding terminal currents and 
voltages and the rotor speed to obtain the winding inductance, 
the winding resistance and the rotor flux linkage by using 
Adaline neural network [26]. 

The paper is organized as follows. Existing problems in 
multi-parameter estimation methods based on rank-deficient 
PMSM equations, such as why most estimators based on the 
rank-deficient PMSM equations are vulnerable to converge to 
the sub-optimum, rather than global optimum, will be discussed 
and investigated experimentally in section II. The proposed 
new online estimation method is presented in Section III, 
together with the error analysis for the simplification of PMSM 
state equations. The experimental validation on the prototype 
SPMSM under the conditions of step change in winding 
resistance and temperature rise is shown in section IV.  

II. RANK-DEFICIENT PROBLEMS IN PMSM 
MULTI-PARAMETER ESTIMATION 

In this section, the existing rank-deficient problem in PMSM 
multi-parameter estimation is highlighted and investigated. 
Although the estimation may be based on different reference 
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frames, such as rotor reference frame (dq-axis), stator reference 
frame (аβ-axis) and abc-three-phase reference frame, similar 
rank-deficient problem exists. Therefore, for simplicity, it will 
focus on that based on the rotor reference frame.  

A. Rank-deficient Equations and Problems with Existing 
Methods 
Assuming that the PMSM has negligible cross-coupling 

magnetic saturation, structural asymmetry, iron losses, magnet 
eddy current loss, and harmonics in the descriptive functions of 
windings, rotor anisotropy and coercive force of magnets, the 
dq-axis equations of the PMSM are given by: 

qd d
d q

d d d

Ldi uR i i
dt L L L

ω= − + +                                                    (1a) 

q qd m
q d

q q q q

di uLR i i
dt L L L L

ψ
ω ω= − − + −                                            (1b) 

where id, iq, ud and uq are the dq-axis stator currents and 
voltages; ω is the electrical angular speed; R, Ld, Lq and mψ  are 
the stator resistance, the dq-axis inductances and the rotor flux 
linkage, respectively. In this paper, before estimation, the 
measured data including dq-axis currents, voltages and rotor 
speed are filtered by first-order Butterworth low-pass filters, 
respectively. Therefore, the average part of measured data can 
be obtained after filtering and will be used for subsequent 
estimation. After filtering, the parameter estimation can be 
based on the steady-state machine model [24], which can be 
expressed in the discrete form as: 

( ) ( ) ( ) ( )d d q qu k Ri k L k i kω= −                                                     (2a) 

( ) ( ) ( ) ( ) ( )q q d d mu k Ri k L k i k kω ψ ω= + +                                     (2b) 

where ‘k’ is the index of the discrete sampling instant. Under id 
=0 control, (2) can be simplified into: 

( ) ( ) ( )d q qu k L k i kω= −                                                            (3a) 

( ) ( ) ( )q q mu k Ri k kψ ω= +                                                           (3b) 

Parameters, such as winding resistance, inductance and rotor 
flux linkage, are regarded as unknown parameters to be 
estimated. Other variables, such as dq-axis currents, voltages 
and electrical angular speed, are measured. Since there are 
more than two parameters in two equations, (2) can be regarded 
to be rank-deficient.  

As winding resistance, inductance and rotor flux linkage 
usually vary with the load conditions, magnetic saturation and 
temperature rise etc., it will result in inaccurate estimation if 
they are not estimated at the same time. However, due to 
rank-deficiency, if the convergence speed of the algorithm is 
not appropriately controlled and/or the initial values are chosen 
not close to the actual values, ill-convergence may occur since 
there are infinite numbers of sub-optimum.  

Therefore, no matter which estimation method, such as EKF, 
MRAS, NN and RLS, is employed for multi-parameter 
estimation, the rank of employed mathematical model should 
be considered first. Bearing this in mind, it can be found in 
literature that some researchers [16]-[22] tried to solve this 
problem and have made good contributions. For example, in 
[16], an additional torque equation was introduced by a load 

test and was combined with online estimation methods so that 
three parameters (dq-axis inductances and the rotor flux linkage) 
could be estimated. In [17], the inductance was fixed to the 
nominal value and an error model was employed for resistance 
and rotor flux linkage estimation. Although it was novel to 
inject an alternating current signal in d-axis current for 
resistance and flux linkage estimation, the method could not 
account for the influence of inductance variation. In addition, 
no experimental results were presented for the resistance and 
rotor flux linkage. In [18], a fast estimation for rotor flux 
linkage based on PMSM reactive power by using id<0 control 
was proposed. Although it would cause flux weakening, its 
computation did not need to consider the winding resistance 
value. However, similar to [17], it did not account for 
inductance variation. In [19], a RLS based method was 
proposed for estimating the winding resistance, rotor flux 
linkage and inductance. However, during the estimation, it 
required periodic change in torque and could not be effective 
when the machine is at steady state. Consequently, the 
estimated inductance and rotor flux linkage would not be the 
same values as those under id=0 and iq=constant. In [20], a 
winding resistance estimation based on online injecting the DC 
current was proposed. It was novel to estimate the winding 
resistance without considering the rotor flux linkage, but it is 
still required to be verified by experiment. In [21], it proposed 
to estimate the stator winding resistance and rotor flux linkage 
at low speed and high speed, respectively. However, it could 
not estimate them simultaneously and required the rotor speed 
to be changed for estimation. In [22], it proposed to 
simultaneously estimate the stator winding resistance, dq-axis 
inductances and rotor flux linkage by injecting a three-level 
perturbation in the d-axis current. However, since its estimation 
was based on rank-deficient model, the experimental results 
showed that it still could not ensure the results to be converged 
to the correct values and actually will finally diverge. 

In order to illustrate the problems in existing estimation 
methods based on rank-deficient PMSM equations, four 
schemes are introduced and investigated experimentally, the 
design of estimators being based on Adaline NN and described 
in Appendix A. 

Scheme I: Adaline NN estimators for inductance and 
winding resistance, i.e. (A.3) and (A.4), are used, while the 
rotor flux linkage is fixed and set to its nominal value. 

Scheme II: Adaline NN estimators for inductance and rotor 
flux linkage, i.e. (A.3) and (A.5), are used, while the winding 
resistance is fixed and set to its measured value. 

Scheme III: Estimators, (A.3), (A.4) and (A.5), are used for 
simultaneously estimating the inductance, winding resistance 
and rotor flux linkage. The estimated winding resistance value 
of (A.4) and estimated rotor flux linkage value of (A.5) will be 
transferred to each other at every step of estimation. 

Scheme IV: Step 1: The inductance value (Ld=Lq) when id =0 
is estimated by (A.3). Step 2: The inductance is set to the value 
estimated from the first step and a negative id is injected. Since 
the inductance is set to be constant, the dq-axis equation when 
id <0 is of full rank for simultaneously estimating the winding 
resistance and rotor flux linkage. When id <0, the winding 
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resistance can be estimated from d-axis equation by (A.6). Step 
3: With the estimated winding resistance value, the rotor flux 
linkage can be then estimated by (A.5).  

It is worth to note that Schemes I and II are similar to the two 
schemes proposed in [5], Scheme III is similar to the 
rank-deficient estimation method proposed in [3][6], whilst 
Scheme IV is similar to the schemes proposed in [17] and [18]. 
In addition, [4] is similar to Scheme II when it is used for the 
non-salient pole PMSM parameter estimation. However, [4] 
will be similar to Scheme III if it is used for salient-pole PMSM 
parameter estimation. 

B. Experimental Results and Analysis 
The above four schemes are verified on a vector controlled 

SPMSM drive system. The details of hardware drive platform 
as well as the prototype machine design parameters are given in 
Appendix B. In the experiment, the sampling period of drive 
control system and the update interval of all the estimation 
methods are set to be 83.3μs. Since the measured signals such 
as rotor speed, dq-axis currents and voltages fluctuate around 
the values specified by the PI regulators, these signals are 
filtered by first-order Butterworth low-pass filters before 
estimation. Figs. 1(e) and (f) compare the results of Schemes I 
and II with and without first-order Butterworth low-pass filters. 
As can be seen, the estimated result with low pass filtering has 
no oscillation and converges very fast to the final value.  

As can be seen from the estimated results of Schemes I and II 
in Figs. 1(a) and (c) which are similar to the two schemes in [5], 
it is evident that the two schemes are accurate compared with 
the nominal values given in Table I when the PMSM is at 
nominal temperature. However, after heating for 20 minutes, 
contrary to the actual variation trend which would be expected, 
the estimated rotor flux linkage becomes larger as a result of 
mismatching between actual and nominal winding resistance 
values, Fig. 1(b). The similar problem also occurs in Scheme II, 
the estimated winding resistance value (0.421Ω) being less than 
the actual one (0.456Ω) due to the mismatching between actual 
and nominal rotor flux linkages. Experimental results of 
Scheme III, Fig. 2(a), show that when the initial values of the 
three parameters to be estimated are far from the nominal 
values, the estimated winding resistance and rotor flux linkage 
are ill-converged into 0.895Ω and 67.0mWb, respectively, 
which are significantly different from the nominal values in 
Table I. When the initial values are set to be the nominal values 
in Table I, it is still hard to ensure the estimated solutions 
always correct since there inevitably exist fluctuations in 
measured signals which may cause the estimation solution to 
slowly diverge into sub-optimum if the measured dq-axis data 
are not filtered. It is evident from Figs.2(b) and (c) that the 
estimated final results of R and ψm are still very sensitive to the 
convergence speed (η) and low-pass filters, and may be 
converged to wrong values or even diverged. Even if the 
dq-axis data are filtered by low-pass filters, the convergence 
speed of estimators will also impact the estimation results, as 
shown in Fig. 2(b).  

However, for the q-axis inductance Lq, it can be estimated 
independently from (3a), irrespective of the estimated values of 

winding resistance and rotor flux linkage. Further, (3a) is of full 
rank. Therefore, it can be uniquely determined by the measured 
d-axis voltage, q-axis current and rotor speed. This is confirmed 
in Figs. 2(a)-(c), in which the estimated q-axis inductance 
values Lq(id=0), are all converged to the same result. 

Experiment results of Scheme IV, Fig. 3, show that if the 
dq-axis inductances are both set to Lq(id=0), the estimated 
winding resistance and rotor flux linkage will be different from 
the nominal value and vary due to different id. This is due to the 
inductance variation as well as the difference between Ld and Lq 
caused by id(≠0). [17] and [18] are based on the similar 
principle of Scheme IV, both assuming that Ld=Lq and the 
inductance will not change with id. Consequently, they will 
have the same problem as Scheme IV.  

By the way, the ill-convergence phenomenon did occur in 
some existing papers, such as [3][4][6]. However, in [4], it 
guessed that it was caused by nonlinearity, while in [3] it 
guessed that it was caused by modeling error but without 
further explanation. When the PMSM machine is modeled in 
the stator abc or аβ-axis reference frame, similar rank-deficient 
problem also exists [6]. 

  
(a)  Scheme I (normal temperature). (b)  Scheme I (after heating for 20 

minutes). 

  
(c)  Scheme II (normal temperature). (d)  Scheme II (heating for 20 

minutes). 

  
(e)  Scheme I. (f)  Scheme II. 

Fig. 1.  Estimated results of Scheme I and Scheme II. 
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(a) Initial values far from actual 

values   
(b) Initial values close to actual values 

with low-pass filtering   

 
(c) Similar to (b) but without low-pass filtering for sampled signals 

Fig. 2.  Simultaneously estimated resistance, inductance and rotor flux linkage 
by Scheme III. 

 
Fig. 3.  Estimated results of Scheme IV (when id=−0.5 and id=−0.75). 

III. PROPOSED METHOD 
In this section, a new method to simultaneously online 

estimate the winding inductance, the winding resistance and the 
rotor flux linkage under id=0 control will be proposed to 
overcome the foregoing problems which are associated with the 
rank-deficient equations of PMSM.  

id
(A

)

Time(ms)

50ms 50ms
id=0

id=-2

Measuring and 
memorizing Data0

k0: from 0 to N-1

Measuring and 
memorizing Data1
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Data0:id0(k0),iq0(k0)

Data1:id(k1),iq(k1)

Data0:ud0(k0),uq0(k0)

Data1:ud(k1),uq(k1)

Variable 
model (5)

Comparison and 
adjusting the 

parameter values

Output

Make k=k0=k1 and input from 0 to N-1 in sequence

2ms delay

 
(a) Process of sampling, memorizing and estimation 

ω

0 0 0 0, , , 0d q q du u i i =

, , , 0d q q du u i i <

Rmeψ

0 0 00 0 00 ( ) ( ) ( )d q qu k L k i kω= + 0qL

dL

Error cancellation  analysis 
for Ld≠Lq and ψm0≠ψm

Assuming Ld=Lq and ψm0=ψm

1 1 1

0 0 00 0

( ) ( ) ( )
( ) ( ) ( )

me

q q me

U k RI k k
u k Ri k k

ψ ω
ψ ω

= +
 = +

0 0 0 0 0

1 1 1 1

1 1 1 1 1

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

q q me

d d q

q q d me

u k Ri k k
u k Ri k L k i k
u k Ri k L k i k k

ψ ω

ω

ω ψ ω

 = +


= −
 = + +

Make k=k0 =k1

Make k=k0 =k1

Assuming ψm0 =ψm

 
(b)  Mathematical model 

Fig. 4.  Schematic diagrams of estimation and mathematical model. 
The main features of proposed method include:  
(a) Two sets of simplified PMSM state equations 

corresponding to id=0 and id≠0 are obtained by injecting a short 
pulse of negative d-axis current and solved simultaneously;  

(b) The convergence of solutions will be ensured by 
assuming Lq(id≠0)=Ld(id≠0) (due to the non-salient pole 
structure of used PMSM) and ψm(id≠0)=ψm(id=0) since the 
corresponding simplified PMSM equations are of full rank;  

(c) The error analysis is carried out and a minimum |id| is 
determined to ensure negligible estimation errors in winding 
resistance and rotor flux linkage under id=0 control due to the 
assumption of Lq(id≠0)=Ld (id≠0) and ψm(id≠0)=ψm(id=0);  

(d) The proposed method does not need the nominal value of 
any parameter. 

Under normal operation, the SPMSM is under id=0 control. 
The two sets of PMSM state equations are obtained by 
measuring two sets of steady state rotor speed, dq-axis currents 
and voltages, Data0 and Data1, corresponding to id=0 and id≠0, 
respectively. The data associated with id=0, Data0, are firstly 
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measured and then a short pulse (pulse width=52ms) of 
negative id is injected, and the measurement of corresponding 
data (Data1) is started after 2ms of injection, both with the same 
sampling period and sampling number (N), as shown 
schematically in Fig. 4(a). The 2ms delay before starting the 
measurement of Data1 is to ensure that the measurement is 
conducted after settling of step transients correlated to the id 
pulse. Since the duration of injected pulse current is very short, 
the rotor speed and winding resistance may be assumed to be 
constant as the mechanical and thermal constants are usually 
much larger than the electrical constant. Therefore, the 
corresponding two sets of dq-axis equations are: 

0 0 0 0 0 0( ) ( ) ( )d q qu k L k i kω= −                                                           (4a) 

0 0 0 0 0 0( ) ( ) ( )q q mu k Ri k kψ ω= +                                              (4b) 

1 1 1 1( ) ( ) ( ) ( )d d q qu k Ri k L k i kω= −                                                      (4c) 

1 1 1 1 1( ) ( ) ( ) ( ) ( )q q d d mu k Ri k L k i k kω ψ ω= + +                                (4d) 

where variables and parameters with/without suffix ‘0’ are 
referred to those associated with Data0 and Data1, respectively. 
‘k0’ and ‘k1’ are indices of the k0-th and k1-th measured instants 
for Data0 and Data1, respectively.  
Firstly, assuming L=Lq=Ld and ψme=ψm=ψm0, (4) can be 
simplified to (5):  

0 0 0 0 0 0( ) ( ) ( )d q qu k L k i kω= −                                                            (5a) 

0 0 0 0 0( ) ( ) ( )q q meu k Ri k kψ ω= +                                              (5b) 

1 1 1 1( ) ( ) ( ) ( )d d qu k Ri k L k i kω= −                                                       (5c) 

1 1 1 1 1( ) ( ) ( ) ( ) ( )q q d meu k Ri k L k i k kω ψ ω= + +                                 (5d) 

The rank of (5) is four. Hence, (5) is full rank for 
simultaneously solving R, L, Lq0, and ψme. The corresponding 
Adaline estimators based on (5) are described in Appendix A. 

The estimation error caused by the above assumptions of 
L=Lq=Ld and ψme=ψm=ψm0 is analyzed as follows and a method 
to minimize this error is proposed and investigated. 

Let ∆L= Lq−Ld and ∆ψm= ψm0-ψm, i.e. ∆L = Lq(id≠0)−Ld(id≠0) 
and ∆ψm=ψm(id=0)−ψm(id≠0), the estimation error ψmerror caused 
by assuming Lq=Ld and ψm=ψm0 can be derived from (4) and (5) 
(derivation is given in Appendix C): 

1 0 1 0 1
2 2

0 1 1 1

0

0 0

0

( ) ( ) ( ) ( ) ( )
 

( ) ( ) ( ) ( )
m

merror me m

q q d q q

q q q d

i k i k Li k i k i k
i k i k i k i k

ψ ψ ψ
ψ

= −

∆ + ∆
= −

− −
              (6) 

If the relative magnitude of ψmerror with reference to ψm0 can 
be made negligible, the estimated ψme will be a good 
approximation to the actual ψm0. 

Under constant torque control, iq(id<0)≈iq0(id=0). Therefore, 
the estimation error ψmerror, (6), can be simplified as a monotone 
decreasing function of id: 

2 2
1 1

2
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( ) ( )
( )( )

q qm
merror

dd

i k Li k
i ki k

ψ
ψ

∆ ∆
≈ +                                           (7) 

Therefore, irrespective of values of ∆L and ∆ψm, ψmerror can 
be minimized as long as |id| is large enough.  

By way of example, Fig. 5 shows the variation of normalized 
ψmerror, with reference to ψm0, with the injected d-axis current 
for various ∆L and ∆ψm. Although it is difficult to obtain ∆L 

and ∆ψm in practice, ψmerror may also be measured by the 
following approximation method:  

a. Measure the winding resistance at standstill. 
b. Using the measured winding resistance at standstill, start 

the PMSM and obtain the rotor flux linkage ψm0
 
(78.4mWb) at 

id=0 by the Scheme II in section II.  
c. Obtain ψme from the proposed method using (A.10). 
d. ψmerror=ψme−ψm0 

Fig.6 shows the corresponding measured variation of 
normalized ψmerror, with reference to ψm0, with the injected 
d-axis current. As can be seen from (7) and Figs.5 and 6, ψmerror 
reduces with the amplitude of id. However, it is preferable to 
employ a negative pulse of id since it leads to smaller estimation 
errors due to error cancellation (note: ∆ψm>0 and for majority 
PMSM machines ∆L>0). Of course, in this case, it is important 
to ensure that there will be no irreversible demagnetization of 
permanent magnets. This paper employs a negative pulse of id 
=−2A in the experiments, the percentage of the injected id to the 
rated current being 50%. 

IV. EXPERIMENTAL RESULTS OF PROPOSED METHOD AND 
INVESTIGATION 

A. Experimental Results 
The employed DSP based SPMSM vector control system and 
prototype machine are identical to those used in section II, 
details being given in Appendix B. The injected short pulse 
d-axis current (id=−2A) and other sampled signals for 
estimation are shown in Fig. 7, which have been filtered by 
first-order Butterworth low-pass filters. The estimation results 
obtained by the proposed method are shown in Fig. 8. It is 
evident that the convergence speed of Adaline estimator is so 
fast that the pulse width of injected id can be chosen to be less 
than 50ms. In addition, even if the Adaline estimator cannot 
entirely converge to the final value in 50ms, the memorized 
Data0 and Data1 can be used to calculate iteratively until it 
converges to the final value in the host computer. Therefore, the 
following estimations are all based on this iterative online 
estimation and the pulse width of injected id is 50ms. As can be 
seen from Fig.7, the influence of injecting a short pulse of id on 
output torque and speed is negligible due to mechanical inertia 
and fast response of current loop PI controller. 

 
Fig. 5. Calculated variation of 0 0/ ( )merror m Tψ ψ  with id under various ∆L and 

∆ψm. iq=3.46A, iq0=3.34A, ψm0(T0)=77.6mWb, Ld=3.24mH. Curve1: ∆ψm=1% 
ψm0, ∆L =10% Ld. Curve2: ∆ψm=0.5%ψm0, ∆L =5%Ld. Curve3: ∆ψm=0.1%ψm0, 
∆L =1%Ld. Curve4: ∆ψm=0.05%ψm0, ∆L =0.5%Ld.  
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Fig. 6.  Measured variation of 0 0/ ( )merror m Tψ ψ  with id. 

 

 
Fig. 7.  Sampled electrical angular speed, dq-axis currents, voltages, and 
injected current pulse (id=−2A). 

 
(a) Estimated winding resistance 

 
(b) Estimated rotor flux linkage 

 
(c) Estimated d-axis inductance 

Fig. 8.  Estimated parameters by proposed method (injected id=−2A). 
As can be seen from Figs. 8(a) and (b), the estimated winding 

resistance (0.370Ω) is almost the same as the measured 
resistance (0.373Ω), ψmerror=ψme−ψm0≈78.5−78.4=0.1mWb. 
The relative error ψmerror/ψm0 is only 0.13%. Therefore, the 
estimation results are of high accuracy. 

B. Step Change in Winding Resistance Value 
In order to verify the effectiveness of proposed method, a 

step change in winding resistance value is applied to verify the 
accurate tracking ability of proposed method. Three resistances 
(Rp=0.414Ω) are simultaneously connected in series with 
three-phase windings. The estimated results are shown in Fig. 9 
and Table I. 

As can be seen from Table I, mpψ and Ldp are estimated rotor 

flux linkage and d-axis inductance after adding Rp. The 
estimated R+Rp (0.792Ω) is quite close to the actual resistance 
(0.787Ω). From (4b), there are two parameters in (4b) and the 
rotor flux linkage can be accurately estimated if the winding 
resistance is accurately estimated when id=0. As the experiment 
result shows that the estimated winding resistance is of high 
accuracy, it is convincing that the estimated rotor flux linkage 
by (A.11) is accurate. Therefore, the proposed method has high 
performance in accurately tracking the variation of parameters. 

TABLE I 
COMPARISON OF ESTIMATED STEADY-STATE PARAMETERS 
Parameters Nominal Values Estimated Values 

R 0.373Ω 0.370Ω 
R+ Rp 0.787Ω 0.792Ω 
Ψm 77.6mWb 78.6mWb 
Ψmp 77.6mWb 78.0mWb 
Ld 3.24mH 3.68mH 
Ldp 3.24mH 3.65mH 

 

 
(a) Estimated winding resistance 
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(b) Estimated rotor flux linkage 

 
(c) Estimated d-axis inductance 

Fig. 9.  Estimated parameters with a step change in winding resistance value 
(injected id=−2A). 

C. Temperature Variation in SPMSM 
A heater is used to heat the prototype SPMSM. The heating 

experiments are divided into three steps: 
a. Estimate the winding resistance, rotor flux linkage and 

inductance at the beginning (t=0, T= T0). 
b. Keep on heating the PMSM for 20 minutes and estimate 

the winding resistance, rotor flux linkage and inductance (t= 20 
minutes). 

 
(a) Estimated winding resistance 

 
(b) Estimated rotor flux linkage 

 
(c) Estimated d-axis inductance 

Fig. 10.  Estimated parameters with temperature variation (injected id=−2A). 
c. Switch off the power source of heater and PMSM for 

naturally cooling. The PMSM is restarted after 9 minutes` 
cooling and the parameters are estimated (t=29 minutes). 

The estimation results are shown in Fig. 10. As can be seen 
from Fig. 10(a), the winding resistance will vary from 0.366Ω 
to 0.464Ω after 20 minutes heating, and drop to 0.402Ω after 9 
minutes cooling. The rotor flux linkage will vary from 
78.6mWb to 76.9mWb after 20 minutes heating, and rise to 
78.2mWb after 9 minutes cooling, Fig. 10(b). In addition, as 
can be seen from Fig. 10(c), the estimated value of d-axis 
inductance Ld will vary with temperature, which is mainly 
caused by ∆ψm in designing (A.13). Since the estimation of R, 
Lq0 and ψm0 is independent of estimating Ld, the variation in 
estimated Ld will not affect their estimation accuracy. 

V. CONCLUSIONS 
The ill-convergence in PMSM multi-parameter estimation is 

investigated and it is verified that the PMSM model in 
multi-parameter estimation under id=0 control is rank-deficient 
for simultaneously estimating winding resistance and rotor flux 
linkage and cannot ensure them to converge to correct 
parameter values, although it is full rank for estimating q-axis 
inductance when id=0. Therefore, a new method is proposed 
based on injecting a short pulse of negative id current and 
simultaneously solving two sets of simplified non-salient pole 
PMSM state equations corresponding to id=0 and id≠0. The 
convergence of solutions is ensured and the minimum |id| is 
determined from the error analysis. It has been verified by 
experiments with good performance. It does not need the 
nominal value of any parameters and can make the estimated 
winding resistance and rotor flux linkage converge to the actual 
values. In addition, the proposed method has negligible 
influence on the output torque and rotor speed. The proposed 
error analysis method is applicable for non-salient pole PMSM 
and the design for simultaneously estimating winding 
resistance, rotor flux linkage, Ld and Lq of interior PMSM which 
has significant saliency is being investigated and the findings 
will be published in the future. 

 
Appendix A - Design Estimators by Adaline NN 

Since Adaline NN algorithm [26] requires less computation and 
is faster to converge compared with algorithms such as MRAS 
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and EKF, it is described in this appendix and used to design all 
the estimators throughout the paper. 

A. Structure of Adaline NN 
The mathematical model of Adaline NN can be shown as 
follows: 

0
( , )

n

i
i i i iO W X W X

=
= ∑

                                                                         
(A .1) 

where Wi is the net weight and Xi is the input signal. The 
activation function ( , )i iO W X of the network output node is a 
linear function.  
The structure of Adaline NN [26] is shown in Fig. 11. 
In this paper, the PMSM is regarded as a reference model and 
the Adaline NN will follow the variation of PMSM parameters. 
The network is composed of different single node subnets while 
winding resistance, inductance and flux linkage are regarded as 
the weights of these proposed subnets, respectively. ud and uq 
are the outputs of PMSM and will be compared with the output 
voltages from the Adaline model. The error caused by the 
output difference between the two models will be fed back to 
adjust the Adaline NN weights by using the least mean square 
learning method (LMS [26]). As can be seen from (A.1) and Fig. 
11, if ( )d k  is the sampled target output, the weight adjustment 
can be obtained via LMS: 

( 1) ( ) 2 ( ( ) )i i iW k W k X d k Oη+ = + −
    

                                  (A.2) 
In (A.2), η is the convergence factor which adjusts the weight 
convergence speed. If the parameter to be estimated can be 
mathematically expressed in the form of general Adaline NN 
structure, as shown in Fig. 11, its estimator can be directly 
derived from (A.2) by comparing its net structure with the 
general Adaline NN structure. 

B. Adaline Estimators for Schemes I-IV 
Fig. 12(a) shows the complete estimation system for Scheme 

I-IV and the NN structures will be changed in different schemes. 
The subnet structures of inductance, resistance and rotor flux 
linkage estimators used in Schemes I-IV are shown in Figs. 
12(b)-(d), respectively. As can be seen from (3), qL can be 

regarded as the weight of a single node subnet while 
( )du k− and ( ) ( )qk i kω  are regarded as the net output and input, 

respectively. Therefore, the iterative training algorithm of 
q-axis inductance can be obtained by the LMS. From Fig. 12(b), 
assuming ( ) ( )i qX k i kω= , O = ˆ ( )du k−  and ( ) ( )dd k u k= − , 

the training algorithm of q-axis inductance  can be expressed 
as: 
ˆ ( 1)qL k + ˆ ( )qL k= + ˆ2 ( ) ( )( ( ) ( ))q d dk i k u k u kηω −                   (A.3) 

The same design principle can be applied to the q-axis equation 
to obtain the training algorithms for estimating resistance and 
rotor flux linkage. From Figs. 12(c), assuming ( )i qX i k= , 

O = ˆ ( )qu k − ( )m kψ ω and ( )d k = ( )qu k − ( )m kψ ω , the 

training algorithm of resistance can be expressed as: 
ˆ( 1)R k + ˆ ˆ( ) 2 ( )( ( ) ( ))q q qR k i k u k u kη= + −

            
                 (A.4) 

X1

W2

W1

W3

X2

X3

0
( , )

n

i
i i i iO W X W X

=
= ∑

 
Fig. 11.  Structure of an Adaline NN 

PMSM

+
−

Uq

Ud

I

X1
W2
W1

W3
X2
X3

LMS Algorithm

−
+

Ud`

Uq`

 
(a)  Complete estimation system 

( ) ( )qk i kω ˆqL ˆ ( )du k−
 

(b)  Subnet of q-axis inductance estimator 

( )qi k

( )m kψ ω

R̂ ˆ ( )qu k+

+

 
(c)  Subnet of winding resistance estimator 

( )qRi k

ˆ mψ( )kω ˆ ( )qu k+

+

 
(d)  Subnet of rotor flux linkage estimator 

Fig. 12.  Adaline NN based PMSM parameter estimation and structure of 
subnets (id=0). 
Similarly, from Fig. 12(d), assuming ( )iX kω= , O = ˆ ( )qu k  

− ( )qRi k  and ( )d k = ( )qu k − ( )qRi k , the training algorithm 

of rotor flux linkage  can be expressed as: 
ˆ ( 1)m kψ + ˆ ( )m kψ= + ˆ2 ( )( ( ) ( ))q qk u k u kηω −                     (A.5) 

When id≠0, similar to (A.4), the winding resistance can also be 
obtained from (2a) by assuming O = ˆ ( )du k + ( ) ( )q qL k i kω , 

( )diX i k= and ( )d k = ( )du k + ( ) ( )q qL k i kω
 
and can be 

expressed as: 
ˆ( 1)R k + ˆ ˆ( ) 2 ( )( ( ) ( ))d d dR k i k u k u kη= + −                              (A.6) 

C. Adaline Estimators based on (5) 
The estimation will be started after the completion of 

measuring and memorizing Data0 and Data1. As can be seen 
from Fig. 13, since Data0 and Data1 are memorized in RAM, 
the numbering can be reset to be k=k0=k1=0 at the beginning of 
estimation and the memorized two sets of data are 
simultaneously sent to the proposed estimation method for 
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iterative computation from 0 to N−1 in sequence. Therefore, k0 
will be kept always equal to k1 in the whole estimation 
processes and k=k0=k1 will be kept for the convenience of 
following estimator design. 

From (5), 1

1

( )
(5 ) (5 )

( )
d

q

i k
c d

i k
+ becomes 

2
1 1

1 1 1 1
1 1

( ) ( )
( ) ( ) ( ( ) ) ( )

( ) ( )
d d

d q q me
q q

i k i k
u k u k R i k k

i k i k
ψ ω+ = + +

     
  (A.7) 

Let 1
1 1 1

1

( )
( ) ( ) ( )

( )
d

d q
q

i k
U k u k u k

i k
= + and 

2
1

1 1
1

( )
( ) ( )

( )
d

q
q

i k
I k i k

i k
= + , 

Combining (5b) and (A.7), equation (A.8) is obtained. Its rank 
is 2. Therefore, (A.8) can be used for simultaneously estimating 
winding resistance and rotor flux linkage: 

1 1 1

0 0 0 0 0

( ) ( ) ( )
( ) ( ) ( )

me

q q me

U k RI k k
u k Ri k k

ψ ω
ψ ω

= +
 = +

                                                (A.8) 

Thus, ( )0 0 1 0 0 1( ) ( ) ( ) ( )q qu k U k R i k I k− = −                                (A.9) 

Based on (A.9), the subnet structure of winding resistance 
estimator is shown in Fig. 14(a), which shows the input and 
output of the estimator. Assuming 0 0 1( ) ( )i qX i k I k= − , O =  

0 0 1
ˆˆ ( ) ( )qu k U k− and ( )d k = 0 0 1( ) ( )qu k U k− , the Adaline 

winding resistance estimator can be expressed as: 
Make k0=k1=k=0
Initialize

Computed output
(k0=k1=k)

Computing the 
variable model (5)

Comparison and adjusting by Adaline 
algorithm (A.2)

Lookup in RAM
(Data0 and Data1)

Measured output
(k0=k1=k)

ˆ( 1),R k +

if k=k0=k1<N-1
k=k+1;
k0=k0+1;
k1=k1+1;
else
if k=k0=k1>=N-1
k=k0=k1=0;

Measured input
(k0=k1=k)

Estimation results

ˆ(0)R ˆ, (0)mψ ˆ, (0)L

ˆ ( 1),m kψ + ˆ( 1)L k +

 
Fig. 13.  Iterative computation processes of proposed Adaline NN based 
estimation strategy. 

0 0 1( ) ( )qi k I k−

1
ˆ ( )U k

R̂ 0 0ˆ ( )qu k+

+

 
(a)  Subnet of winding resistance estimator 

( )qR i k∆

ˆ ( )qu k∆+

+

1 1( ) ( )qk i kω L̂

 
(b)  Subnet of d-axis inductance estimator 

Fig. 14.  Subnet structures of proposed Adaline estimation. 
 

( )ˆ 1R k + = ( )R̂ k +  
( )( )0 1 0 1 0 10 0 0

ˆˆ2 ( ) ( ) ( ) ( ) ( ) ( )q q qi k I k u k U k u k U kη − − − +
    

(A.10) 

where Û and 0ˆqu are output voltages of variable model and 

k=k0=k1. With the estimated winding resistance value from 
(A.10), the estimator proposed in Fig. 12(d) can be used for 
estimating rotor flux linkage, whose subnet structure shows the 
input and output of the estimator. Therefore, assuming 

0( )iX kω= , 0 00 0
ˆ ( ) ( )q qO u k Ri k= −  and 00

( ) ( )qd k u k= −  
00

( )qRi k , the Adaline rotor flux linkage estimator can be 

obtained from (5b) and is shown as follows: 
ˆ ( 1)me kψ + 0 0 00 0ˆ ˆ( ) 2 ( )( ( ) ( ))me q qk k u k u kψ ηω= + −

       
       (A.11) 

where 0ˆqu is the output of variable model and k=k0=k1. Since the 

q-axis inductance can be individually estimated from (5a), the 
estimator proposed in Fig. 12(b) can be used for estimating 
q-axis inductance, whose subnet structure shows the input and 
output of the estimator. Assuming 0 00( ) ( )i qX k i kω= , 

O = 00ˆ ( )du k−  and 00( ) ( )dd k u k= − , q-axis inductance (Lq0= 
Lq(id=0)) can be estimated from (5a): 

0
ˆ ( 1)qL k + 0 0 0 0 0 0 0 0

ˆ ˆ( ) 2 ( ) ( )( ( ) ( ))q q d dL k k i k u k u kηω= + −  (A.12) 

where 0ˆdu  is the output of variable model and k=k0=k1. With the 
estimated winding resistance, the d-axis inductance estimator 
can be obtained from (5d) and (5b). (5d) −(5b) becomes: 

1 1( ) ( ) ( ) ( )q q du k R i k L k i kω∆ = ∆ +  

where 1 00( ) ( ) ( )q q qu k u k u k∆ = − , ( )qi k∆ = 1( )qi k − 00 ( )qi k and 

k=k0=k1. Based on the equation (5d)−(5b), the subnet structure 
of d-axis inductance estimator is shown in Fig. 14(b), which 
shows the input and output of the estimator. Therefore, 
assuming 1 1( ) ( )i dX k i kω= , ˆ ( ) ( )q qO u k R i k= ∆ − ∆ and ( )d k =  

( ) ( )q qu k R i k∆ − ∆ , Ld(=L) can be estimated by: 

ˆ ( 1)dL k + ˆ ( )dL k= + 1 1 ˆ2 ( ) ( )( ( ) ( ))d q qk i k u k u kηω ∆ −∆
      

(A.13) 

However, as can be seen from (4d)−(4b): 
1 1 1( ) ( ) ( ) ( ) ( )mq q d du k R i k L k i k kω ψ ω∆ = ∆ + −∆  

where ∆ ψm=ψm0 − ψm≠0. Hence, it will cause error in the 
estimated d-axis inductance due to temperature variation.  
 

Appendix B - Test Rig and Prototype SPMSM 

The schematic diagram and hardware platform of the DSP 
(TMS TI 2812) based vector control system are shown in Figs. 
15 and 16. The design parameters of prototype machine are 
shown in Table II. The waveforms of measured stator currents, 
voltages and electrical angular speed are shown in Fig. 17. The 
current signals are obtained from the Hall transducers and then 
sampled by the DSP ADC. The DC link is connected with the 
DC power source whose output is fixed to 36V. The method 
proposed in [25] is used for compensating the inverter.  
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Fig. 15.  Schematic of vector controlled PMSM drive system. 

 
Fig. 16.  DSP platform and experimental test rig. 

 

 
Fig. 17.  Typical waveforms of sampled PMSM signals. 
 

TABLE II 
DESIGN PARAMETERS AND SPECIFICATION OF PMSM 

Rated current 4A 
Rated speed 400 rpm 
DC link voltage 36V 
Nominal phase resistance (T=25 oC) 0.330 Ω 
Nominal terminal wire resistance 0.043 Ω 
Nominal self inductance 2.91mH 
Nominal mutual inductance −0.330mH 
Nominal d-axis inductance 3.24mH 
Nominal q-axis inductance 3.24mH 
Nominal amplitude of flux induced by magnets 77.6 mWb 
Inertia 0.8e−5kgm2 
Number of  pole pairs 5 
Note: Nominal values are measured. 

 
Appendix C – Expressions of ψm0 and ψme Used in Proposed 

Method 

Combining 1

1

( )
(4 ) (4 )

( )
d

q

i k
c d

i k
+ and (4b), it

 
becomes: 

( )1 1 1 1 1

0 0 0

0

0 0 0

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

mm d

q q m

U k RI k k L k i k
u k Ri k k

ψ ψ ω ω

ψ ω

 = + − ∆ −∆


= +
       (C.1) 

where 1
1 1 1

1

( )
( ) ( ) ( ),

( )
d

d q
q

i k
U k u k u k

i k
= +  

2
1

1 1
1

( )
( ) ( )

( )
d

q
q

i k
I k i k

i k
= + . 

From (C.1), since ω(k0)=ω(k1) is constant, ψm0 can be obtained:
 

1 0 0 1

0 1 0

0 0
0

0

( ) ( ) ( ) ( )
( ( ) ( )) ( )

q q
m

q

U k i k u k I k
i k I k k

ψ
ω

−
=

−
 

1 0 0 1 1 0 0

0 0 1 0

( ) ( ) ( ) ( ) ( )
( ( ) ( )) ( )

q d q

q

m k i k L k i k i k
i k I k k

ψ ω ω
ω

∆ + ∆
+

−   
             (C.2) 

Combining 1

1

( )
(5 ) (5 )

( )
d

q

i k
c d

i k
+ and (5b), it

 
becomes: 

1 1 1

0 0 00 0

( ) ( ) ( )
( ) ( ) ( )

me

q q me

U k RI k k
u k Ri k k

ψ ω
ψ ω

= +
 = +

                                              (C.3) 

From (C.3), since ω(k0)=ω(k1) is constant, ψme can be obtained:  
                                                       

1 0 0 1

0 1 0

0 0

0

( ) ( ) ( ) ( )
( ( ) ( )) ( )

q q
me

q

U k i k u k I k
i k I k k

ψ
ω

−
=

−
                                           (C.4) 
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