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Fault Diagnosis in Industrial Induction Machines
Through Discrete Wavelet Transform

Ahcène Bouzida, Omar Touhami, Rachid Ibtiouen, Adel Belouchrani, Maurice Fadel, and A. Rezzoug

Abstract—This paper deals with fault diagnosis of induction
machines based on the discrete wavelet transform. By using the
wavelet decomposition, the information on the health of a system
can be extracted from a signal over a wide range of frequencies.
This analysis is performed in both time and frequency domains.
The Daubechies wavelet is selected for the analysis of the stator
current. Wavelet components appear to be useful for detecting
different electrical faults. In this paper, we will study the problem
of broken rotor bars, end-ring segment, and loss of stator phase
during operation.

Index Terms—Broken rotor bars, data-dependent selection
(DDS) and data-independent selection (DIS) of the decomposition
level, fault diagnosis, induction machines (IMs), motor-current
signature analysis (MCSA), wavelet transform.

NOMENCLATURE

ψ(n) Bandpass filter.
ϕ(n) Low-pass filter.
Aj Approximation signal.
D1 D2, . . . , Dj Detail signals.
Wf (t) Original signal.
ψ̂(ω), ϕ̂(ω) Fourier transforms of ψ(n) and ϕ(n).
Ns Samples.
H(x) Entropy.
x[n] Signal of length n.
j Level of decomposition.
Ej Energy eigenvalue.
T Eigenvector.
Pn Rated power.
Vs Rated voltage.

Manuscript received September 23, 2009; revised March 18, 2010 and
June 14, 2010; accepted October 7, 2010. Date of publication
November 29, 2010; date of current version August 12, 2011. This work
was supported in part by the Laboratoire de Recherche en Electrotechnique,
Ecole Nationale Polytechnique, Algiers, in part by the Laboratoire
Plasma et Conversion d’Energie (LAPLACE), École Nationale Supérieure
d’électronique, d’Électrotechnique, d’ Informatique, d’Hydraulique et des
Télécommunications (ENSEEIHT), Toulouse, Comité Mixte d’Evaluation et
de Prospective (CMEP)-Tassili, under Code 05 MDU 662, and in part by the
Algerian Ministry of High Education.

A. Bouzida, O. Touhami, R. Ibtiouen, and A. Belouchrani are with the
Ecole Nationale Polytechnique, Algiers 16200, Algérie (e-mail: ahcene2035@
hotmail.com; omar.touhami@enp.edu.dz; rachid.ibtiouen@enp.edu.dz;
adel.belouchrani@enp.edu.dz).

M. Fadel is with the Laboratoire Plasma et Conversion d’Energie 2, 31071
Cedex 7, France (e-mail: fadel@laplace.univ-tlse.fr).

A. Rezzoug is with the Ecole nationale Supérieure d’Électricité et de
Mécanique, 54516 Vandoeuvre lès Nancy, France (e-mail: rezzoug@green.
uhp-nancy.fr).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIE.2010.2095391

Is Rated current.
Nn Rated speed.
p Pole-pair number.
m Number of phases.
f Supply frequency.
cos Φ Power factor.

I. INTRODUCTION

SQUIRREL-CAGE induction machines (IMs) are dedicated
for electric drives and play an important role in manu-

facturing environments. Therefore, this type of machines is
generally considered, and several diagnostic procedures are
proposed in the literature [1]–[10].

Specific uses of IMs do not tolerate inopportune breakdowns.
These breakdowns can be due to the machine and can be of
mechanical origin (rotor eccentricity, coupling defect, bearing
defects, etc.) or of electric and magnetic origin (short circuit in
stator windings, broken bars, broken end ring, or broken teeth).
The imperfections can also be due to other elements of the
drive, such as defects in the power supply, load, or mechanical
reducers.

Motor-current signature analysis (MCSA) is one of the
most widely used techniques in fault-detection analysis of IMs.
MCSA focuses its efforts on the spectral analysis of the stator
current, and it has been successfully used in the detection of
broken rotor bars, bearing damage, and dynamic eccentricity
caused by a variable air gap due to a bent shaft or thermal bow.
The procedure consists of evaluating the relative amplitude of
current harmonics that appear due to this defect.

Wavelet transform is an analysis method for time-varying
or nonstationary signals and uses a description of spectral
decomposition via the scaling concept. Wavelet theory pro-
vides a unified framework for a number of techniques which
have been developed for various signal-processing applications
[11]–[19]. One of its feature is multiresolution signal analysis
with a vigorous function of both time and frequency localiza-
tion. This method is effective for stationary as well as nonsta-
tionary signal processing. References [20] and [21] describe the
pyramidal algorithm based on convolutions with quadrature-
mirror filters, which is a fast method similar to the fast Fourier
transform, for signal decomposition and reconstruction. It can
be interpreted as a decomposition of the original signal in an
orthonormal wavelet basis or as a decomposition of the signal
in a set of independent frequency bands. This independence is
due to the orthogonality of the wavelet functions [22].

In this paper, a method for the diagnosis of broken rotor
bars, broken end ring, and the opening of stator phase during
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operation is described. The approach is also compared with
the well-known Fourier method for the analysis of the stator
current in steady-state operation. Several experiments are de-
veloped for different fault cases and operating conditions,
such as healthy rotor, one broken bar, two broken bars, and
one end-ring portion broken. In this paper, two different
methods [data-dependent selection (DDS) and data-independent
selection (DIS)] have been used to select the decomposition
levels necessary for information extractions corresponding to
defects due to stator currents. The experiments have been
particularly done at a laboratory on four constructed machines
for diagnosis purposes. A data acquisition system (DAS) and
current and voltage sensors are also used for the purpose of the
experiment.

The use of wavelet signals (approximation and high-order
details) resulting from discrete wavelet transform (DWT) con-
stitutes an interesting advantage because these signals act as
filters, according to Mallat’s algorithm, allowing automatic ex-
traction of the time evolution of the low-frequency components
that are present in the signal during transient operation.

II. DESCRIPTION OF THE WAVELET METHOD

The wavelet method requires the use of time–frequency basis
functions with different time supports to analyze signal struc-
tures of different sizes. The wavelet transform, an extension
of the short-time Fourier transform, projects the original signal
down into wavelet basis functions and provides a mapping from
the time domain to the time-scale plane.

A wavelet is a function belonging to L2(R) with a zero
average. It is normalized and centered on the neighborhood of
t = 0. A time–frequency atom family is obtained by scaling a
bandpass filter ψ by s and translating it by u. L2(R) represents
the space vector of measurable square-integrable functions on
the real line R with ‖ψ‖ = 1

+∞∫
−∞

ψ(t)dt = 0 (1)

ψu,s(t) =
1√
s
ψ

(
t− u

s

)
. (2)

The wavelet transform of a function f at the scale s and
position u is computed by correlating f with a wavelet atom

Wf (u, s) =

+∞∫
−∞

f(t)
1√
s
ψ ·

(
t− u

s

)
dt. (3)

A real wavelet transform is complete and conserves energy
as long as it satisfies a weak admissibility condition

+∞∫
0

|ψ(ω)|2
|ω| dω =

0∫
−∞

|ψ(ω)|2
|ω| dω = Cψ < +∞. (4)

WhenWf (u, s) is known only for s < s0, we need to recover
f , a complement of information corresponding toWf (u, s), for

Fig. 1. Tree decomposition of the signal S.

s > s0. This is obtained by introducing a scaling function ϕ that
is a wavelet aggregate at scales larger than one. In the sequel,
we design by ψ̂(ω) and ϕ̂(ω) the Fourier transforms of ψ(n)
and ϕ(n), respectively.

The DWT results from the continuous version. Unlike the
latter, the DWT uses a discrete scale factor and a translation.
One calls DWT dyadic into any base of wavelet working with a
scale factor u = 2j .

The discrete version of wavelet transform DW consists of
sampling neither the signal nor the transform but sampling the
scaling and shifted parameters [25]–[27]. This results in high
frequency resolution at low frequencies and high time resolu-
tion at high frequencies, removing the redundant information.
Taking positive frequency into account, ϕ̂(ω) has information
in [0, π], and ψ̂(ω) has information in [π, 2π]. Therefore, they
both have complete signal information without any redundancy.
Functions h(n) and g(n) can be obtained by the inner prod-
uct of ψ(t) and ϕ(t). Decomposition of the signal in [0, π]
gives [11]

h(n) =
〈
2−lϕ(2−lt)ϕ(t− n)

〉
g(n) =

〈
2−jψ(2−jt)ϕ(t− n)

〉
, j = 0, 1, . . . . (5)

Wavelet decomposition does not involve the signal in [π, 2π].
In order to decompose the signal in the whole frequency band,
wavelet packets can be used. After decomposing by l times, we
get 2l frequency bands each with the same bandwidth, i.e.,

[
(i− l)fn

2
,
ifn
n

]
, i = 1, 2, . . . , 2l (6)

where fn is the Nyquist frequency in the ith-frequency band.
Wavelet packets decompose the signal into one low-pass filter
h(n) and (2l − 1) bandpass filters g(n) and provide diagnosis
information in two frequency bands. Aj is the low-frequency
approximation, and Dj is the high-frequency detail signal, both
at resolution j

Aj(n) =
∑
k

h(k − 2n)Aj−1

Dj(n) =
∑
k

g(k − 2n)Aj−1, n = 1, 2, 3 . . . (7)

where A0(k) is the original signal. After decomposing
the signal, we obtain one approximation signal Aj and
D1, D2, . . . , Dj detail signals (see Fig. 1).
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Fig. 2. Decomposition of the signal S in the wavelet packet.

The wavelet-packet method is a generalization of wavelet
decomposition that offers a richer range of possibilities for
signal analysis (see Fig. 2). In wavelet analysis, a signal is split
into an approximation and a detail. Then, the approximation is
itself split into a second-level approximation and detail, and the
process is repeated [24] until the targeted results are obtained.
For n-level decomposition, there are n+ 1 possible ways to
decompose or encode the signal

W2n(t) =
√

2
∑
k

h(k)Wn(2t− k)

W2n+1(t) =
√

2
∑
k

g(k)Wn(2t− k) (8)

where Wf (t) is the original signal. By comparing (8) with (7),
we can find that not only Aj in (7) is decomposed but Dj in (8)
is also decomposed.

Wavelets and wavelet packets decompose the original signal,
which is nonstationary or stationary, into independent fre-
quency bands with multiresolution [24].

III. EXPERIMENTAL TESTS

A. MCSA

Four rotors have been used in the tests, as shown in Fig. 3.
In order to obtain correct resolution for the wavelet analysis,
it is important to choose correctly the acquisition parameters,
i.e., the sampling frequency and number of samples. Some
constraints are also taken into consideration:

1) analyzed signal bandwidth;
2) wavelet decomposition spectral bands;
3) frequency resolution;
4) appropriate number of decomposition.
For an IM, significant information in stator current signal is

concentrated in the 0–400-Hz band. Applying the Shannon’s
theorem yields a minimum sampling frequency fs of 800 Hz.

The minimum resolution needed to get a good result is
0.5 Hz. Equation (9) defines the number of samples Ns needed
for a given resolution R [20]–[22]

Ns =
fs
R
. (9)

In our case, we have chosen a sampling frequency fs =
10 kHz. Hence, Ns = 100 000 samples are acquired for R =
0.1 Hz. The analyzed frequencies vary from 0 to 5 kHz with a
resolution of 0.1 Hz.

Fig. 4 shows the experimental setup where different 4-kW
IMs are used to test the performance of the proposed method-

Fig. 3. Four rotors under tests.

Fig. 4. Experimental setup.

ology in identifying different faults treated in this paper. This
system can be used to sample two line currents Ia and Ib, three
line voltages Va, Vb, and Vc, and a speed signal. The stator
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TABLE I
ENTROPY ON LEVELS

windings are star connected. The main parts of the experimental
setup are as follows:

1) three-phase 4-kW IM;
2) dc generator coupled to the IM to provide load;
3) tachogenerator coupled to the shaft of the generator as

angular-speed sensor to measure and record the time
variation of the speed;

4) mechanical coupling between the IM and the dc
generator;

5) single-phase changeover switch for opening the stator
phase;

6) PC equipped with a data acquisition card of PCI-IOTEQ
type for sampling the electrical data at a certain adjustable
frequency and storing them in the memory.

The tested machines have two pole pairs (p = 2) and 28 bars
and receive a power supply of 220-V ac at 50 Hz. For the rotor
faults, the machines are tested at 75% of rated load and no load
for the loss of stator phase test.

We have experimented two different methods for the se-
lection of wavelet decomposition level, namely, the approach
presented in [26], referred herein as DDS, and the approach of
reference referred herein as DIS.

B. DDS of the Decomposition Level

The DDS approach is based on the decomposition of entropy
data at each level, as follows.

1) The entropy-based criterion is used to find the desired
levels of resolution. The entropy H(x) of a signal x[n]
of length N is defined by

H(x) = −
N−1∑
n=0

|x(n)|2 log |x(n)|2 . (10)

2) To determine the optimal number of levels of resolution,
the entropy is evaluated at each level where there is a new
level j such that

H(x)j ≥ H(x)j−1. (11)

The entropy of the first-level high-frequency details is found
to be lower than that of its two children in all situations. As a
result, according to (10), decomposition up to the first level is
sufficient to represent the discrete signals. Table I presents the
entropy on levels.

TABLE II
FREQUENCY BANDS OBTAINED BY DECOMPOSITION IN MULTILEVELS

C. DIS of the Decomposition Level

The DIS approach is based on the following.

1) A suitable number of decomposition levels (nLs) depend
on the sampling frequency fs of the signal being ana-
lyzed. For each one of the proposed approaches [23], [25],
[26], it has to be chosen in order to allow the high-level
signals (approximation and details) to cover all the range
of frequencies along which the sideband is localized.

2) The minimum number of decomposition levels that is
necessary for obtaining an approximation signal (Anf )
so that the upper limit of its associated frequency band is
under the fundamental frequency [17] is described by the
following condition:

2−(nLs+1)fs < f. (12)

From this condition, the decomposition level of the approxi-
mation signal, which includes the left sideband harmonic, is the
integer nLs given by

nLs = int
(

log(fs/f)
log(2)

)
. (13)

For this approach, further decomposition of this signal has
to be done so that the frequency band [0 − f ] will be de-
composed in more bands. Usually, two additional decom-
position levels (i.e., nLs + 2) would be adequate for the
analysis [17]

nLs + 2 = int
(

log(10 000/50)
log(2)

)
+ 2

= int(7.64) + 2 = 9 levels. (14)

For the healthy IM, the selected level from the DDS and
DIS approaches are quite the same, while for the machines
with defects, the DDS approach gives a lower level than the
DIS. This is clear from the obtained results (see Figs. 9–11)
that the lower level provided by the DDS does not get the
true results because it requires more levels for defect detec-
tion. It is recommended then to choose the second method
(DIS). For this case, the wavelet decomposition tree is shown
in Table II.

One seeks information characterizing the defect for a
frequency ranging between 0 and 100 Hz. For the DDS
method, the level of decomposition (J = 4 and J = 5) gives
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Fig. 5. Stator current of a healthy IM and its normalized PSD.

approximations and details (A5, D5) in a waveband between 0
and 625 Hz (see Table I).

On the other hand, for the second method (DIS), the level
of decomposition (J = 9) gives approximations and details
(A9, D9) in a waveband ranging between 0 and 39.6 Hz
(see Table II). Thus, the choice of the method (DIS) becomes
commonplace.

Several types of mother wavelets exist (Daubechies, coiflet,
simlet, biorthogonal, etc.) and have different properties [17].
However, some authors showed that all these types of mother
wavelets gave similar results. Due to the well-known properties
of the orthogonal Daubechies family, we chose to use a mother
wavelet from this family.

The multilevel decomposition of the stator current was then
performed using Daubechies wavelet; the suitable level of
decomposition is calculated according to (13). When the defect
of the rotor bars, end-ring portion, and short-circuit on the stator
windings of the induction motor appear, the defect information
in the stator current is included in each frequency band deter-
mined by the decomposition in the wavelet or in wavelet packet.
By calculating the energy associated to each level or with each
node of decomposition, one can build a very effective diagnosis
tool. The energy eigenvalue for each frequency band is defined
by [20]–[22]

Ej =
k=n∑
k=1

|Dj,k(n)|2 . (15)

Fig. 6. Stator current of an IM with a broken rotor bar and its normalized
PSD.

Based on the energy eigenvalue, the eigenvector is set up as

T =
[
E0

E
,
E1

E
,
E2

E
, . . . . . . ,

E2l−1

E

]
(16)

where j = 1, 2, . . . , 2l − 1;Dj is the amplitude in each discrete
point of the wavelet coefficient of the signal in the correspond-
ing frequency band, with E =

∑2m−1
j=0 |Ej |2.

The eigenvalue T contains information on the signal of the
stator current for a motor behavior. In addition, the amplitudes
of the deviation of some eigenvalues indicate the severity of the
defect, which makes T a good candidate for diagnosing broken
bars of the rotor and/or defect of the end-ring portion.

The power spectral density (PSD) of the stator current clearly
shows the increase of the amplitudes in relation with the defects
of the rotor (1 ± 2s)f . Figs. 5–8 show the PSD of the stator
current in the four cases.

D. DWT Applied to the Stator Current

The “Daubechies wavelets” of different order are used to
decompose the stator current of each machine. Fig. 9 shows
the detail and approximation signals (D9, D8, D7, and A6)
obtained by db44. The calculation of the energy eigenvector T
indicates the variation of this energy in the four machines, as
shown in Figs. 10–12.
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Fig. 7. Stator current of an IM with two broken rotor bars and its normalized
PSD.

In Fig. 9, the evolution in the observed frequency bands of
the relative signal to the rotor defect can be analyzed using
coefficients D9 and D8 to D7 or using only coefficient A6 that
gives all the information in the frequency band [0–156.25 Hz].
While analyzing the effect of the rotor defect in the bands of the
frequencies of interest, one can see that the energy depends on
the type of defect. For all the studied machines, the difference
between the healthy rotor and the deficient rotors is clearly
shown in Fig. 10.

Figs. 11 and 12 clearly show the variation of the energy
eigenvalue. One can observe that the energy stored in band 7
depends on the degree of the default. Obviously, the energy in
level 7 represents the number of broken bars and the broken
end-ring portion of the squirrel-cage rotor. Figs. 10–12 show
that the choice of the mother wavelet and its order has a great
importance in differentiating the energies because, when the
order of the mother wavelet is increased, the difference between
the energy eigenvalues becomes clearer.

The band of detection of broken rotor bars cannot be in-
fluenced by mechanical vibrations and load effect because the
frequencies accompanying the mechanical problem are very far
from the band of detection, which is located in [39.06–78.12]
Hz. The broken bar and end-ring portion induce supplemen-
tary frequencies near the fundamental component which are
described by (1 ± 2s)f . These frequencies are influenced only
by the operating frequency f and the slip s; however, this

Fig. 8. Stator current of an IM with a broken end-ring portion and its
normalized PSD.

method is not dependent on the motor power, but we must
choose the appropriate band and the decomposition of the stator
current.

E. Application to Residual Stator Current

The extraction of the fundamental component leads to a
signal full of information. Indeed the elimination of the dom-
inant component in the stator current contributes to amplify
the components due to defects. For this reason, we make the
stator current go through a bandpass filter to eliminate the
50-Hz frequency. This method produces attenuation in some
components.

Figs. 13 and 14 show the residual stator current and their
normalized PSD.

Looking at Figs. 15 and 16, one can note that the extrac-
tion of the fundamental has a very significant effect on the
diagnosis of defaults. This effect is interpreted by the increase
in the amplitudes of the signals in bands D7 and A6, in the
case of defect compared with the healthy case. The effect of
the extraction also leads to a differentiation in the energies
stored in the levels between the various machines, not only
in level 7 but also in levels 1, 2, 3, 4, 5, 6, and 7. According
to the previous results, one can also note that the effect of
the broken rotor bar is similar to that of a broken end-ring
portion.
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Fig. 9. Details and approximation for (a) healthy, (b) one broken bar, (c) two
broken bars, and (d) broken end ring.

Fig. 10. Eigenvector analysis results obtained from db6.

Fig. 11. Eigenvector analysis obtained from db24.

Fig. 12. Eigenvector analysis results obtained from db44.

F. Nonstationary Detection

The opening of stator phase “b” during running is one of the
defects that can appear in the IM. This defect is accompanied
by unbalance and vibrations capable of causing a real danger to
the coils of the two other phases. Figs. 17–19 show the stator
currents of healthy IM, including the period of opening of phase
b during operation at no-load tests.
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Fig. 13. Residual stator current of healthy machine and its normalized PSD.

To analyze the nonstationarity which occurred in the stator
current and voltage at the moment of opening a stator
phase, we carried out the decomposition of the two signals
in multilevel and wavelet packet by using the db44 mother
wavelet. Figs. 20–22 show the obtained signals of the details
and approximation.

The opening of a stator phase is well represented by the
signature of the motor current, and it is largely sufficient to
identify this defect from Figs. 17 and 18.

For the voltage, no defect appears because the voltage is
imposed by the network. However, by using the decomposition
technique of the wavelet packets, one can rigorously show the
opening moment of a stator phase, as shown in Fig. 22.

It can be noted that the use of the wavelet technique enables
us to extract and to locate the point of nonstationarity in the
nonstationary signals [28]–[31]. The nonstationarity induced by
the opening of stator phase is extracted in the two details of D9
and D8. The decomposition in the wavelet packets confirms
the results obtained by the decomposition in multilevel; non-
stationarity is detected in all the frequency bands leading to an
increase in the amplitude of the current after the opening of
a phase. The wavelets are inherently suited for nonstationary
signal analysis since it neither requires the use of windowing
nor is dependent on any assumption on local stationarity [31],
[32]. One concludes that the defect of the opening of a phase
generates an abrupt variation of frequency at the time of the

Fig. 14. Residual stator current of machine with two broken bars and its
normalized PSD.

Fig. 15. Eigenvector analysis results obtained from db24.

opening and an increase in amplitude of the stator currents.
All the other faults which can produce a nonstationarity in the
machine, like short circuit, fluctuation of load, . . .) could be
detected by the wavelet decomposition.

IV. CONCLUSION

Signal decomposition via wavelet transform and wavelet
packets provides a good approach of multiresolution analysis.
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Fig. 16. Eigenvector analysis results obtained from db6.

Fig. 17. Stator current in phase “a” during the opening of phase b.

Fig. 18. Stator current during the opening of the disconnected phase.

The decomposed signals are independent due to the orthogonal-
ity of the wavelet function. There is no redundant information
in the decomposed frequency bands.

Based on the information from a set of independent fre-
quency bands, mechanical-condition monitoring and fault di-
agnosis can be effectively performed.

This paper has shown a new approach in detection of
broken rotor bars and the nonstationarity in induction motor
having only stator currents as input. The detection is based

Fig. 19. Stator voltage Uca during the opening of phase b.

Fig. 20. Details and approximation obtained by decomposition in the multi-
level stator current during opening.

Fig. 21. Details and approximation obtained by decomposition in the wavelet
packet of the stator current during opening.

on the discrete wavelet decomposition method. The results
show the effectiveness of the proposed method for this kind of
fault.

MCSA is a good method for analyzing motor faults over
constant load torque. However, in the case of nonconstant
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Fig. 22. Details and approximation obtained by decomposition in the wavelet
packet of the stator voltage during opening.

load torque or nonstationary signals, the use of the wavelet
decomposition is required.

APPENDIX

The name plate data of the squirrel cage IM are as follows:

P = 4 kW; Vs = 220/380 V (Δ/Y);

Is = 15.2/8.8 A; Nn = 1435 r/min;

p = 2; m = 3; f = 50 Hz; cos Φ = 0.83.
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