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Modeling of Dimmable Fluorescent Lamp
Including the Tube Temperature Effects
Deyan Lin, Member, IEEE, Wei Yan, Member, IEEE, and S. Y. R. Hui, Fellow, IEEE

Abstract—This paper presents an improved semitheoretical flu-
orescent lamp model by including the effect of the lamp tube tem-
perature on the lamp electrical parameters at different dimming
levels. The experimental results have verified that the lamp tube
temperature is a linear function of the lamp’s input power and has
significant influence on the lamp’s electrical parameters during
the dimming process. The comparison on the simulation and
measurements shows that the improved lamp model can predict
the lamp electrical characteristics accurately in a wide dimming
range under both low- and high-frequency operations.

Index Terms—Ballasts, dimming, fluorescent lamp modeling,
lighting.

I. INTRODUCTION

E LECTROMAGNETIC ballasts have regained attention
because new magnetic materials can reduce the core loss

and enable the magnetic ballasts to be energy-saving and en-
vironmentally friendly products [1], [2]. A more accurate and
reliable lamp model that can predict the lamp electrical terminal
characteristics at the mains (e.g., 50 Hz) operating frequency
becomes necessary for ballast designers to have a better un-
derstanding of the lamp behaviors. A variety of fluorescent
lamp models has been proposed so far [3]–[20]. These models
are usually suitable for lamps operated at high frequency only
and are not applicable for lamps under dimming conditions. To
cope with a wide range of general applications, it is necessary
to have an improved lamp model that can predict the lamp
electrical characteristics at different operating frequencies and
under different dimming conditions.

The authors have previously proposed a semitheoretical flu-
orescent lamp model [20] which can predict the lamp electrical
characteristics accurately under different operating frequencies
and transient states. However, this model does not consider the
influence of the lamp tube temperature on the lamp behavior.
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Although the fluorescent lamp is sometimes known as a “cold
light source” (when compared with high-intensity-discharge
lamps), the total input power still causes ohmic heating that
heats up the tube temperature well above the room temperature.
For example, it has been pointed out that over 70% of the
input power of fluorescent lamps is dissipated as heat [23].
The tube temperature should have different values under dif-
ferent input lamp power. Therefore, to accurately predict the
lamp characteristics, one should include the effect of the lamp
tube temperature on the lamp parameters at different dimming
levels. This paper presents a new approach to improve the
semitheoretical fluorescent lamp model in [20] by including the
effect of the lamp tube temperature. It is an improved version
of [24]. The simulated and experimental results in this paper
clearly confirm that, after considering the effect of the lamp
tube temperature, the lamp model becomes more accurate than
before in simulating the electrical characteristics of the lamp.
The improved lamp model can be used in the design for both
dimmable magnetic ballast and dimmable electronic ballast
fluorescent lamp systems [25].

II. MODEL IMPLEMENTATION

As illustrated in [20] and [21], the fluorescent lamp model
consists of five physical and circuit equations as follows:

dTe

dt
= a1(i2R − Pcon − Prad) (1)

Prad = a2 exp(−ea3/kTe) (2)
Pcon = a4(Te − T0) (3)

R = a5T
−3/4
e exp(ea6/2kTe) (4)

V (t) = a7L
di

dt
+ i(R + r) + vele. (5)

The model parameters in the aforementioned equations and
their definitions are listed in Table I.

The adjustable model constants a1, . . . , a7 can be searched
by a special optimal search method, such as the genetic al-
gorithm (GA), based on experimental lamp current and lamp
voltage waveforms measured at 50 Hz. After the adjustable
model constants are determined at 50 Hz, the lamp model
can be applied to both magnetic ballast circuits and electronic
ballast circuits as shown in Fig. 1.

The lamp model in [20] and [21] assumes that T0 (lamp tube
temperature) in the model equation (3) is a constant value. This
assumption is only valid when the lamp is operated under full-
power condition. When the lamp is operated under the dimming
conditions, the lamp power is lower than that under the full-
power state. Thus, the lamp tube temperature as a function of
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TABLE I
DEFINITION OF THE MODEL PARAMETERS

Fig. 1. Fluorescent lamp power supply circuit diagram. (a) 50-Hz driving
circuit. (b) High-frequency driving circuit.

the lamp power should be lower than that in the full-power
state. In order to find out the quantitative relationship between
the lamp tube temperature and the input power in a fluorescent
lamp, the lamp tube temperature at different dimming levels and
at different tube locations has been measured by a temperature
measurement system—Agilent 34970A data acquisition/switch
unit with a 34901A multiplexer data processing system as
shown in Fig. 2. The temperature sensors of the data processing
system are attached at five different locations on the lamp tube
surface as shown in Fig. 3. Among these sensors, S1 and S5 are
attached in the locations of lamp filaments where the temper-
ature values are the highest. Sensors S2 and S4 are located in
the two ends of the tube, which are close to the filaments. S3 is
located in the middle of the tube. A T8 18-W fluorescent lamp
(PHILIPS LIFEMAX TLD 18W/54-765 COOL DAYLIGHT)
and a T8 36-W fluorescent lamp (PHILIPS LIFEMAX TLD
36W/54-765 COOL DAYLIGHT) are used as examples in this
paper. The temperature values were recorded each time after
the lamp had been adjusted into a new power level for 30 min.
The measured tube temperature rise values with respect to room
temperature at 24 ◦C for two different types of fluorescent
lamps are shown in Figs. 4 and 5.

Fig. 2. Diagram of tube temperature measuring system.

Fig. 3. Layout of temperature sensors. (a) T8 36-W fluorescent lamp. (b) T8
18-W fluorescent lamp.

Fig. 4. Measured tube temperature rise of a T8 36-W fluorescent lamp at room
temperature of 24 ◦C. (a) Lamp tube temperature rise at different points of the
tube under different dimming levels (T8 36-W lamp). (b) Variation of the lamp
temperature rise in the middle of the tube with the lamp power (T8 36-W lamp).

From the curves in both Figs. 4(a) and 5(a), one can observe
three facts: 1) the tube temperature is a function of the mea-
suring points along the tube; 2) the temperature at any location
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Fig. 5. Measured tube temperature rise of a T8 18-W fluorescent lamp at
room temperature of 24 ◦C. (a) Lamp tube temperature rise at different points
of the tube under different dimming levels (T8 18-W lamp). (b) Variation of
the lamp tube temperature rise in the middle of the tube with the lamp power
(T8 18-W lamp).

of the tube is the function of the total input power; and 3) the
relationship between the tube temperature and the total input
power at any location of the tube is a linear function, which can
be expressed by the relationship in the following equation:

T0 = Ta + a8i
2R (6)

where Ta is the ambient temperature and a8 is a new adjustable
constant introduced to the proposed model.

The simplified semitheoretical fluorescent lamp model re-
ported in [20] is a 1-D lamp model, which assumes that the lamp
tube temperature is constant. Figs. 4(b) and 5(b) clearly show
that this assumption is not correct. In this paper, the introduction
of the lamp tube temperature equation (6) can solve this prob-
lem. The new improved semitheoretical fluorescent lamp model
consists of six equations from (1) to (6), which have a total
of eight adjustable model constants. These adjustable constants
can be searched by using a GA program and with the help of one
set of measured lamp current and voltage waveforms at a 50-Hz
operating frequency. The GA approach used in [20]–[22] is also
used here to search for the optimum solutions for the following
optimum problem:

J(a1, . . . , a8) = min
[∑

(Vi − V ∗
i )2 +

∑
(Ii − I∗i )2

]
(7)

where (a1, . . . , a8) ∈ S, Vi and Ii are simulated voltage and
current values; V ∗

i and I∗i are sampled voltage and current
values from the experimental measurement at 50 Hz, and S
is the potential solution space. A set of {a1 . . . a8} should be
searched in a space of potential solutions so that the right side
of (7) will be minimized.

TABLE II
ADJUSTABLE MODEL CONSTANTS FOR DIFFERENT TYPES OF LAMPS

Fig. 6. PSpice model for 36-W fluorescent lamp at 50 Hz.

Fig. 7. PSpice model for T8 36-W fluorescent lamp at high frequency.

The proposed lamp model has been applied to a T8 18-W flu-
orescent lamp (PHILIPS LIFEMAX TLD 18W/54-765 COOL
DAYLIGHT) and a T8 36-W fluorescent lamp (PHILIPS
LIFEMAX TLD 36W/54-765 COOL DAYLIGHT). Experi-
mental measurements for lamp voltage and lamp current were
obtained with these lamps driven by a low-frequency (50-Hz)
magnetic ballast as shown in Fig. 1(a). Eight adjustable model
constants are determined by the GA, based on the sampled lamp
voltage and lamp current values extracted from 50-Hz experi-
mental data. The optimal model constants are shown in Table II.

III. SIMULATION RESULTS AND

EXPERIMENTAL VERIFICATION

Two PSpice circuit models for the T8 36-W fluorescent lamp
operated at 50 Hz and high frequencies are developed as shown
in Figs. 6 and 7, respectively. With these models, one can easily
simulate the electrical characteristics of fluorescent lamps at
any operating frequencies and under different dimming levels.

The simulated and experimental voltage and current wave-
forms for the T8 18-W fluorescent lamp operated at a 100%
rated lamp power and a 35% rated lamp power are shown in
Figs. 8 and 9, respectively, when the lamp operating frequency
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Fig. 8. Simulated and experimental lamp voltage and current waveforms of T8 18-W fluorescent lamp at 50-Hz operating frequency and 100% of rated lamp
power. (a) Simulated and experimental lamp voltage waveforms. (b) Simulated and experimental lamp current waveforms.

Fig. 9. Simulated and experimental lamp voltage and current waveforms of T8 18-W fluorescent lamp at 50-Hz operating frequency and 35% of rated lamp
power. (a) Simulated and experimental lamp voltage waveforms. (b) Simulated and experimental lamp current waveforms.

TABLE III
RELATIONSHIP OF THE INPUT AC VOLTAGE AND THE

RELATIVE LAMP POWER IN DIMMING PROCESS

is 50 Hz. It can be seen that, after the lamp tube temperature
has been taken into consideration, the simulation results are
closer to the experimental results at different dimming levels
in a low-frequency range. To verify the improvement of the
new model in simulating lamp electrical characteristics under
dimming conditions, a comparison study has been carried out
for simulation results generated by different lamp models (with
or without adjustable constant a8). Dimming is controlled by
varying the input ac voltage. The relationship of the input volt-
age and the lamp power is shown in Table III. The simulation
errors caused by different lamp models are calculated by the
following equations:

error(Vlamp) =
N∑

i=1

abs (Vi − V ∗
i )

abs (V ∗
i )

(8)

error(Ilamp) =
N∑

i=1

abs (Ii − I∗i )
abs (I∗i )

(9)

where i is the number of the sampled voltage or current, Vi

and Ii are simulated lamp voltage and current values, V ∗
i and

I∗i are sampled experimental lamp voltage and lamp current
values, and N is the total sampling number. The comparison
of the simulated voltage and current waveforms of a T8 18-W
fluorescent lamp (PHILIPS LIFEMAX TLD 18W/54-765
COOL DAYLIGHT) by different lamp models is shown in
Fig. 10. The comparison of accumulated simulation errors using
new (with a8) and old (without a8) models is shown in Fig. 11.
It can be found from Figs. 10 and 11 that the new model reduces
the simulation errors in both the simulated lamp voltage and
lamp current waveforms under dimming conditions, particu-
larly when the lamp power is dimmed down to 35% and 25%
rated lamp power.

Simulated and experimental lamp voltage and lamp current
waveforms for the T8 36-W fluorescent lamp operated at
100%, 80%, and 60% of the rated lamp power are shown in
Figs. 12–14, respectively, when the operating frequency of the
lamp was 50 Hz.

The same set of model constants has been applied to the T8
36-W fluorescent lamp driven by a high-frequency (32-kHz)
electronic ballast shown in Fig. 1(b). The results between the
simulated waveforms and experimental waveforms at different
dimming levels are shown in Figs. 15 (100%), 16 (70%), and
17 (45%). It can be seen that the simulated results are very close
to the measurements.
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Fig. 10. Comparison of simulation results for old model (without a8) and new
model (with a8) when the T8 18-W lamp was dimmed down to 35% and 25%
of the rated power, respectively. (a) Simulated lamp voltage and current results
using the model without adjustable constant a8 when the lamp was dimmed
down. (b) Simulated lamp voltage and current results using the model with
adjustable constant a8 when the lamp was dimmed down.

IV. DISCUSSION AND CONCLUSION

The lamp tube temperature is a linear function of the to-
tal lamp input power, and it influences the lamp’s electrical
parameters during the lamp dimming process. After taking
into account the effect of the tube temperature on the lamp
electrical parameters, the improved fluorescent lamp model can
reduce the simulation errors and accurately predict the electrical
characteristics of different types of fluorescent lamps under

Fig. 11. Comparison of accumulated relative errors for old model (without
a8) and new model (with a8) when the input ac voltage reduced from 220
to 99 V at 50 Hz. (a) Accumulated relative error in lamp voltage simulation.
(b) Accumulated relative error in lamp current simulation.

different dimming levels and at different operating frequen-
cies. All model constants in the six model equations can be
searched by the GA based on simple measurements of the lamp
voltage and current at 50-Hz operation. This model can be
easily adapted into any computer-aided design software, such
as PSpice shown in this paper, for ballast circuit designers to
design both magnetic and electronic ballasts. It can provide
accurate predictions of voltage and current waveforms in the
ballast simulation, particularly for dimmable magnetic ballasts.

From the comparison presented earlier, one can see that the
simulation results are much better when the new model constant
a8 is introduced into the lamp model. However, the simulated
lamp current still has relatively high accumulated error when
the dimming power reaches to 25% for the T8 18-W fluorescent
lamp and 45% for the T8 36-W fluorescent lamp. There are
two possible reasons to explain the simulation error. The first
possible reason is that the voltage of the ac source is too low
to reignite the lamp discharge at the beginning of each half
cycle. When the lamp current changes its polarity in each half
cycle, a high electric field is required for building up new
electron density to compensate those decayed fast to the wall
by diffusion and recombination during the zero current period.
If this requirement cannot be met, the lamp will fail to be
reignited. It is obvious that, at a 25% lamp power, the ac source
voltage is at the critical point to reignite the lamp. It takes quite
a long time to reignite the lamp. Therefore, the lamp current
remains at a very low value for quite a long time. This critical
reignition process has not yet been taken into consideration
in the lamp model. The second possible reason follows the
first reason. Caused by the delay of the lamp reignition, the
measured lamp current is less sinusoidal than the simulated
one. In the simulation, the influence of the nonlinear magnetic
core behavior of the practical magnetic ballast is not included.
However, in the proposed model, we assume that the impedance
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Fig. 12. Simulated and experimental lamp voltage and current waveforms of T8 36-W fluorescent lamp at 50-Hz operating frequency and 100% of rated lamp
power. (a) Simulated and experimental lamp voltage waveforms. (b) Simulated and experimental lamp current waveforms.

Fig. 13. Simulated and experimental lamp voltage and current waveforms of T8 36-W fluorescent lamp at 50-Hz operating frequency and 80% of rated lamp
power. (a) Simulated and experimental lamp voltage waveforms. (b) Simulated and experimental lamp current waveforms.

Fig. 14. Simulated and experimental lamp voltage and current waveforms of T8 36-W fluorescent lamp at 50-Hz operating frequency and 60% of rated lamp
power. (a) Simulated and experimental lamp voltage waveforms. (b) Simulated and experimental lamp current waveforms.

Fig. 15. Simulated and experimental lamp voltage and current waveforms of T8 36-W fluorescent lamp at 32-kHz operating frequency and 100% of rated lamp
power. (a) Simulated and experimental lamp voltage waveforms. (b) Simulated and experimental lamp current waveforms.
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Fig. 16. Simulated and experimental lamp voltage and current waveforms of T8 36-W fluorescent lamp at 32-kHz operating frequency and 70% of rated lamp
power. (a) Simulated and experimental lamp voltage waveforms. (b) Simulated and experimental lamp current waveforms.

Fig. 17. Simulated and experimental lamp voltage and current waveforms of T8 36-W fluorescent lamp at 32-kHz operating frequency and 45% of rated lamp
power. (a) Simulated and experimental lamp voltage waveforms. (b) Simulated and experimental lamp current waveforms.

of the ballast is a constant value and remains linear at any lamp
power. These two possible reasons may affect the accuracy of
the lamp model when it is applied to the critical reignition
condition for both low- and high-frequency operation. In the
future work, further improvement should be done in these areas.
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