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Abstract— A main problem in autonomous vehicles in general,
and in Unmanned Aerial Vehicles (UAVs) in particular, is the
determination of the attitude angles. A novel method to estimate
these angles using off-the-shelf components is presented. This
paper introduces an Attitude Heading Reference System (AHRS)
based on the Unscented Kalman Filter (UKF) using the Three
Axis Attitude Determination (TRIAD) algorithm as the observa-
tion model. The performance of the method is assessed through
simulations and compared to an AHRS based on the Extended
Kalman Filter (EKF). The paper presents field experiment results
using a real fixed-wing UAV. The results show good real-time
performance with low computational cost in a microcontroller.

Index Terms— Attitude Heading Reference System (AHRS),
Unscented Kalman Filter (UKF), Extended Kalman Filter (EKF),
Unmanned Aerial Vehicle (UAV), Three Axis Attitude Determi-
nation (TRIAD).

I. INTRODUCTION

HERE is growing interest in autonomous vehicles. These

vehicles are suitable for mobile missions, specially in
vigilance, monitoring and inspection scenarios [1], [2]. Be it
ground, marine or aerial, controlling an autonomous vehicle
needs some knowledge on its attitude angles [3]-[5]. These
angles can be measured in different ways, for instance, us-
ing a conventional Inertial Navigation System (INS). Mod-
ern MicroElectroMechanical systems (MEMS) technologies
are offering light and moderate cost solutions, denoted as
Inertial Measurement Units (IMUs), which are appropriate for
lightweight Unmanned Aerial Vehicles (UAVs).

Our research group is involved in the development of
UAVs relying on experimentation through a spiral life cycle
development based on prototypes. An on-board hardware and
software have been designed for these UAVs. The hardware
includes an IMU with three-axis accelerometers, gyrometers
and magnetometers; a Global Position System (GPS) receiver
is also included. The system is light and small enough to fly
on a small fixed-wing UAV.

The first flights, using manual control, have been used to
gather signals from the sensors. We are looking at closing
autonomous control loops, which needs an accurate estimation
of the three attitude angles. The signals from the sensors
have lots of vibrations due to the mechanical nature of the
system and noise with bias due to the sensors themselves and
environmental effects. The common solution in the literature
is to use a kind of Kalman filter.

Conventional kinematic models of flying vehicles are highly
non-linear; the filter should be able to cope with these non-
linearities. A typical Kalman filter for non-linear systems is

the Extended Kalman Filter (EKF). Using our experimental
signals the performance of the EKF was not completely
satisfactory. Sometimes estimation errors are too high and
sometimes the filter may diverge. This is inappropriate for
control loops [6].

Searching for a better alternative we selected the Unscented
Kalman Filter (UKF) as a potentially better solution. While
the EKF is based on the linearization of the model through
Jacobians or Hessians, the UKF uses the non-linear model
directly; therefore the predictions should be more accurate.

The nine terms of the Direct Cosine Matrix (DCM) can
be measured by using the Three Axis Attitude Determination
(TRIAD) algorithm and data from on-board sensors: acceler-
ometers and magnetometers. Using a quaternion formulation,
which is a conventional way to deal with the attitude of
aerial vehicles [7], the DCM terms can be easily handled.
The quaternion approach is widely used in Attitude Heading
Reference Systems (AHRSs) because it avoids the gimbal lock
problem. With respect to numerical stability, quaternions are
easier to propagate than the angles themselves.

For systematic and non-risky work, a simulation environ-
ment has been developed. The core of the simulation is the
X-Plane 9 simulator which is certified by the Federal Avia-
tion Administration (FAA) for subsonic terrestrial flight. For
realism, perturbations in the form of high-frequency noise and
sensor latencies, are included to the data from the simulator.

For evaluating the proposed solution, a number of simula-
tions have been run. These have been used to both validate
the solution and to compare it to the same algorithm using
the EKF. During these simulations a maximum error of
1.0° is imposed on the pitch and roll attitude angles, and a
maximum error of 4.0° on the yaw attitude angle. Under those
requirements, which are standard in the industry [8], the error
tolerances in the different signals are obtained through the
analysis of a large number of simulation cases. The solution
based on the UKF shows better performance.

Finally, the UKF based solution is tested on a real experi-
ment using a fixed-wing UAV of 2 meters of wingspan. This
UAV is shown in figure (I} An in-house autopilot is used to test
the estimation algorithm presented in this paper. The results
of the solution are compared to different independent systems
with very good results.

Summarising, the first section of the paper presents some of
the state of the art of AHRSs. The following section is devoted
to the formulation of the problem, including the kinematic
model and the TRIAD algorithm. Then comes a section
describing the whole solution using the UKF and TRIAD. The



Fig. 1: UAV developed by the authors.

fifth section deals with data obtained by simulation, and the
comparison between the UKF and the EKF is presented. Then,
field experiments are presented to fully evaluate the proposed
AHRS. In the final section of the paper, some conclusions are
drawn, including some guidelines for future work.

II. BACKGROUND AND RELATED WORK

The Unscented Transformation (UT) and the UKF were
introduced by Julier and Uhlmann [9], the algorithms were
further explained, with examples, by Wan and Merwe [10].
An extensive description of the UKF was given in [11].

Background on the EKF algorithm is given in [12]. In [13]
it was shown than the EKF can lead to unbounded estimation
errors for nonlinear systems similar to those used in this paper.

Some modern techniques, such as particle filters [14], are
expensive in computational terms. Therefore they are unsuit-
able for microcontrollers unless the number of particles is
reduced. However, this can lead to worse performance than
the EKF [15].

In a recent article [16] a comparison of both the EKF and
UKF is done for the particular case of flight path reconstruc-
tion for a fixed-wing UAV. This article includes an interesting
discussion of previous references that illustrate the improved
performance of the UKF over EKF estimating the attitude of
an UAV.

For real-time applications, it is important to reduce the
computational cost. Part of the research deals with different
ways of alleviating this cost. For instance, in [17] an attempt
to simplify the observation model is shown; however, it
compromises computational cost because the method involves
the inversion of several large matrices every filter iteration.
Another example is [18], which proposes to reduce the number
of vector state variables. Our proposed solution has been
implemented in a microcontroller for real-time estimation.

As highlighted by [19] it is important to base the Kalman fil-
ter on an accurate model. In our context, the models presented
in the following section are well established in the literature
and correspond with experimental results.

An extensive review of navigation systems is [20]. It covers
different algorithms including Kalman filters and the TRIAD
algorithm. The TRIAD algorithm was introduced by Shuster
and Oh in [21] to measure the DCM in a spacecraft.

The use of IMUs based in MEMS technology to estimate
the attitude angles in the industry has been increasing in the
recent years, like a fastening tool tracking system in [22].

A well-known problem with gyrometers is bias. Therefore,
different sensors have to be used to correct these biases. For
instance, in [23] they are corrected using three-axis accel-
erometers. In [24] the use of eight accelerometers in a new
configuration is proposed for measuring angular velocities in
small UAVs. Different approaches rely on magnetometers [25],
to be able to estimate yaw angle in helicopters, or in GPS
[26] to estimate the position as well the attitude in fixed-
wing UAVs. Alternatively, other papers propose not to use
gyrometers at all in conventional aircrafts, but several GPS
receivers instead [27].

In this paper we propose an attitude estimator using the
UKF and the TRIAD algorithm involving gyrometers, magne-
tometers and accelerometers. The validation of the algorithm is
done by both simulations and field experiments. Experiments
use an on-board hardware with MEMS sensors.

III. PROBLEM FORMULATION

Although each UAV has its own coefficients and therefore
its own dynamical model, it is possible to determine Euler
angles from a kinematic model, which is independent of the
UAV’s coefficients. In this section we derive the mathematical
formulation of the AHRS problem in a UAV equipped with a
three-axis gyrometer, three-axis accelerometer and three-axis
magnetometer.

A. AHRS kinematic model

The Euler angles describe the aircraft body-axis orientation
in north, east, and down coordinates. That means in longitu-
dinal, lateral and normal coordinates, with respect to the local
tangent plane to the Earth and true north. Here 6 is the pitch
angle, ¢ the roll angle and ¢ is the yaw angle according to
Figure [2| The angular velocity vector expressed in body frame
is P for the roll rate, () is the pitch rate and R is the yaw
rate; and it is related to the Earth frame by the transformation
given by the kinematics equation ().

é 1 tanfsing tanfcos¢| |P

6| =1|0  coso —sin¢ Q (1)
; sin ¢ cos ¢

1/) 0 cos 0 cos 0 R

Integrating equation (I) gives numerical instability and
could be gimbal locked. For this reason, a quaternion formu-
lation to represent the attitude is preferred:

3
q=qo+ qi+qj+ q3k Ya=1 2
1=0

Where the quaternion norm is 1 and their components from
Euler angles are:

qo = cos ¢’ cos @ cosv)’ + sin ¢’ sin &’ sin 1)’ 3)

g1 = sin ¢’ cos @’ cos vy’ — cos ¢’ sin ' sin 1)’ 4)

go = cos ¢’ sin @’ cos vy’ + sin ¢’ cos &' sin 1)’ 5)

g3 = cos ¢’ cos @ sinvy’ — sin ¢’ sin §’ cos 1)’ 6)



Fig. 2: Axes and coordinate definitions.

where ¢' = ¢/2, 0/ = 0/2, and ' = /2.
The kinematics equation (1) can be rewritten in linear form
using quaternion components:

qo 0 -P —-Q -—-R| |q
| _l1P 0 R -Q||a 7
Go 21Q —R 0 P g
qs R Q@ -P 0 q3

Additionally, it is useful to formulate the DCM using
quaternion components and the Euler angles from the DCM
terms:

DCM = A= {Cij} =

Ay 2(q1q2 + qoq3)  2(q193 — 90G2)
2(q192 — q0g3) Ay 2(q2q3 + q0q1)|  (8)
2(q193 + 90q2)  2(q2q3 — qoq1) A

where A1 = g2 +q7 — 3 — ¢}, Ao =g} — ¢} + @3 — ¢3, and
Az =3 — ¢§ — @3 + q3. Then,

6 = —arcsin(2(q193 — 90q2)) ®)
¢ = atan2(2(qaqs + qoq1), 45 — ¢ — G + 43) (10)
¢ = atan2(2(q1q2 + 9043), @5 + ¢ — 45 — 43) an

where atan?2 is the four-quadrant version of the inverse tangent
function, and arcsin is the arcsine function.

B. Gyros integration problem

The three-axis gyrometer measures the angular velocities,
and for obtaining the Euler angles, the gyros can be integrated
using equation (7). However, even if we ignore the sensor
noise, the gyros usually have bias, making integration their
error grow in every step.

Fortunately for a MEMS gyrometer in normal conditions
(not extremal temperature or pressure variation), this bias can
be assumed to be constant [28], or very slow varying through-
out the UAV mission. Therefore the bias for the gyrometer can
be modeled as:

b=0 with b= [bb,b.]" (12)

Denoting the angular velocity vector w = (P, Q, R), if the
gyros from the sensors are w;, they can be corrected using
the bias as:

w=w;—b (13)

Another issue arises when the equation (7)) is integrated.
The quaternion shall conserve its norm equals to 1, otherwise
the Euler angles are wrongly computed from the quaternion.
Although it can be normalized after every integration step,
there is a better way to do it. The quaternion norm can be
kept solving the equation (/) using the next integrating factor:

t

exp /Q dt (14)
to
where
0 -P -Q -R
1 _
°=5lo k0 # as)
R @@ —-P 0

Assuming that the angular velocities remain constant during
the interval d ¢, we can discretize the equation as follows
[29]:

A
n

A
I 2“’” +si 2“’|||Aw||s2> q(k) (16)

gk +1) = (Icos

where || Aw|| = $1/(PAt)? + (QAt)? + (RAt)? and I is the
identity matrix.

C. The TRIAD algorithm

The Three Axis Attitude Determination algorithm was in-
troduced by Shuster and Oh [21] to determine the attitude
in a Spacecraft from a set of vector measurements. TRIAD
is a deterministic method to compute the DCM. Given the
reference unit vectors V3 and V2 and the corresponding
observation unit vectors W7 and W, the DCM satisfies:

AV, =W, AVy =W,

The TRIAD algorithm determines the DCM using the
following expression

a7)

A= M,M" (18)
MO = (01|02|03) (19)
M»,n = (I‘1|I‘2|I'3) (20)

where the observation column vectors o; and the reference
column vectors r; are given by

01 =W, Q1)
0z = (W1 x Wy) /[W1 x Wy (22)
o3 = (W1 x (W1 x W3)) /W71 x W| (23)
ri1 =V (24)
ro = (V1 x Va)/|V1 X Vy| (25)
r3 = (V1 x (V1 X V3))/|V1 x V3 (26)

Notice that the pair (W1, V1) has more influence on A than
(W3, Vy), this is because part of the information contained
in the second pair is discarded. Therefore it is convenient
to assign (W1, Vq) to the pair of greater accuracy, which
depends on the flight circumstances. Section describes
criteria to assign these pairs.



IV. UNSCENTED KALMAN FILTER DESIGN

The UKF [9] is an alternative to the EKF, providing superior
performance at similar order of computational cost. Also dur-
ing the UKF implementation process, there are not Jacobians,
Hessians or other derivatives involved. In this paper, the UKF
is used both for state estimation (quaternion components) and
for parameter estimation (gyrometer’s biases).

The estimation algorithm is implemented as a two-step
propagator/corrector filter. It is desirable to run each step as
many times as possible, however, the frequencies at which
they will be run will be limited by different factors. For the
propagation step, the limiting factor is the computation time;
we chose a frequency of 100 Hz. The correction step is limited,
in our case, by the GPS sample rate, that is, 1 Hz.

The algorithm is described in the diagram shown in Fig-
ure The diagram depicts the two main loops, one at
100 Hz and the other at 1 Hz, these loops correspond to the
propagation and correction steps respectively. It can be noted
how the TRIAD information feeds the correction step.

Initial P P ‘ L
Conditions - - |
'l eps |
| [Lat Lon Alt |
v 100Hz | ‘
.| Propagate > 1Hz Correct ‘ |
BOR T | state state | |
A ‘ \
r- - - - - - - - - - - - - - - = o I
‘ GPS vel Y !
| b Normalize World I
| "r?] - Lo:/lt[é?ss # sensor M TRIAD |-¢— Magnetic |
values Model |

|

Fig. 3: Algorithm block diagram.

The area surrounded by dashed lines contains the elements
involved in the TRIAD calculations. The leftmost block repre-
sents an access to the sensors to measure “a and ®m which cor-
respond to the accelerations and magnetic field measurements
in the body reference frame respectively. The signals are then
filtered. The GPS velocity is used to subtract the centrifugal
accelerations as explained in subsection B; which also covers
the description of the TRIAD block. On the right side of the
diagram the block denoted as World Magnetic Model uses an
harmonic spherical model to obtain the magnetic field vector
at the position of the UAV. This vector is used as one of the
references in the TRIAD algorithm.

This section describes the design of the filter under the
considerations given above. Subsection A gives the equations
involved in the propagation loop whilst Subsection B deals
with those of the correction loop.

A. Propagation equations and process model

This subsection describes the propagation loop. The state
vector is:

w(k) = [ao(k) a1(k) qa(k) qs(k) ba(k) by(k) b:(k)]
@7

Where ¢; are the quaternion components and b; are the
gyrometers’ biases. These are assumed to be Gaussian Random
Variables (GRVs). Their process model is given by equations
(T6) and (12), respectively.

The basis of the UKF is the UT; which is a method for
calculating the statistics of a random variable which undergoes
a nonlinear transformation [9]. In our case, we assume that the
noise of the UAV sensors is additive (zero mean). Under this
assumption, the equations to estimate the Euler angles and the
gyrometer’s biases are the ones described in this subsection.

The computation algorithm begins with the initial condi-
tions:

&9 = Efzo]

Py = El(z0 — &0)(x0 — #0)"]

(28)
(29)

At the start of every iteration we calculate the sigma points
[9] xk—1 of the quaternion components and gyro’s biases.

Xe—1 = [Zr-1 Zr—1+7VPi-1 Zr—1—v/Pu1] (30)

Where v = VL + A, X\ is a composite scaling parameter
and L is the state vector dimension. v/P; can be computed
with the lower triangular Cholesky factorization.

The next step is to evaluate the model on the sigma points:

XZ|k—1 = FlXx—1, ur—1] a3n

Where F is the process model as given by equations (16)
and (I2). uk—1 is the angular velocity vector w. The a priori
state estimation is approximated using a weighted sample
mean

2L
i =Y W (32)
1=0
where
W™ = A/(L+ \) (33)
W™ =1/ (2(L + X)) (34)

and the covariance matrix is

2L
Py = Z Wi(C) [X;k,k\k—l - iﬂ[X;Mk—l - @E]T + Qe

=0
(35)
where
W =ML+ N+ (1-a®+8) (36)
Wi =1/ (2(L + \) 37)

The constant v determines the spread of the sigma points
around # and is usually set to a small positive value (for
instance, 1 < a < le~*). The constant [ can be used to
incorporate prior knowledge of the distribution of the state
vector: for Gaussian distributions, 5 = 2 is optimal [10].
Q.o € R7*7 is the process noise covariance:

(38)




where @, € R**? is the noise covariance associated to the
quaternion components and @, € R3*3 is the noise covariance
associated to the gyrometer biases.

The process that relates the quaternion components and
angular velocities has a continuous-time analytical solution,
as was shown in Subsection However, the discrete-
time equation assumes that the angular velocities remain
constant during the discretization period. Hence, ), should
be close, but different to zero. For the simulation and experi-
mental results shown in this paper:

Qu=1x107%" Iy (39)

where 1,4 is the 4x4 identity matrix.

The process noise covariance associated to the gyrometer
biases (Jp is the 3x3 zero matrix. The rationale for this is the
same that explains equation (I2) in Subsection [[II-B]

B. Correction equations and observation model

Even though the TRIAD algorithm gives the nine terms of
the DCM (see equation (8)), only four of them are needed to
calculate the Euler angles. Hence, the observation function has
been designed to measure these four terms.

To determine the pitch and roll angles, the terms are the X
and Y components of the Z earth vector expressed in the body
frame.

(40)
(41)

"Zpe = c13 = 2(q103 — 40g2)
" ZEy = c23 = 2(q243 + qoq1)

For the yaw angle, the terms are the X and Y components
of the X body vector expressed in the Earth reference frame.

(42)
(43)

FXpp=cn=@+4 -6 —a)
EXyy = c12 = 2(q1¢2 + 903)

Therefore, the observation model is given by equation (@4)).

H(zp) = [c13 c23 o1 612]T (44)

According to the TRIAD algorithm two vector pairs are
needed to compute the terms of the DCM. Each pair consists
of a measure or observation and a reference vector (equa-
tion (T7)). In our case, these pairs are the magnetic field, and
the acceleration of the UAV.

The magnetic observation vector is the field measured at
body frame. The magnetic reference vector is the Earth’s
magnetic field using an harmonic spherical model; the geo-
graphical coordinates for this model are provided by an on-
board GPS receiver.

For the acceleration pair, the observation is given by the
on-board IMU. It should be noted that the measurement given
by the accelerometers includes: linear acceleration, Coriolis
acceleration, centripetal acceleration and gravity. Coriolis ac-
celeration is assumed to be negligible, in our experiments
it is of the order of 10~* g. The reference is the Earth’s
gravity g = [O 0 1], normalized in North East Down
(NED) coordinates. The on-board accelerometers are affected
by mechanical vibrations and environmental perturbations,
therefore it is convenient to use a low-pass filter to reduce these

effects. Also, the centrifugal contribution of the acceleration
has to be subtracted:

Ean =U +QW — RV (45)
Fag =V + RU — PW (46)
Eap =W + PV — RU 47)

Where the speed *V = [U \% W} is expressed in the
body frame of reference. In a fixed-wing UAV, during a non-
acrobatic flight, both V' and W are negligible. Therefore,
the GPS speed measurement gives U, which is the dominant
component of ®V.

As stated in section it is convenient to assign
(W1, V1) to the pair of greater accuracy. During a flight, there
are times when accelerometers offer more accuracy, whereas
during others, magnetometers are more reliable. In our case,
we used the following criteria. In order of priority:

« If 0.9¢ < |’al < 1.1g then it can be assumed that this
is a stationary flight, hence the acceleration is the pair of
greater accuracy. In this case, V; = g and W; = a.

e Else, if 0.7¢ < |ba] < 09g or 1l.1g < |'a] <
1.3g then it can be assumed that the plane is doing
a coordinated turn. In this case, magnetometers offer
greater accuracy. Therefore, V; = Em and W, = bm.

e Else, if ['m| > 1.2|Pm| or |*m| < 0.8/¥ml]| then the
magnetic measurements are not reliable. The correction
step is skipped.

e Else, if |’al > 1.3g or |’al < 0.7g then it is assumed
that the current state is acrobatic and neither the magnetic
measurements nor the acceleration measurements are
reliable enough. The correction step is skipped.

Where “m is the Earth’s magnetic field vector and g the
Earth’s gravity acceleration. Notice how in the last two cases,
the correction step is skipped. The following only applies in
the first two cases.

The UKEF begins the correction step by redrawing the sigma
points. This is done to incorporate the effect of the additive
noise [10].

i1 = (85 &+ /Pr d —/Pr
Then the unscented transformation of the observations is
computed.

(48)

Velk—1 = H[Xnjr-1] 49)
2L
g = > W Vi (50)

=0

The measure and cross-covariance matrices are

2L
Py = WY kit = 95 1 Vikib—1 — G 17 + R

i=0
(D
2L
Poyy, = Z Wi(C) [Xi k-1 — 5 Vi kjk—1 — e 1" (52)
i=0

where R, is the measurement noise covariance. The value of
R,.... can be derived from the nominal values of the errors of



the sensors involved. This derivation is described thoroughly
in [21].
Now the Kalman gain is computed:

Ky =Py, P!

TrYk

Finally, the correction equations are (53) and (54)):

kYK

(53)
(54)

& =2, +Kelye — 91,)
P, =P, — ’Cku’ky’k’Cg

V. SIMULATIONS RESULTS

Since real experiments might imply crashes, some previous
simulations are in order. For this, we developed a simulation
framework, which consists in three different parts. The core
of the simulation is the X-Plane 9 software. The other two
parts are: the plug-in code for X-Plane 9 and the model of
the sensors. The idea is to integrate a six-degree-of-freedom
aerodynamic model, provided by X-Plane with a realistic
model of the sensors we are using. The plug-in code is just
the glue between them.

X-Plane 9 includes different aircraft models. Its default
radio control model is very similar to our UAV, so no
modifications to it are needed. This is the model used in the
simulations of this section.

The purpose of the simulations is to study the effects of
sensor noise, bias and latencies. Therefore, the model of the
sensors focuses on these aspects:

e GPS signal is delayed 1 second.

o Gyrometers signal are biased and corrupted with white

noise.

o Accelerometers are biased and corrupted with colored

noise, focusing in high frequencies.

e Magnetometers are biased and corrupted with white

noise.

Figure [ shows an example of how bias and noise are
added to a variable. Notice how both the magnitude of the
noise and the bias are kept constant throughout the simulation.
In particular, the example shows roll rate measurements as
simulated.

A first target of the simulations is to study the tolerances
of both estimators to bias and noise magnitude. According to
standard procedures, a maximum error of 1.0° in the estimation
of pitch and roll angle, and 4.0° for yaw angle are imposed. It
is assumed that with this error it is possible to do closed-loop
control. This is covered in the first part of this section. The
second part of this section assesses the performance of the
UKEF using real values for the biases and noise magnitudes of
our Sensors.

A. Error tolerances and comparison of estimators

A Monte Carlo analysis of the tolerances was made, sup-
ported by a batch of simulation experiments. Each of the
experiments specifies different values of biases and noise
magnitudes, which were drawn from a Gaussian distribution.

Two sets of results were obtained, one using the UKF and
the other using the EKF. These sets are shown in Tables [[]and

respectively.
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Fig. 4: True and corrupted roll rate used for simulations.

TABLE I: UKF tolerances: Maximum bias and random error
standard deviation.

Measurement Bias error Random error
Roll rate, P +9.98 °/sec  £8.51 °/sec
Pitch rate, Q +9.98 °/sec  £8.51 °/sec
Yaw rate, R +9.98 °/sec  £5.01 °/sec
Accelerometers  40.3 m/s? +0.7 m/s?
Magnetometers ~ +10.53mG +21.73mG
GPS Velocity +2.57Tm/s +2.45m/s

It can be noted how both algorithms are more sensitive to
errors in R than they are to errors in P and (). This is because
the information in the yaw angle is only provided by one
of the sensors, the magnetometer. While the information in
pitch and roll angles are provided by the accelerometer and
the magnetometer.

In general, EKF is more sensitive to biases and noises than
the UKF. In particular it is very sensitive to the bias in R.
Hence, the solution based on the UKF is preferred.

B. Simulation using real error values

For this simulation, the real biases and noise magnitudes
were extracted from our IMU’s datasheet. Table shows
them. It is interesting to compare these values to those from
tables [Il and [[Il It can be seen how some errors are outside of
the EKF tolerances. So EKF can not be used in our case.

TABLE II: EKF tolerances: Maximum bias and random error
standard deviation.

Measurement Bias error Random error
Roll rate, P +1.50 °/sec  £1.50 °/sec
Pitch rate, Q +1.50 °/sec  £1.50 °/sec
Yaw rate, R +0.50 °/sec  £1.50 °/sec
Accelerometers  40.14 m/s>  £0.32 m/s?
Magnetometers ~ +5.58mG +11.43mG
GPS Velocity +2.17m/s +1.45m/s




TABLE III: Typical MEMS bias and random error standard
deviation.

Measurement Bias error Random error
Roll rate, P +3.00 °/sec  £1.00 °/sec
Pitch rate, Q +3.00 °/sec  £1.00 °/sec
Yaw rate, R +3.00 °/sec  £1.00 °/sec
Accelerometers  0.05 m/s>  £0.009 m/s?
Magnetometers ~ +4.00mG +1.25mG
GPS Velocity +0.5m/s +1.5m/s

Figures [5] [6] and [7] show the behavior of the UKF algorithm
in a typical flight in a windy scenario. Solid lines depict
simulated angles while the dashed ones depict estimations
from the AHRS. It should be noted that in figure[/| the abrupt
changes near seconds 520 and 590 is due to the representation
of angles in the range +180°. The agreement between the
simulated and estimated values is satisfactory.
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Fig. 5: Roll angle simulated with MEMS parameters.

Area marked with *1’ shows a coordinated turn to the left,
note how the yaw angle decreases. This turn leads to the
next area, marked with ’2’, which is a steady flight. The area
marked with ’3’ is a new coordinated turn to the right, note
how the yaw angle increases. The final area, marked with *4’,
is a new steady flight; the three angles remain mostly constant.
It can be noted that the pitch angle estimation in area 4’ has a
slight bias (of less than 0.3°), this is due to the magnetometers
biases added during the data corruption. These biases are not
compensated through the algorithm because of their negligible
effect compared to the gyrometers biases. The pitch and roll
angles experience vibrations due to different gusts of wind.

This section has shown how the simulation results give
confidence on the AHRS using the UKF. The system can be
used in field experiments. The following section covers field
experiments and the validation of the AHRS.

VI. FIELD EXPERIMENT RESULTS

The target of the research is to use the AHRS to feed a
closed-loop controller in field experiments. Aside from the
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Fig. 6: Pitch angle simulated with MEMS parameters.
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Fig. 7: Yaw angle simulated with MEMS parameters.

simulation results presented in an earlier section, an experi-
mental validation of the system has been done.

Experiments were carried out using a small fixed-wing
UAV. An on-board autopilot hardware has been designed and
built for this UAV. Figure [§] shows a functional diagram of the
autopilot.

Two ARMT7 microcontrollers are used for sensor data han-
dling and navigation algorithms. Both are connected with a
UART channel. Flight data are measured by different sen-
sors: a GPS receiver, an IMU with magnetometers, and four
pressure sensors. One of the pressure sensors is used as a
barometer for altitude measurement and the rest, one per axis,
are connected to Pitot tubes for air-speed measurement. Sensor
data are stored in an SD card for experiment analysis. The
IMU used is the ADIS16405 from Analog Devices.

The navigation microcontroller receives processed sensor
data from the other microcontroller, and sends this data over
the radio link. In future, when the control loop is closed, this
microcontroller will send the PWM signals to the actuators.
Figure [09] shows a picture of the autopilot.
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Fig. 8: Functional diagram of the autopilot.

Fig. 9: Photograph of the on-board hardware next to the UAV.

The target of the experiments is to assess the accuracy of
the estimation of each of the three attitude angles. Therefore,
experiments are designed to excite the single modes of the
system, that is, pure roll, pure pitch and pure yaw. However,
due to the nature of the system, it is not possible to do so
in practice; there is always some coupling between motions.
We tried to excite these modes during the experiments. In
addition, typical maneuvers such as coordinated turns were
also included. A ground station was built to receive data from
the UAV using a radio link. The flight is manually controlled
using a conventional radio control unit.

For validation purposes, data coming from independent
sensors (not used by the estimation algorithm) have been
considered. For the roll angle, a computer vision system is
used. The GPS velocity is used to validate the yaw angle.

The vision system uses a small camera attached to the UAV.
An algorithm was developed to obtain the roll angle from the
video measuring the slope of the horizon. The algorithm is
based on [30] [31] [32]. Figure shows one of the frames
taken during the flight and processed by the vision system.
The results of this system have an uncertainty of +3°.

Figure [IT] shows a comparison between the estimated roll

3

Fig. 10: One of the frames processed by the vision system.

angle and the measurements from the vision system. The area
marked with "1’ depicts the end of a turn to the right. Is is
followed by a steady flight in the area marked with *2’, finally
leading to another turn to the right in the area marked with
’3’. The results of the comparison are clearly satisfactory.
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Fig. 11: Roll angle comparison between vision system and
UKF estimation.

The actual experiment took place under adverse atmospheric
conditions, in particular, there were gusts of wind. So when
there is strong crosswind, the yaw angle differs from the
heading of the plane. The heading is measured using the GPS
velocity with an uncertainty of +10°. It can be noted that the
GPS velocity is only used to subtract the centrifugal contribu-
tion of the accelerometers (see equation (@7)) in the estimation
algorithm. Therefore, it can be taken as an independent system
for validation purposes.

Figure [T2] shows a comparison of the estimation of the
yaw angle and the heading measured by the GPS. The figure
corresponds to a turn of 360°. During the area marked with
’1’, the UAV faces the wind gusts. The area marked with ’2’
shows the effect of crosswind; it makes the yaw angle and the
heading diverge. In other words, the UAV does not move in



the direction it points to. Finally, throughout the area marked
with ’3’, the UAV has tail wind and the yaw angle closely
follows the GPS heading.
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Fig. 12: Yaw angle comparison between GPS system and UKF
estimation.

With the sensors we are currently using, it is not possible to
have an independent measurement of the pitch angle. However,
due to the formulation of the algorithm using quaternions, the
pitch angle is strongly coupled to the roll and yaw angles.
Therefore, it can be assumed that if both the roll and yaw
angles are correctly estimated, the pitch angle is correctly
estimated too.

VII. CONCLUSIONS.

This paper considered the problem of attitude estimation
of an UAV in order to establish closed-loop control. The
mathematical formulation of the problem has been presented
in terms of quaternions. The on-board AHRS is based on a
MEMS IMU.

A widely used estimator is the Kalman Filter. The kinematic
model of aircraft attitude is highly non-linear, so a version of
the Kalman filter able to cope with non-linearities is needed.
Two of these versions, have been studied: the EKF and the
UKF. A common solution in the satellite attitude estimation
practice is the TRIAD algorithm and it has been used as the
observation model in the UKF framework in this paper.

Previous studies in the attitude determination field give
the same confidence to the sensors throughout the whole
UAV mission. This is unsuitable for missions that mix both
acrobatic and non-acrobatic maneuvers. Using the TRIAD
algorithm it is easy to select the most reliable sensors along
the different phases of a flight. Criteria for this selection have
been described.

A simulation framework based on XPlane 9 has been
introduced. This simulation corresponds to the characteristics
of the experimental UAV. Using simulation results, it was
found that the UKF shows better performance than the EKF.
Therefore, the UKF has been used in the final version of the
AHRS.

The performance of the algorithm has been assessed using
field experiments. Using independent sensors it has been
checked that the estimation algorithm gives good results. A
possible idea for future research is to include the information
from these sensors into the AHRS itself. Since the estimation
results are encouraging the next experimental work will be to
feed the estimations to a closed-loop controller.

Due to space constraints only some snapshots of the exper-
imental results have been shown. However, the complete set
of data confirm the good quality of the estimations. This gives
confidence on the algorithm, which is easy to implement and
it can be run on an on-board microcontroller.
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