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ΦΦΦΦAbstract –This paper investigates the steady-state and the 
transient performances of an axial magnetic coupling by using 
analytical formulas issued from an analytical model based on a 
two-dimensional approximation for the magnetic field 
distribution (mean radius model). From the magnetic field 
expression, simple analytical formulas are derived for 
computing the pull-out torque and the torsional stiffness of the 
coupling as a function of the geometrical parameters. Here, a 
special attention is given to the overload torque condition 
during the transient which lead to the loss of synchronism for 
the coupling. Moreover, radial and angular misalignment 
conditions are also studied. In order to study the accuracy of the 
proposed analytical model, the results are compared with those 
obtained from 3D finite element simulations and measurements. 
 

Index Terms-- Analytical model, magnetic field, axial 
coupling, permanent magnets, pull-out torque, transient 
performance.  

I.    NOMENCLATURE 

R1     Inner radius of the magnets 
R2     Outer radius of the magnets 
Re     Mean radius of the magnets  
h     Magnets thickness 
e     Air-gap thickness 
�     PMs pole-arc to pole-pitch ratio 
p     Pole-pair number 
�     Torque angle 
Br     Remanence of the permanent magnets 
K     Torsional stiffness 

II.   INTRODUCTION 

AGNETIC couplings are used to transmit torque from 
a primary driver to a load without any mechanical 

contact. As the torque could be transmitted across a 
separation wall, magnetic couplings are well suited for use in 
isolated systems. Among the advantages of this type of 
coupling compared to mechanical couplings is the self 
protection against the overload (pull-out torque). Moreover, 
magnetic couplings tolerate shaft misalignment. 

As shown in Fig. 1, the studied axial magnetic coupling 
consists of two discs equipped with sector-shaped permanent 
magnets (rare-earth magnets) and separated by a small air-
gap. The magnets are axially magnetized and are arranged to 
obtain alternately north and south poles. Soft-iron yokes are 
used to close the flux. Through magnetic interaction, the 
torque applied to one disc is transferred through an air-gap to 
the other disc. 
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In order to predict the steady state and the transient 
performance of magnetic couplings or PMs actuators, an 
accurate knowledge of the air-gap flux density distribution is 
necessary. The flux density can be evaluated by analytical 
methods using 3D formulation or approximate 2D 
formulations [1]-[21] or by numerical techniques like finite 
elements [22]-[25]. Analytical methods generally require 
much less computational time than numerical ones and can 
provide closed-form solution for the torque [5], [19], [20] 
which can be used in optimization codes. 

 While the steady-state performance of magnetic 
couplings or magnetic gears is widely studied in the 
literature, only little attention is given to transient 
performances [26], [27] and experimental data are practically 
nonexistent [28], [29].   

The purpose of this paper is to analyze the steady-state 
(pull-out torque) and the transient performance (start-up, 
sudden change in load torque, and overload conditions) of an 
axial magnetic coupling by using analytical formulas for the 
pull-out torque and the torsional stiffness. Compared to [29], 
a special attention is given here to overload torque 
conditions which lead to the loss of synchronism for the 
coupling. In order to study the accuracy of the proposed 
model, the results are compared with those obtained from 3D 
finite element simulations and measurements. 

III.   ANALYTICAL CALCULATION OF THE MAGNETIC FIELD 

Because of the three-dimensional nature of the magnetic 
field distribution, rigorous computation of the torque 
requires a full three-dimensional analysis [1]-[3], [7]. 
However, in order to simplify the analysis and to carry out 
simple formulas for the torque and the torsional stiffness, the 
3D problem of Fig. 1 is reduced to a 2D one by introducing a 
cylindrical cutting surface at the mean radius of the magnets 
Re =(R1+R2)/2 on which the flux density will be computed. 
Fig. 2 shows the resulting 2D model which makes the axial 
magnetic coupling equivalent to a linear magnetic coupling.  

 

 
 
Fig. 1.  Geometry of the studied axial magnetic coupling (p = 6). 
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Fig. 2.  2D model of the axial magnetic coupling at the mean radius of the 
magnets Re =(R1+R2)/2. 

 

With this approach, we neglect the radial component of 
the magnetic field and we consider that the axial and 
tangential components do not depend on the r-coordinate. 
Moreover, we consider that the iron yokes have infinite 
magnetic permeability (which gives homogeneous Neumann 
conditions on their boundaries). The magnets are axially 
magnetized with a relative recoil permeability �r = 1.  

Detailed developments for the magnetic field calculation 
in the different regions of Fig. 2 are given in [20] and will 
not be repeated here. In this paper, only the method and the 
most important relations are remembered. Compared to [20], 
the model has been simplified by only considering the first 
harmonic term of the magnetic field distribution. As it will 
be shown, this hypothesis leads to simple expressions for the 
axial and tangential components of the flux density in the air-
gap which allows computing very quickly the pull-out 
torque. 

A.   Magnetic Vector Potential in the Air-Gap  

A magnetic vector potential formulation has been used in 
[20] to study the problem shown in Fig. 2. With this 
formulation, we have to solve the following partial 
differential equations in the magnets and air-gap regions 
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where µ0 is the permeability of the vacuum and Mz is the 
axial magnetization of the magnets. Due to the periodicity of 
the magnetic field distribution, the studied domain has been 
limited by 0 � � � 2�/p. The axial magnetization Mz can be 
expressed in Fourier’s series and replaced in (1). If we 
consider only the first space harmonic term of the 
magnetization distribution, we can write  
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where � (torque angle) is the relative angular position 
between the magnets of region I and region III as shown in 
Fig. 2. By considering the interface and boundary conditions 
for the magnetic field, we obtain the general solution of the 
magnetic vector potential in the air-gap region 
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where k=p/Re and aII, bII, cII and dII are the integration 
constants. These integration constants can be determined 
from the interface conditions between the regions as 
explained in [20]. 

B.   Magnetic Flux Density in the Air-Gap  

 The axial and tangential components of the magnetic flux 
density in the air-gap can be deduced from the magnetic 
vector potential (4) using 
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To compute the pull-out torque from the Maxwell stress 
tensor, we have to know the flux density expression on a line 
in the air-gap region. The simplest expression for the flux 
density is obtained at z = h +e/2 (middle of the air-gap). 
Moreover, with the first harmonic hypothesis, we know that 
the torque presents a sinusoidal characteristic and so we have 
to compute only its maximum value. 

From (4) and (5) and after some calculus to obtain the 
values of the integration constants aII, bII, cII and dII, the axial 
and tangential components of the magnetic flux density in the 
middle of the air-gap for � =�/2p are given by 
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where  
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As expected, we can observe from (6) and (7) that the 

axial and tangential flux density waves are in phase when we 
consider the pull-out torque position.  

By using (6) and (7), it is now possible to derive 
analytical formulas for the pull-out torque and for the 
torsional stiffness of the axial coupling. The next sections 
concern the analysis of the steady state and the transient 
performance of the coupling with experimental validations. 

IV.   STEADY-STATE ANALYSIS 

A.   Pull-Out Torque Expression 

The pull-out torque is obtained by the Maxwell stress 
tensor where a line at the middle of the air-gap is taken as the 
integration path  
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Incorporating (6) and (7) into (9), we can derive a simple 
formula for the pull-out torque which depends directly on the 
geometrical parameters. 

 

( )max sin      =eT T pδ       (10) 

with 

( )( )
32 2

3 21
max 2

0 2

16 sinh ( )
1 sin

3 2 sinh 2 1
rB R a

T R
aR

πα
π µ ν

� �� � � �� �= −� � � �� �� � +� �� �� �

 (11) 

The formula (11) has been used in [20] for optimal design 
of the coupling given in Table I. 

B.   3D FE Simulations and Measurements 

For the steady-state analysis, the formula (11) has been 
compared with both 3-D FEM simulations and experimental 
results. For the 3-D finite element simulations, we have used 
COMSOL® multiphysics software. For the experimental 
validation, we have manufactured an axial magnetic coupling 
prototype using sector type NdFeB magnets glued on iron 
yokes. The thickness of the iron yokes (1cm) has been 
chosen to avoid magnetic saturation. The geometrical 
parameters of the prototype are those of Table I.  

Fig. 3 shows the axial magnetic coupling placed on the 
test bench. The axial coupling is inserted between two 
electrical machines (DC motors, 3kW, 1500rpm). In fig. 3, 
the air-gap value is e = 9.5mm. The air-gap length has been 
set by inserting non-magnetic plates of known thickness 
between the two discs. Figs. 4a and 4b show respectively a 
photograph and a block-scheme representation of the test 
bench arrangement for the static torque measurement. As 
shown in Fig. 4b, the static torque was measured thanks to 
weights (250g, 500g, 1kg) suspended to a rod (l=1m) locked 
to one rotor, the other being fixed. The relative angular 
position � was measured using an incremental encoder with a 
resolution of 4096 pulses/revolution (precision of 0.088 
degrees) and the data was transferred into a computer.  

Fig. 5 shows the pull-out torque as a function of the air-
gap length obtained with 3D finite elements analysis and 
with the 2D analytical model (11). As expected for this type 
of device, the 2D analytical prediction gives higher values 
for the pull-out torque as compared to 3D FE analysis [20]. 
This is mainly due to the 3D effects which are not taken into 
account in the proposed model (the radial dependence of the 
magnetic field is not considered). The error on the pull-out 
torque prediction ranges from 22% for e=2mm to 31% for 
e=10mm.  

 

 
 
Fig. 3. Axial magnetic coupling prototype placed on the test bench (e = 
9.5mm). 

 
 

(a) 
 

 
(b) 

 
Fig. 4. Experimental setup for the static torque measurement: (a) 
photograph, (b) block-scheme representation (top view). 
 

 

 
 
Fig. 5. Pull-out torque versus the air-gap length: 3D FEM and 2D analytical 
results. 

 
 

TABLE I 
PARAMETERS OF THE STUDIED AXIAL COUPLING 

Symbol Quantity value 

R1 Inner radius of the magnets 30 mm 

R2 Outer radius of the magnets 60 mm 

Re Mean radius of the magnets 45 mm 

h Magnets thickness 7 mm 

e Air-gap length variable 

� PMs pole-arc to pole-pitch ratio 0.9 

p Pole-pairs number 6 

Br Remanence of the permanent magnets 1.25 T 
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In order to analyze the error on the torque prediction of 

the 2D model, a parametric study has been carried out.  For a 
magnet thickness h=7 mm and an air-gap e=4mm, we vary 
R1, R2 and p in the following intervals:  
- R2=[40 mm to 140mm] with a step of 20 mm (6 values), 
- R1=[0.2×R2 to 0.8×R2] with a step of 0.1×R2  (7 values), 
- p=[2 to 8] with a step of 1 (7 values). 

This corresponds to 294 combinations. 
Then, for each value of R2, we have 49 evaluations (3D 

FE) of the pull-out torque T3D, the maximal value being 
noted T3D-max. Among these 49 calculations, we have only 
considered the representative values for which T3D/ T3D-max > 
0.7. Indeed, we always look in practice to the most favorable 
configurations which maximize the torque. 
A non-dimensional number λ=�(R2+R1)/(2p(R2-R1)) is 
introduced. It allows comparing the magnet height (R2-R1) 
and the mean pole-pitch �(R2+R1)/2p.  
We have defined a correction factor of the 2D model by 
kc=Tmax/T3D, where Tmax is given by (11). Fig.6 gives the 
variation of kc versus λ. It can be seen that the values of kc 
ranges between 0.7 and 0.8 for the most representative cases. 
Furthermore, one can see that the optimal values of λ that 
maximize the torque transmission capabilities of the coupling 
are between 0.3 and 0.8. Notice that these optimal values of 
λ can also be predicted with the formula (11) as indicated in 
[20]. 

Hence, for engineering purposes, a correction factor kc 

based on the results of Fig. 6, can be introduced to improve 
the precision of the torque formula (11) 

 

max maxc cT k T=  with   0.75ck ≈      (12) 

 
where Tmax is given by (11). As it can be observed in Fig. 5, a 
simple correction coefficient in the analytical torque 
expression leads to acceptable results whatever the air-gap 
length. 

Figs. 7 show the comparison between the measured values 
of the static torque (Fig. 4) and the calculated ones by using 
the 2D analytical models and 3D FEM. Here, four values of 
the air-gap length were considered (e = 4mm, e = 9.5mm, e = 
13mm and e = 20mm). It can be observed in Fig. 7 that the 
measurements are in good agreement with both the 3D FE 
simulations and the 2D corrected analytical model given by 
(12). 
 
 

 
Fig. 6. Correction factor kc (for e = 4 mm). 

 

 
(a) 

 
(b) 

 

 
(c) 
 

 
(d) 

 
Fig. 7. Measured and computed static torque versus the angular 
displacement �: (a) e = 4mm, (b) e = 9.5mm, (b) e = 13mm, (b) e = 20mm. 
 

C.   Tolerance to radial and angular misalignments 

Fig. 8 shows the influence of the radial and angular 
misalignments on the static torque of the designed coupling 
(results obtained with 3D FE analysis). It can be seen that a 
radial misalignment of d=10mm leads to a reduction of the 
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maximum torque of about 11% compared to the case where 
d=0. On another hand, an angular displacement of β=1° 
leads to a reduction of about 25% of the maximum torque 
compared to the healthy situation (β=0). It can be concluded 
that the torque transmission capabilities of the coupling are 
more sensitive to angular misalignments. 

V.   TRANSIENT ANALYSIS 

A.   Torsional Stiffness Expression 

In transient analysis of magnetic couplings or magnetic 
gears [26]-[29], one of the most important parameter is the 
torsional stiffness K (in Nm/rad). It is equal to the initial 
slope of the torque vs. position curves shown in fig. 7. This 
coefficient depends on the geometrical parameters of the 
coupling and more particularly on the air-gap value e. From 
(10) and (12), we can obtain an analytical expression for K 

maxcK pT=          (13) 

Fig. 9 shows the variation of the torsional stiffness K 
versus the air-gap length. As expected, the coefficient K 
decreases with the air-gap length (the coupling is more 
elastic with a large air-gap). For an air-gap value of 4 mm, 
the torsional stiffness of the studied magnetic coupling is 
around 370Nm/rad. For comparison, rigid or semi-flexible 
mechanical couplings present torsional stiffness of more than 
5000Nm/rad. 

B.   Equations of Motion 

The transient analysis of the magnetic coupling is 
obtained from the equation of motion for rotating rigid 
bodies. Fig. 10 shows the scheme of the test bench. The DC 
motor rotates at �m and the load runs at �l.  

 

 
(a) 

 

 
(b) 

 
Fig. 8. Effects of misalignment on the static torque for e=4 mm: (a) radial 
misalignment (b) angular misalignment. 

 
 
Fig. 9. Torsional stiffness (K) versus the air-gap length for the studied 
magnetic coupling. 
 

 
Fig. 10. Scheme of the test bench. 
 

In steady state condition, the two speeds are the same. 
Two encoders (4096 pulses/revolution) have been placed on 
the test bench to measure the relative angular position 
between the DC motor and the load and to measure the speed 
on both sides of the coupling during the transient.  

The motion equations are given by 
 

m
m m m DC e

l
l l l e load

d
J B T T

dt
d

J B T T
dt

Ω Ω

Ω Ω

+ = −

+ = −
     (14) 

where Jm and Bm denote the total moment of inertia and the 
coefficient of friction of the DC motor and one part of the 
axial coupling, Jl and Bl denote the total moment of inertia 
and the coefficient of friction of the other part of the axial 
coupling and the load. TDC is the DC motor torque and Tload 
is the external load torque. The torque of the magnetic 
coupling (10) and (12) can be re-written as follows 

( )( )max sine c m lT T p θ θ= −      (15) 

 where �m=d�m/dt, �l=d�l/dt . 
 

C.   Sudden Application of Load Torque 

In order to study the transient behavior of the coupling, a 
first test consists to block one part of the magnetic coupling 
(the DC motor part is locked i.e. �m=0, �m = 0) and to apply 
a sudden variation on the load torque (supplementary weight 
from a wire attached at the end of a rod as shown in Fig. 4).  
In this case, the motion equation (14) becomes 

( )
2

max2
sinl l

l l c l load
d d

J B T p T
dtdt

θ θ θ+ = − +   (16) 

If we consider a small variation of the load torque �Tload 
and a value of �l near to zero, (16) can be rewritten as a 
second-order linear differential equation 

2

2
l l

l l l load
d d

J B K T
dtdt

θ θ θ ∆+ + =     (17) 

where K is given by (13). We can define the damping ratio � 
and the oscillation period T as 
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2
l
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KJ
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K
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The load torque variation and the moment of inertia Jl 
(obtained by the Huygens’ theorem) depend on the total 
weight m+�m attached to the rod (rod of length l= 1m) as 

2load
l

T g m∆ ∆=     and   
2

( )
2l
l

J J m m∆ � �= + + � �
� �

 (19) 

where g = 9.81ms-2, J is the load inertia without weight (J = 
0.01kg.m2), m is the initial weight, and �m is the 
supplementary weight applied at t=0s.   

Fig. 11 shows the variation of the load angle �l 

(simulation results obtained with (17) and experimental 
results) when we apply a load torque step of 5 Nm at t = 0s 
that corresponds to a weight of around �m = 1kg (the initial 
torque is fixed to 14.7 Nm i.e. m = 3kg). The moment of 
inertia Jl given by (19) is then equal to 1.01kg.m2. The 
torsional stiffness of the magnetic coupling is K = 
370Nm/rad (air-gap of 4 mm). The oscillation period can be 
estimated by (18) at T = 0.33s that is closed to the 
experimental results (T = 0.35s) given in Fig. 11. As shown 
in Fig. 11, the initial and final load angle can also be 
predicted with a very good precision by using the analytical 
model (sin�l=Tload/Tmaxc). 

D.   Transient Performance During Start-Up 

The transient start-up performance is assessed by running 
the DC motor from standstill (at t = 0s) to the speed of 400 
rpm under no-load condition. Figures 12, 13 and 14 show the 
speed responses for three values of the air-gap length (e = 
4mm, e =13 mm and e = 20mm). The simulation results have 
been computed with (14) and (15). Experimental and 
simulation results show clearly that there are speed 
oscillations with time delays between the two rotors of the 
magnetic coupling. As expected from (18), the oscillation 
period T increases when the torsional stiffness of the 
coupling decreases (i.e. the air-gap increases) as shown in 
Fig. 12 to Fig. 14. These speed oscillations have to be taken 
into account for servomechanism applications.  

During the starting, there are some power losses in the 
permanent magnets and iron yokes (eddy-current). This is 
due to the speed difference between the two rotors. The 
eddy-current causes additional ‘damping’ torque 
(asynchronous torque) which can be included in the transient 
analysis of the coupling [28] by increasing the damping ratio 
(18).  The computation of the eddy-current could be done 
analytically with the resistance limited assumption [30], [31] 
or by finite element simulations. Anyway, this study is 
complex and is outside the objective of the paper.  

Fig. 15 shows the variation of the angular displacement 
between the two sides of the coupling �� = �m-�l during start-
up under no-load condition (corresponding to the speed 
variations given in Fig. 14). As shown in Fig. 15, �� reaches 
a value of 15.7° (at t = 0.025s) which is slightly greater than 
its maximum value before instability (��max = 15° for p=6). 
However, we can observe that the coupling doesn’t lose the 
synchronism for this test. This can be explained by the 
additional torque (asynchronous torque) due to eddy-current 
as indicated previously. After the transient, the displacement 
angle reduces to a zero mean value for this no-load test, Fig. 
15. 

 
(a) 

 

 
(b) 

 
Fig. 11. Load angle oscillations due to a sudden variation of the load torque 
(�Tload = 5Nm) for e = 4 mm and K = 370Nm/rad: (a) simulation result, (b) 
experimental result. 
 

 
(a) 

 
(b) 

 
 Fig. 12. Speed responses with torsional stiffness K = 370Nm/rad (e = 
4mm): (a) simulation result (b) experimental result. 
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(a) 
 

 
(b) 

 
Fig. 13. Speed responses with torsional stiffness K = 105Nm/rad (e = 
13mm): (a) simulation result (b) experimental result. 
 

 
(a) 
 

 
(b) 

 
Fig. 14. Speed responses with torsional stiffness K = 42Nm/rad (e = 
20mm): (a) simulation result, (b) experimental result. 
 

 
Fig. 15. Angular displacement between the two sides of the coupling during 
starting under no-load condition, experimental result (e = 20mm). 

 

 
(a) 

 
(b) 

Fig. 16. Loss of synchronism caused by an abrupt start-up of the DC motor 
(from standstill to 725 rpm): (a) simulation, (b) experimental results. 

 
Another test with a larger speed variation (standstill to 

725 rpm) has been performed and the results (simulation and 
experimental) are given in Fig. 16. For this test, the air-gap 
value is fixed to e = 20mm. It can be seen in Fig. 16 that the 
synchronism is lost by this abrupt start-up of the DC motor 
which cause the load to stall. It is important to keep in mind 
this problem when designing the coupling. Of course, for a 
lower value of the air-gap, the synchronism would be kept. 
One can observe in Fig. 16 that the simulation and test 
results are in close agreement. 

E.   Transient Performance With Load Variation 

The transient performance with an abrupt application of a 
load torque is now studied. Before the load torque is applied, 
the DC motor is in steady-state condition and rotates with a 
speed of around 750 rpm (under no-load condition). Two 
cases are interesting to study: torque variation lower or 
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greater than the pull-out torque. In one case, we don’t lose 
the synchronism, while in the other case the synchronism will 
be lost. For these tests, the air-gap value is fixed to e = 
20mm that corresponds to a pull-out torque of around 6Nm 
as shown in Fig. 7d. A schematic view of the test bench 
arrangement is given in Fig. 17. A DC generator is used to 
apply the sudden load torque by connecting a resistance to its 
terminals armature winding. 

First of all, a sudden load torque of 4Nm is applied to the 
system at t = 0s as shown in Fig. 18 (a load torque of 4Nm 
corresponds to a DC current in the generator of 3A, the 
torque coefficient of the DC generator being equal to 
1.35Nm/A). This load disturbance corresponds to 2/3 of the 
load which causes the synchronism loss.  Fig. 18 shows the 
speed responses and the DC current in the generator. It can 
be seen that the settling time of the DC current is very fast 
compared to the speed variations. After a transient of around 
0.3s, the two speeds are stable again and are synchronous. 
For this test, the synchronism is not lost. 

Fig. 19 shows the speed responses (simulation and 
experimental results) that follow a sudden application of a 
load torque of 13.5Nm at t = 0s (DC current of 10A) which 
is sufficient to cause the synchronism loss (overload 
condition). 

 
Fig. 17. Test bench arrangement for sudden application of load torque. 
 

 
(a) 

 
(b) 

Fig. 18. Speed responses to a sudden load torque of 4Nm with e = 20mm: 
(a) motor and load speeds, (b) current in the dc generator (experimental)  

As shown in Fig. 19, the speed of the DC motor is 
maintained at around 750 rpm (after some oscillations) while 
the load side of the coupling stops. This test clearly shows 
the overload self-protection of the magnetic coupling. On 
Fig. 19a, we can observe speed oscillations on the load side 
around a zero mean value. This ‘sinusoidal’ speed oscillation 
is caused by the torque variation given by (15) after 
overloading. The oscillations frequency can be predicted 
easily as the product of the DC motor speed in rps (750/60 = 
12.5rps) by the number of pole pair of the magnetic coupling 
(p = 6). This gives a frequency of 75Hz (around 19 periods 
between 0.5s and 0.75s as shown in Fig. 19a). This 
frequency is also present in the DC motor speed. This signal 
can be used by a controller to detect an overloading 
condition as it is shown in [28] for magnetic gears. 

 

 
(a) 
 

 
(b) 

 

 
(c) 

 
Fig. 19. Speed responses to an overload condition (sudden load torque of 
13.5Nm with e = 20mm): (a) simulation, (b) experimental results, (c) 
electrical current in the dc generator (experimental). 



 

 
 

9  

VI.   CONCLUSIONS 

By using analytical formulas for the pull-out torque and 
for the torsional stiffness, both the steady-state and the 
transient performances of an axial magnetic coupling have 
been studied in this paper. The proposed 2D analytical 
model, which is very fast to perform, presents some lack of 
accuracy compared to 3D finite-element simulations and 
experimental results (error of around 25% on the pull-out 
torque prediction). To improve the predictions, a correction 
factor kc has been introduced in the pull-out torque formula. 
Through detailed transient analysis and experimental results, 
we have shown that the magnetic coupling causes speed 
oscillations with time delays between the two rotors during 
start-up. This is due to the low value of the torsional stiffness 
inherent to magnetic couplings. This must be taken into 
account for servomechanism applications and every transient 
behavior. Finally, we have verified by simulation and by tests 
the overload self-protection of the magnetic coupling.   
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