Loading [a11y]/accessibility-menu.js
Predictive Control for Low-Voltage Ride-Through Enhancement of Three-Level-Boost and NPC-Converter-Based PMSG Wind Turbine | IEEE Journals & Magazine | IEEE Xplore

Predictive Control for Low-Voltage Ride-Through Enhancement of Three-Level-Boost and NPC-Converter-Based PMSG Wind Turbine


Abstract:

In this paper, a predictive control scheme is proposed for the low-voltage ride-through (LVRT) enhancement of direct-driven permanent-magnet-synchronous-generator-based m...Show More

Abstract:

In this paper, a predictive control scheme is proposed for the low-voltage ride-through (LVRT) enhancement of direct-driven permanent-magnet-synchronous-generator-based megawatt-level wind turbines. The proposed method uses the turbine–generator rotor inertia to store the surplus energy during the grid voltage dips. The power conversion system is realized using a three-phase diode-bridge rectifier, a three-level-boost converter, and a neutral-point-clamped (NPC) inverter. The wind turbine requirements, such as maximum power point tracking, net dc-bus voltage control, balancing of the dc capacitor voltages, and reactive power generation, are modeled as the reference control variables. The generator- and grid-side cost functions are defined to deal with these control objectives. During each sampling interval, the control goals are achieved based on the minimization of cost functions. The coordination of boost and NPC converters and the exchange of reference control variables during normal and LVRT operation are formulated such that the power converters operate in a safe mode while meeting the grid code requirements. Simulation and experimental results are presented to validate the proposed strategy.
Published in: IEEE Transactions on Industrial Electronics ( Volume: 61, Issue: 12, December 2014)
Page(s): 6832 - 6843
Date of Publication: 27 March 2014

ISSN Information:

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.