
ar
X

iv
:1

40
6.

57
94

v1
  [

cs
.S

Y
]  

23
 J

un
 2

01
4

1

Three-Party Energy Management With Distributed
Energy Resources in Smart Grid

Wayes Tushar,Member, IEEE,Bo Chai, Chau Yuen,Senior Member, IEEE,David B. Smith,Member, IEEE,
Kristin L. Wood, Zaiyue Yang,Member, IEEEand H. Vincent Poor,Fellow, IEEE

Abstract—In this paper, the benefits of distributed energy
resources (DERs) are considered in an energy management
scheme for a smart community consisting of a large number
of residential units (RUs) and a shared facility controller (SFC).
A non-cooperative Stackelberg game between RUs and the SFC
is proposed in order to explore how both entities can benefit,in
terms of achieved utility and minimizing total cost respectively,
from their energy trading with each other and the grid. From
the properties of the game, it is shown that the maximum benefit
to the SFC in terms of reduction in total cost is obtained at
the unique and strategy proof Stackelberg equilibrium (SE). It
is further shown that the SE is guaranteed to be reached by
the SFC and RUs by executing the proposed algorithm in a
distributed fashion, where participating RUs comply with their
best strategies in response to the action chosen by the SFC. In
addition, a charging-discharging scheme is introduced forthe
SFC’s storage device (SD) that can further lower the SFC’s total
cost if the proposed game is implemented. Numerical experiments
confirm the effectiveness of the proposed scheme.

Index Terms—Smart grid, shared facility, Stackelberg game,
energy management, distributed energy resources.

I. I NTRODUCTION

There has been an increasing interest in deploying dis-
tributed energy resources (DERs) because of their ability to
reduce greenhouse gas emissions and alleviate global warm-
ing [1]. Moreover, DERs can assist consumers in reducing
their dependence on the main electricity grid as their primary
source of energy [2], and consequently can lower their cost of
electricity purchase. The smart grid with enhanced communi-
cation and sensing capabilities [3] offers a suitable platform for
exploiting the use of DERs to assist different energy entities
in effectively managing their energy with reduced dependence
on the main grid.

W. Tushar, C. Yuen and K. L. Wood are with the Engineering Product
Development at Singapore University of Technology and Design (SUTD),
Dover Drive, Singapore 138682. (Email:{wayes tushar, yuenchau, kristin-
wood}@sutd.edu.sg).

B. Chai and Z. Yang are with the State Key Laboratory of Industrial
Control Technology at Zhejiang University, Hangzhou, China. (Email: chai-
bozju@gmail.com, yangzy@zju.edu.cn).

David B. Smith is with the National ICT Australia (NICTA)†, ACT 2601,
Australia. D. Smith is also with the Australian National University. (Email:
david.smith@nicta.com.au).

H. Vincent Poor is with the School of Engineering and AppliedSciences
at Princeton University, Princeton, NJ, USA. (Email: poor@princeton.edu).

This work is supported by the Singapore University of Technology and
Design (SUTD) through the Energy Innovation Research Program (EIRP)
Singapore NRF2012EWT-EIRP002-045.

†NICTA is funded by the Australian Government through the Department
of Communications and the Australian Research Council through the ICT
Centre of Excellence Program.

Most literature on energy management, as we will see in
the next section, has considered scenarios where users with
DERs are also equipped with a storage device (SD) [4]–
[6]. However, in some cases it is also likely that the users
are not interested in storing energy for future use, due to
the start-up and required size of a storage device. Rather,
they are more concerned with consuming/trading energy as
soon as it is generated, e.g., grid-integrated solar without a
battery back up system [7]. Nevertheless, little has been done
to study this kind of system. In fact, one key challenge to
exploit the real benefit of using DERs in such settings is to
develop appropriate system models and protocols, which are
not only feasible in real world environments but, at the same
time, also beneficial for the associated energy users in terms of
their derived cost-benefit tradeoff. Such development further
enables understanding the in-depth properties of the system
and facilitates the design of suitable real time platforms for
next generation power system control functions [8].

To this end, we propose an energy management scheme
in this paper for a smart community consisting of multiple
residential units (RUs) with DERs and a shared facility con-
troller1 (SFC) using non-cooperative game theory [9]. To the
best of our knowledge, ours is the first work to introduce
the concept of a shared facility and consider a three-party
energy management problem in smart grid applications. With
the development of modern residential communities, shared
facilities provide essential public services to the RUs, e.g.,
maintenance of lifts in community apartments. Hence, it is
necessary to study the energy demand management of a shared
facility for the benefit of the community as a whole. This is
particularly necessary in the considered setting where each RU
has DERs that can trade energy with both the grid and the SFC,
and constitutes an important energy management problem, as
we will see later, for both the SFC and RUs. Here, on the one
hand, to obtain revenue, each RU would be interested in selling
its energy either to the SFC or to the grid based on the prices
offered by them, i.e., sell to the party with the higher price. On
the other hand, the SFC wants to minimize its cost of energy
purchase from the grid by making an offer to RUs such that
the RUs would be more encouraged to sell their energy to the
SFC instead of the grid. Thus, the SFC would need to buy less
energy at a higher price from the grid. Because of the different
properties and objectives of each party, the problem is more
likely to handle heterogeneous customers than homogeneous

1A dedicated authority responsible for managing shared equipments in a
community.
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ones.
Due to the heterogeneity of the distributed nodes in the

system, and considering the independent decision making
capabilities of the SFC and RUs, we are motivated to use a
Stackelberg game [10] to design their behavior. Distinctively,
we develop a distributed protocol for the SFC, which is the
leader of the game, to determine the buying price from the
RUs, such that its total cost of buying energy from the grid
and RUs is minimized. Meanwhile, we also show how the
followers, i.e., RUs without storage facilities, react in response
to the buying price set by the SFC to optimize their payoffs.
We extend the study by considering the case when the SFC
possesses an SD2, and further propose a charging-discharging
scheme for the SFC that can be implemented in-line with the
proposed Stackelberg game.

To this end, the main contributions of the paper are as
follows: 1) A system model is proposed to facilitate energy
management for the SFC and RUs in the community. Novel
cost and utility models are proposed to achieve a good balance
between reflecting practical requirements and providing math-
ematical tractability; 2) A non-cooperative Stackelberg game
is proposed to capture the interaction between the SFC and
the RUs. The proposed game requires limited communication
between the SFC and each RU to solve the energy management
problem in a decentralized fashion; 3) The properties of the
game are analyzed, and the existence of a unique and strategy-
proof solution is proven; 4) An algorithm is proposed that is
guaranteed to reach the Stackelberg equilibrium, which can
be adopted by the SFC and the RUs in a distributed fashion;
and 5) A charging-discharging strategy is proposed for the
SFC’s storage device based on the price offered by the main
grid. The introduced strategy can be implemented, along with
the proposed Stackelberg game in each time slot, to further
improve the SFC’s benefit in terms of its total cost of energy
purchase during a day.

The remainder of the paper is organized as follows. We dis-
cuss the state-of-the art of energy management research using
DERs in Section II followed by a description of the considered
system model in Section III. The energy management problem
is formulated as a Stackelberg game in Section IV, where we
also analyze the properties of the game and design a distributed
algorithm. In Section V, the proposed scheme is extended to
the case where the SFC possesses an SD. Numerical examples
are discussed in Section VI, and some concluding remarks are
contained in Section VII.

II. STATE-OF-THE ART

Recently, there has been considerable research effort to
understand the potential of DERs in smart grid [11]. This
is mainly due to their capability in reducing greenhouse gas
emissions, as well as lowering the cost of electricity [1]. This
literature can be divided into two general categories, where
work such as [4], [5], [12] and [13] that has studied the
feasibility and controls of integrating DERs in smart grid is in
the first category. In [4], a comprehensive literature review
is provided discussing the connection and controls of AC

2Please note that no RU possesses any SD.

and DC microgrid systems with DERs and energy storage
systems. In [5] advanced control techniques are studied, in-
cluding decentralized and hierarchical controls for microgrids
with distributed generation. A three-level hierarchical control
process and electrical dispatching standards are presented in
[12] with a view to integrating DERs with distributed storage
systems in smart grid. A control scheme, using a droop control
function for managing battery levels of domestic photovoltaic-
uninterruptable power supplies (PV-UPS), is proposed in [13].
Other control schemes for efficient use of DERs in smart grid
can be found in [1], [14], [15], [16], [17] and [18].

The second category of work in this area comprises various
energy management/scheduling schemes that have exploited
the use of DERs in smart grid. For instance, the authors
in [19] study an efficient energy consumption and operation
management scheme for a smart building to reduce energy ex-
penses and gas emissions by utilizing DERs. To provide flex-
ibility to distribution system operators, a deterministicenergy
management scheme is designed in [20] for PV generators
with embedded storage. An interesting smart grid management
system is explored in [21] that uses DERs to minimize the cost
of power delivery including the cost of distributed generators,
the cost of power provided by the primary substation, and the
cost associated with grid power losses while delivering power
to the consumers. In order to minimize the operational cost
of renewable integration to distributed generation systems, a
forecast based optimization scheme is developed in [22]. Saber
et al. propose a scheduling and controlling scheme for electric
vehicles batteries in [23] so that batteries can be used and
integrated with DERs for reducing emissions from electricity
production. Further studies of optimization and scheduling
techniques that exploit the use of DERs are available in [24]
and [25].

As can be seen from the above discussion, the scope of
research on the use of DERs in smart grid is not limited to
power and energy research communities such as in [1], [2],
[4] and [19], but also extends to other research communities
including those in smart grid [14], [26], andindustrial elec-
tronics (IE) [5], [11]–[13], [17], [20]–[25], [27]. However, the
majority of these research papers have considered the case in
which all the entities with DERs also possess SDs. But this
might not always be the case as we have argued in Section I. In
this regard, unlike the discussed literature, this paper investi-
gates the case in which entities having DERs do not have SDs,
by introducing the SFC. We use a noncooperative Stackelberg
game to model the energy management scheme considering
the distributed and rational nature of the nodes in the smart
grid system, and thus complement the discussed previous work
in the topic area. The work here has the potential to open new
research opportunities for the IE and smart grid communities
in terms of control of energy dispatch, size of storage devices
and determination of suitable location and size of DERs that
might support both the SFC and RUs to further attain different
operational objectives in smart grid networks.

We stress that recent work has shown Stackelberg games to
be very effective and suitable for designing energy manage-
ment schemes. For example, in [28], Maharjanet al.propose a
Stackelberg game between multiple utility companies and con-



3

Fig. 1: System model for energy management in a smart community
consisting of residential units, main power grid and a shared facility
controller.

sumers to maximize both the revenue of each utility company
and the pay-off to each user. A Stackelberg game approach,
using a genetic algorithm to obtain the Stackelberg solution,
to maximize the profit of a electricity retailer and to minimize
the payment bills of its customers, is proposed in [29]. A
consumer-centric energy management scheme for smart grids
is proposed in [30] that prioritizes consumers’ benefits by
reforming their energy trading with a central power station
whereby the consumers receive their socially optimal benefits
at the Stackelberg equilibrium. A four-stage Stackelberg game
is studied in [31], and analytical results are obtained via a
backward induction process for electricity retailers using real-
time pricing. The same authors also study the dynamics of the
smart grid in designing green wireless cellular networks in[32]
using a similar game formulation. A bi-level programming
technique is used in [33] to design a Stackelberg game for
energy management of multiple micro-grids. However, we
remark that the players and their respective strategies in games
significantly differ from one game to another according to
the system models, design objectives and algorithms that are
used. To this end, we propose a suitable system model in
the next section, which can facilitate the considered energy
management between the SFC, RUs and the grid through a
Stackelberg game.

III. SYSTEM MODEL

Consider a smart community consisting of a large number
of RUs and an SFC. The SFC controls the electricity for
equipment and machines such as lifts, water pumps, parking
lot gates and lights, which are shared and used on a daily basis
by the residents of the community. Here, on the one hand, the
SFC does not have any electricity generation capability and,
hence, needs to buy all its energy either from the main grid
or from the RUs in the network. On the other hand, each RU
is assumed to have a DER without any SD that is capable of
generating its own energy. An RU can be a single residential
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Fig. 2: Effect of the change of price per unit of energy paid bythe
SFC to each RU on the change of maximum utility that each RU
receives from its energy consumption.

unit or a group of units, connected via an aggregator, which
can act as a single entity. We assume that each RU can decide
on the amount of electricity that it wants to consume, and
hence the excess energy, if there is any, that it wants sell to
the SFC or to the main grid for making revenue. All RUs and
the SFC are assumed to be connected to one another and to
the main grid by means of power and communication lines.
A schematic diagram of this system is given in Fig. 1.

To this end, let us assume that there areN RUs in the
community and they belong to the setN . Each RUn ∈ N
is equipped with DERs, e.g., solar panels or wind turbines
(or both), that can generate energyEgen

n at certain times
during the day. We assume that each RU wants to manage
its consumptionen such that it can sell the remainder of
its generated energy(Egen

n − en) to the SFC or the grid to
make revenue. Clearly, ifEgen

n ≤ Emin
n , whereEmin

n is the
essential load for RUn, the RU cannot take part in the energy
management program as it cannot afford to sell any energy.
Otherwise, as for the considered case, the RU adjusts its energy
consumptionen, s.t.,en ≥ Emin

n , for its own use, and thus sells
the remainder(Egen

n − en) to the SFC or to the main grid.

In general, the buying pricepbg set by the grid is consid-
erably lower than its selling pricepsg [34]. In this regard, we
assume that the price per unit of energy that the SFC pays
to each RU is set between the buying and selling price of
the grid. Therefore, each RU can sell at a higher price, and
the SFC can buy at a lower price and they trade energy with
each other instead of trading with the main grid. Under such a
setting, it is reasonable to assume that all RUs would be more
interested in selling(Egen

n − en) ∀n to the SFC instead of the
grid. Now, let us assume that the SFC sets a pricepssf per unit
of energy to pay to each RU for buying its required energy
Ereq

sf . To this end, we propose that the total utility achieved by
RU n from its energy consumptionen and from its trading of
energy(Egen

n − en) with the SFC is given by

Un = kn ln(1 + en) + pssf (E
gen
n − en) , kn > 0. (1)
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In (1), kn ln(1 + en) is the utility that the RUn achieves
from consuming energyen, wherekn is a preference param-
eter [35], [36]. It is clear from (1) that an RU with higher
kn would be more interested in consuming moreen to attain
its maximum utility level compared to an RU with lower
preference.pssf

(

E
gen
n − en

)

is the revenue that the RU receives
from selling the rest of its energy to the SFC. We note that the
natural logarithmln(·) has been extensively used for designing
the utility [37], and has also recently been shown to be suitable
for designing the utility for power consumers [28]. We can see
that (1) is a concave function and its relationship withpssf is
shown in Fig. 2. As shown in Fig. 2, aspssf increases, the
maximum utility of the RU shifts towards the left. That is the
RU tends to sell more energy to the SFC, e.g., by scheduling
the use of its flexible devices [19] to a later time, and thus
becomes more interested in making further revenue.

By contrast, the SFC, having no generation capability, needs
to buy all of its required energy from RUs and the main
grid. In typical cases, the main grid sells energy at a higher
price compared to the price from owners of renewable energy
sources as for, e.g., feed-in tariff schemes [34]. Hence, itis
reasonable to assume that the SFC would mainly be interested
in buying energy from the RUs atpssf to meet its requirement,
and procuring the rest, if there is any, from the main grid.
Nonetheless, ifpssf is too low, a RU would sell less, or no,
energy to the SFC and consume more for its own purposes
instead. For example, the resident may want to start washing
clothes rather than schedule it at a later time, and thus use their
energy instead of selling it at a very low price. Consequently,
the SFC will have to buy a larger fraction of its requirement
at a higher price from the main grid. Conversely, ifpssf is too
high, e.g., close to the grid’s selling pricepsg, it would cost the
SFC significantly. Hence, the choice ofpssf should be within a
reasonablerange to encourage the RUs to sell their energy to
the SFC, but at the same time keeping the cost to the SFC at
a minimum. However, if the energy from RUs is not enough
to meet its requirement, the SFC needs to buy the remainder
from the main grid with the pricepsg. In this regard, we define
a cost function to capture the total cost to the SFC for buying
energy from RUs and the grid as follows:

Csf =
∑

n

esn,sfp
s
sf +

(

Ereq
sf −

∑

n

esn,sf

)

psg, (2)

wherees
n,sf is the amount of energy that the SFC buys from the

RU n. In (2), the first term captures the total cost of buying
energy from the RUs. Meanwhile, the second term not only
describes the cost of buying energy from the grid, but also
satisfies the constraint on the demand of total required energy
by the SFC, i.e., a SFC does not buy more than it requires.

Now, to decide on energy trading parametersen and pssf,
on the one hand, the SFC interacts with each RUn ∈ N
to minimize (2) by choosing a suitable price to pay to each
RU. On the other hand, each RU decides on the amount of
energy it wants to sell to the SFC by controlling its energy
consumptionen so as to maximize (1). To this end, we design
the interaction and energy trading behavior of each energy
entity in the next section.

IV. ENERGY MANAGEMENT BETWEEN RUS AND THE SFC
VIA GAME THEORY

A. Objective of the RU

First we note that (1) and (2) are coupled throughEgen
n , pssf

anden. Since the RUs do not have any storage capacity, each
RU would desire to sell all its excess energy,

esn,sf = Egen
n − en. (3)

at a suitable pricepssf to the SFC after adjusting for their
consumptionen. To that end, the objective of each RUn can
be defined as

max
en

Un,

s.t., en ≥ Emin
n . (4)

Now from (1) and (4), the first-order-differential condition for
maximum utility is

kn
1 + en

− pssf = 0, (5)

and hence

en =
kn
pssf

− 1, (6)

which clearly relates the decision making process of each RU
to the price set by the SFC. Here,kn should be sufficiently
large such that (6) always possesses a positive value for all
resulting values ofen andpssf, anden is at least as large as its
essential load. From (6), the amount of energyen chosen to
be consumed by each RU is inversely proportional to the price
per unit of energy paid by the SFC to the RU. As a result, for
a higherpssf, the RUn would be more inclined to sell to the
SFC by reducing its consumption and vice-versa.

B. Objective of the SFC

In contrast, the objective of the SFC is to minimize its total
cost of buying energy. Since the SFC does not have any control
over the pricing of the grid, it can only set its own buying price
pssf to minimize (2). Hence, the objective of the SFC is

min
ps

sf

Csf. (7)

Now, from the first order optimality condition of the SFC’s
objective function (2),

δCsf

δpssf
= 0. (8)

By replacingesn,sf in (2) with (Egen
n −en), and considering the

relationship betweenen andpssf from (6), we obtain

δ

δpssf

(

∑

n

(Egen
n − kn + pssf) + E

req
sf p

s
g

− psg
∑

n

(

Egen
n −

kn
pssf

+ 1

)

)

= 0. (9)
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And from (9), we derive

pssf =

√

psg
∑

n kn

N +
∑

n E
gen
n

, (10)

which emphasizes that the optimal price set by the SFC is
influenced by the total number of RUs that wish to sell their
energy and the generation of their DERs during the considered
time. It is also established from (10) thatpssf is affected by
the grid’s price, which consequently influences the SFC to
change its per unit price for the RUs. However, as discussed
in Section III, to encourage the RUs to always sell their excess
energy to the SFC we propose that the choice of price by the
SFC is

pssf =







√

ps
g

∑
n
kn

N+
∑

n
E

gen
n

, if pssf > pbg

pbg + α, otherwise.
(11)

Here,α > 0 is a small value to keeppssf higher thanpbg.
It is obvious from (11) that the SFC can optimize its price in

a centralized fashion to minimize its total cost of purchasing
energy from the RUs and the grid, if it has full access to
the private information of each RUn, such asEgen

n andkn .
However, in reality, it might not be possible for the SFC to
access this information in order to protect the users’ privacy,
and hence a distributed mechanism is necessary to determine
the parameterspssf and en, ∀n. To that end, we propose a
scheme based on a non-cooperative Stackelberg game in the
following section.

C. Non-cooperative Stackelberg game

A Stackelberg game formally studies the multi-level deci-
sion making processes of a number ofindependentdecision
makers (i.e., followers) in response to the decision taken by
the leading player (leader) of the game [10]. In this section,
we formulate a non-cooperative Stackelberg game, where the
SFC is the leader, and RUs are the followers, to capture
the interaction between the SFC and the RUs. The game is
formally defined by its strategic form as

Γ = {(N ∪ {SFC}), {En}n∈N , {Un}n∈N , pssf, Csf}, (12)

which consists of the following components:
i) The RUs in setN act as followers and choose their

strategies in response to the price set by the SFC, i.e.,
the leader of the game.

ii) En is the set of strategies of each RUn ∈ N from which
it selects its strategy, i.e., the amount of energyen ∈ En

to be consumed during the game.
iii) Un is the utility function of each RUn as explained in

(1) that captures the RU’s benefit from consuming energy
en and selling energy(Egen

n − en) to the SFC.
iv) pssf is the price set by the SFC to buy energy from the

RUs.
v) The cost functionCsf of the SFC captures the total cost

incurred by the SFC for trading energy with RUs and the
main grid.

As discussed previously, the objectives of each RU and
the SFC are to maximize the utility in (1) and to minimize

the cost in (2) respectively by their chosen strategies. For
this purpose, one suitable solution for the proposed game is
the Stackelberg equilibrium (SE) at which the leader obtains
its optimal price given the followers’ best responses. At this
equilibrium, neither the leader nor any follower can benefit,
in terms of total cost and utility respectively, byunilaterally
changing their strategy.

Definition 1. Consider the gameΓ defined in(12), whereUn

and Csf are determined by(1) and (2) respectively. A set of
strategies

(

e
∗, ps∗sf

)

constitutes an SE of this game, if and only
if it satisfies the following set of inequalities:

Un(e
∗, ps∗sf ) ≥ Un(en, e

∗
−n, p

s∗
sf ), ∀n ∈ N , ∀en ∈ En, (13)

and

Csf(e
∗, ps∗sf ) ≤ Csf(e

∗, pssf), (14)

where e
∗
−n =

[

e∗1, e
∗
2, . . . , e

∗
n−1, e

∗
n+1, . . . , e

∗
N

]

and e
∗ =

[

e∗n, e
∗
−n

]

.

Therefore, when all the players in(N ∪ {SFC}) are at an
SE, the SFC cannot reduce its cost by reducing its price from
the SE priceps∗sf , and similarly, no RUn can improve its utility
by choosing a different energy toe∗n for consumption.

D. Existence and Uniqueness of SE

In non-cooperative games, an equilibrium in pure strategies
is not always guaranteed to exist [10]. Therefore, we need to
investigate as to whether there exists an SE in the proposed
Stackelberg game.

Theorem 1. A unique SE always exists in the proposed
Stackelberg gameΓ between the SFC and RUs in the setN .

Proof: First, we note that the utility functionUn in (1)
is strictly concave with respect toen ∀n ∈ N , i.e., δ2Un

δe2
n

< 0,
and hence for any pricepssf > 0, each RUn will have a unique
en, chosen from a bounded range

[

Emin
n , Egen

n

]

, that maximizes
Un. We also note that the gameΓ reaches the SE when all
the players in the game, including each participating RU and
the SFC, have their optimized payoff and cost respectively,
considering the strategies chosen by all players in the game.
Thereby, it is evident that the proposed gameΓ reaches an
SE as soon as the SFC is able to find an optimized priceps∗sf
while the RUs choose their unique energy vectore

∗.
Now from (9), given the choices of energy by each RUn

in the network, the second derivative ofCsf is

δ2Csf

δps
2

sf

=
2
∑

n kn
(pssf)

3
> 0, (15)

and therefore,Csf is strictly convex with respect topssf. Hence,
the SFC would be able to find an optimal unique per-unit
price ps∗sf for buying its energy from the RUs based on their
strategies. Therefore, there exists a unique SE in the proposed
game, and thus Theorem 1 is proved.

In the next section, we propose an algorithm that all the
RUs and the SFC can implement in a distributed fashion to
reach the unique SE. We note that it is also possible to solve
the energy management problem in a centralized fashion if we
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have global information such asEgen
n andkn available at the

SFC. However, in order to protect the privacy of each RU and
also to reduce the demand on communications bandwidth, a
distributed algorithm is desired where the optimization can be
performed by each RU and the SFC without the need for any
private information to be available at the SFC.

E. Distributed Algorithm

Algorithm 1 Algorithm to reach the SE

1: Initialization: ps∗sf = 0 C∗
sf = psg ∗ E

req
sf

2: for Buying pricingpssf from pbg to psg do
3: for Each RUn ∈ N do
4: RU n adjusts its energy consumptionen according to

e
∗
n = arg max

0≤en≤E
gen
n

[kn ln(1 + en) + p
s
sf(E

gen
n − en)].

(16)
5: end for
6: The SFC computes the cost according to

Csf = p
s
sf

∑

n∈N

(Egen
n − en)+p

s
g

(

E
req
sf −

∑

n∈N

(Egen
n − en)

)

.

(17)
7: if Csf ≤ C∗

sf then
8: The SFC records the optimal price and minimum cost

p
s∗
sf = p

s
sf, C

∗
sf = Csf (18)

9: end if
10: end for

The SE (e∗, ps∗sf ) is achieved.

In order to attain the SE, the SFC needs to communicate
with each RU. We propose an algorithm that all the RUs and
the SFC can implement in a distributed fashion to iteratively
reach the unique SE of the proposed game. In each iteration,
firstly the RUn chooses its best energy consumption amount
en in response to the price set by the SFC, calculating
esn,sf = (Egen

n − en), and sending this information to the SFC.
Secondly, having the information about the choices of energy
e
s
sf = [es

1,sf, e
s
2,sf, . . . , e

s
N,sf] by all RUs, the SFC decides on its

best price that minimizes its total cost according to (2). The
interaction continues until the conditions in (13) and (14)are
satisfied, and therefore the Stackelberg game reaches the SE.
Details are given in Algorithm 1.

In the proposed algorithm, the conflict between the RUs’
choices of strategies stem from their impact on the choice of
pssf by the SFC. Due to the strict convexity ofCsf, the choice
of ps∗sf > 0 lowers the cost of the SFC to the minimum. Now,
as the algorithm is designed, in response to theps∗sf , each RU
n chooses its strategyen from the bounded range

[

Emin
n , Egen

n

]

to maximize its concave utility functionUn. Hence, due to the
bounded strategy set and the continuity of the utility function
Un with respect toen, each RUn also reaches a fixed point at
which its utility is maximized for the given priceps∗sf [28]. As
a consequence, the proposed algorithm is always guaranteed
to converge to the unique SE of the game.

1) Strategy-Proof Property:Since, each RU plays its best
response in Algorithm 1, it is important to investigate whether
RUs can choose a different strategy or cheat other players in

Γ once they reach the SE. In this regard, we would like see
whether it is possible for an RU to change the amount of
energy that it offers to the SFC, i.e.,esn,sf = (Egen

n − en) by
changing the energy consumptionen while using Algorithm 1.

Theorem 2. It is not possible for any RUn ∈ N to be
untruthful about its strategy, i.e., sell more or less than what
it promises to give the SFC, when all other players including
the SFC and the RUs inN/{n} are adopting Algorithm 1.

Proof: To prove Theorem 2, first we consider thatps∗sf
and e

∗ = [e∗1, . . . , e
∗
n, . . . , e

∗
N ] are the SE solutions of the

proposed game obtained via Algorithm 1. Let us assume that
RU n is untruthful, and choosese

′

n instead ofe∗n to consume
after reaching the SE. Therefore, from (6),

e
′

n =
kn
ps∗sf

− 1, (19)

which is impossible. This is due to the fact that, as the scheme
is formulated,ps∗sf results from Algorithm 1 only if all the RUs
in N consume the SE amount of energye∗n ∀n. In this regard,
(19) is only true if e

′

n = e∗n, which successively proves the
strategy proofproperty of the proposed algorithm.

V. ENERGY MANAGEMENT WITH STORAGE

We note that the proposed scheme in Section III determines
the best price for the SFC to minimize its total cost of energy
purchase at any given time. The scheme also benefits the RUs
in terms of their energy consumption and trading with the SFC.
However, DERs do not provide a stable supply. Sometimes
there could be an abundant supply of energy whereas at other
times there could be a scarcity. In other words, sometimes the
SFC might need to buy less energy from the grid whereas at
other times it might need to buy a larger amount. Following
from these characteristics, we propose a storage scheme forthe
SFC in this section that can further reduce its total cost, ifthe
scheme is implemented in conjunction with the Stackelberg
game.

We assume that the SFC is equipped with an SD, and the
charging and discharging of the SD at different times of the
day is carried out based on the time of use (ToU) price [38]
announced by the grid. The intuition behind considering a ToU
price as the baseline for the SD’s charging-discharging canbe
explained as follows: 1) Since the SFC does not know the
private information of RUs, such as their energy generation
and preferences, it cannot determine how much energy it can
buy from them (and the associated cost) ahead of time. Hence,
by allowing a ToU price to decide its charging and discharging,
the SD can leverage the flexibility of the SFC in trading energy
with the grid in the event of energy scarcity at the RU at
any time of the day. And 2) It is reasonable and practical to
assume that the grid’s ToU price is announced ahead of time
[38]. Hence, it would be more practical for the SFC to decide
on the charging and discharging pattern of its SD based on a
known price that gives a mathematically tractable solution.

To this end, we consider that the total time of energy
management during a day is divided intoT time slots where
each time slott has a duration of one hour [39]. Att,
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Fig. 3: Choice of charging and discharging duration of the SFC’s SD
based on the price announced by the grid.

the total requirement of energyEreq
sf (t) by the SFC has two

components:

Ereq
sf (t) = Eeqp

sf (t) + eSD
sf (t), (20)

whereEeqp
sf (t) is the amount of energy exclusively required

to run equipment of the shared facility, andeSD
sf (t) is the

energy charged-to/discharged-from the SFC’s storage att. It
is assumed that the announced price per time slot is available
from the main grid ahead of time [38]. We suppose that the
SFC selects two price levelspmin

g and pmax
g as the minimum

and maximum price thresholds from the announced price list.
The SFC charges its battery at timet if psg(t) < pmin

g , and
discharges the battery ifpsg(t) > pmax

g . The duration of time at
which these two conditions are satisfied are characterized as
the charging durationTchg and the discharging durationTdis

respectively. The choice ofTchg andTdis based onpsg(t) ∀t ∈
T, pmin

g andpmax
g are shown graphically in Fig. 3. To that end,

the charging and discharging process of the SFC’s SD can be
implemented as follows:

Charging of the SD:

1) The SFC, with an initial state of charge (SOC) at the SD
Qini , determinesTchg according to the price announced
by the grid and selectedpmin

g .
2) For eacht ∈ Tchg, the SFC derivespmin

g − psg(t), and
checks the total

∑

t∈Tchg
(pmin

g −psg(t)) for the full charging
duration.

3) The SFC sets a target SOC at the end of the charging
duration, i.e.,Qch

tar, and charges its SD at eacht based
on the proportion of price difference between time slots,
Qch

tar, andQini through

eSD
sf (t) =

(

pmin
g − psg(t)

) (

Qch
tar −Qini

)

σ
∑

t∈Tchg

(

pmin
g − psg(t)

) , ∀t ∈ Tchg, (21)

whereσ is the efficiency of SFC’s SD.

We stress that the SFC cannot charge its SD at a rate more
than its maximum allowed charging rate [39]. Hence, (21) can

be modified as

eSD
sf (t) = min

(

(

pmin
g − psg(t)

) (

Qch
tar −Qini

)

σ
∑

t∈Tchg

(

pmin
g − psg(t)

) , emax
sf

)

, (22)

whereemax
sf is the maximum charging/discharging rate of the

SFC’s SD.
Discharging of the SD:The SFC discharges its SD at each

time slott ∈ Tdis following a similar process to that described
in the previous paragraph. Therefore, at eacht ∈ Tdis: 1)
the SFC derives(psg(t) − pmax

g ) and determines the overall
∑

t∈Tdis

(

psg(t)− pmax
g

)

for the whole duration ofTdis; and
then 2) based on the proportion of price difference between
discharging time slots, achieved SOCQch

tar duringTchg, and the
target SOCQdis

tar at the end of discharging periodTdis, the SFC
discharges its SD using

eSD
sf (t) = −min

(

(psg(t)− pmax
g )(Qch

tar −Qdis
tar)σ

∑

t∈Tdis
(psg(t)− pmax

g )
,

emax
sf , Eeqp

sf (t)

)

, (23)

for all t ∈ Tdis. As shown in (23), during discharge, the
SFC cannot drain its SD by more than what is required by
equipment as it would result in a negative requirement in
(20). The negative sign in (23) emphasizes that the SD is
discharging duringTdis.

By adopting (22) and (23) the SFC is enabled to charge
its SD during lower price periods and discharge it during
higher price periods, which consequently reduces the cost of
energy trading of the SFC. We note that a similar idea has
been used previously to reduce the energy consumption cost
of different energy entities by using batteries [26]. However,
in this work the inclusion of a Stackelberg game with this
charging-discharging scheme in each time slot makes the
RUs with DER part of the system, and thus significantly
further reduces the costs to the SFC, as will be shown via
numerical experiments in the next section. The choice of two
thresholds provides the SFC with the flexibility to choose
different ranges of charging, discharging and idle durations.
For example, ifpmax

g = pmin
g , the threshold of the proposed

scheme would merge with the choice of threshold proposed
in [38]. However, the decision making mechanism of the
charging and discharging amount at each time as proposed
in this paper is completely different from that in [38].

VI. CASE STUDY

For numerical case studies, we consider a number of RUs in
the smart community that are interested in selling their energy
to the SFC. Typical energy generation of each RUn from
its DERs is assumed to be 10 kWh [40], and is considered
to be the same for all RUs in the network. The required
energy by the SFC is assumed to be 50 kWh during the
considered time. As shown in (6), the minimum requirement
of each RUn depends on its preference parameterkn, which
is chosen separately for different RUs, and is considered tobe
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Fig. 4: Convergence of the proposed scheme to the SE.

sufficiently large3 such that (6) does not possess any negative
values anden is at least equal toEmin

n . The grid’s per-unit sale
price is assumed to be 60 cents [39], whereby the SFC sets
its initial price to be8.45 cents per kWh4 to pay to each RU.
It is very important to highlight that all parameter values are
particular to this study and may vary according to the need of
the SFC, power generation of the grid, weather conditions of
the day, time of the day/year, and the country.

In Fig. 4, the convergence of the SFC’s total cost to the
SE by following Algorithm 1 is shown for a network of five
RUs. Here we see that although the SFC wants to minimize
its total cost, it cannot manage to do so with its initial choice
of price for payment to the RUs. In fact, through interaction
with each RU of the network, the SFC eventually increases
its price in each iteration to encourage the RUs to sell more,
and consequently the cost continuously reduces. As can be
seen from Fig. 4, the SFC’s choice of equilibrium price, and
consequently the minimum total cost, reaches its SE after the
34th iteration.

As the SFC’s total cost of energy purchase reaches its SE,
the RUs in the network also reach their best utilities by playing
their best strategies in response to the price offered by theSFC.
We show the utility achieved by each RU at the SE in Fig. 5.
As discussed in Definition 1, it is shown in Fig. 5 that any
deviation from the choice of energy consumption at the SE
assigns a lower utility to the RU. In Fig. 5 we compare both
of the cases: 1) choice of energy more than the SE amount and
2) choice of energy lower than the SE amount, with the SE
energy choice by each RU. It shows that only the SE assigns
the maximum utility to each RU, and thus establishes a stable
solution of the game.

In Tables I and II, we investigate how the proposed scheme
captures the change in total cost to the SFC as different
parameters, such as the number of RUs and the SFC’s energy
requirement, change in the system. We compare the results
with a baseline approach that does not have any DER facility,

3For this case study, eachkn is generated as a uniformly distributed random
variable from the range[90, 150].

4Which is the buy back price of the grid [30].

TABLE I: Effect of the number of RUs on the total cost (in dollar)
incurred by the SFC (Ereq

sf = 150 kWh, psg = 70 cents/kWh).

Number of RU 5 10 15 20 25
Cost (Baseline) 105 105 105 105 105
Cost (Proposed) 84.23 64.38 44.20 23.79 2.78
% Reduction 19.78 38.68 57.89 77.34 97.34

TABLE II: Effect of change of SFC’s required energy on its total
cost in dollars (N = 10, psg = 70 cents/kWh).

Ereq
sf 60 70 80 90 100

Cost (Baseline) 42.0 49.0 56.0 63.0 70.0
Cost (Proposed) 1.384 8.384 15.38 22.38 29.38
% Reduction 96.70 82.89 72.53 64.47 58.02

i.e., the SFC depends on the grid for all its energy. First, in
Table I, the cost to the SFC is shown to gradually decrease
for the proposed case as the total number of RUs increases
in the network. This is due to the fact that as the number of
RUs increases in the system, the SFC can buy more energy
at a cheaper rate from more RUs, and consequently becomes
less dependent on the grid’s more expensive energy. Hence,
the cost reduces eventually. However, due to the absence of
any DERs, the cost to the SFC does not change with number
of RUs in the network in the baseline approach, and the cost is
shown to be significantly higher than for the proposed scheme.
From Table. I, on average the cost reduction is58.2% for the
proposed case compared to the baseline approach, with the
considered parameter values, as the number of RUs varies in
the system.

Whereas the cost to the SFC decreases with an increase in
RUs in the system, we observe the opposite effect on cost
while the SFC’s energy requirement increases. As shown in
Table II, the cost to the SFC increases for both the proposed
and baseline approaches as the energy required by the SFC
increases. In fact, it is trivial to observe that needing more
energy leads the SFC to spend more on buying energy, which
consequently increases the cost. Nonetheless, the proposed
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Fig. 5: Utility achieved by each RU at the SE.
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Fig. 6: Comparison of social cost obtained by the proposed distributed
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varies in the network.

scheme needs to spend less to buy the same amount of energy
due to the presence of DERs of the RUs, and thus noticeably
benefits from its energy trading, in terms of total cost, when
compared to the baseline scheme. From Table II, the SFC’s
average cost is74.9% lower than that of the baseline approach
for the considered changes in SFC’s energy requirements.

As we have discussed above, it is also possible to optimally
manage energy between RUs and the SFC via a centralized
control system to minimize the social cost5 if private infor-
mation such askn andEgen

n ∀n is available to the controller.
In this regard, we observe the performance in terms of social
cost for both the centralized and proposed distributed schemes
for two different price schemes in Fig. 6. As can be seen from
the figure, the social cost attained by adopting the distributed
scheme is close to the optimal centralized scheme at the SE of
the game in both the cases. However, the centralized scheme
has access to the private information of each RU. Hence, the
controller can optimally manage the energy, and as a result
there is better performance in terms of reducing the SFC’s
cost compared to the proposed scheme. According to Fig. 6,
as the number of RUs increases in the network from5 to 25,
the average social cost for the proposed distributed schemeis
only 7.07% and6.75% higher than for the centralized scheme
for psg = 85 and 60 cents/kWh respectively. This is a very
promising result considering that the system is distributed.

Having insight into the properties of the proposed Stackel-
berg game, we now show the performance of the proposed
scheme when the SFC is equipped with an SD. For this
purpose, we assume that the SFC has a 100 kWh SD with an
efficiency of0.9 and a maximum charging-discharging rate of
24 kWh [41]. The price at different times of the day is obtained
from [39], and the maximum and minimum price thresholds
are considered to bepmin

g = 40 andpmax
g = 45 cents per kWh

respectively. The demand of the SFC at different times of the
day is chosen randomly from[300, 700] kWh. For 5 RUs in

5Which is the difference between the total cost incurred by the SFC and
total utility achieved by all RUs in the system.

2 4 6 8 10 12 14 16 18 20 22 24
5

10

15

20

25

30

35

40

45

50

Index of time slot

C
os

t t
o 

th
e 

S
F

C
 (

D
ol

la
r)

 

 

Without battery, without game

With battery, without game

With battery, with game

Battery is idle

Battery is charging

Battery is discharging

Fig. 7: Comparison of the cost incurred by the SFC at different times
of the day with and without an SD.

the system, we show the cost of the SFC at different times of
the day for three different cases in Fig. 7. These cases are 1)
when the SFC does not have any SD and does not take part
in the game, 2) when the SFC has an SD but does not take
part in the game, and finally, 3) when the SFC has an SD and
also plays the game with the RUs following Algorithm 1.

As can be seen from Fig. 7, during the period when the grid
price is low, the cost to the SFC is higher for cases 2 and 3
compared to case 1. In fact, due to the lower price, the SFC is
more interested in charging its SD during this time so as to use
it in peak hours. Hence, its required energy is more than the
case without the SD. As a result, the cost is higher. However,
the cost without the proposed game is considerably higher than
the cost when the SFC and RUs interact with each other via
Algorithm 1. The reason is that without playing the game, the
SFC needs to buy all its energy from the grid including the
energy for its SD. By contrast, the proposed game allows the
SFC to pay the RUs a lower price than the grid’s price to buy
some of its required energy. Consequently, the SFC benefits
in terms of its reduced total cost of energy purchase.

During peak hours, the cost to the SFC is significantly
higher for case 1. In this case, the SFC needs to buy all its
required energy from the grid at a significantly higher price.
However, for the case when the SFC possesses an SD, the cost
is lower as the stored energy allows the SFC to buy less from
the grid compared to the previous case. Nevertheless, the most
impressive performance is observed for case 3 when the SFC
with an SD plays the Stackelberg game with the RUs following
Algorithm 1. On the one hand, the stored energy allows the
SFC to buy a lower amount of energy during the peak hour
like in case 2. On the other hand, unlike the other two cases,
by taking part in the Stackelberg game the SFC manages to
buy a certain fraction of its requirement from the RUs at a
cheaper rate, compared to the grid’s price, which minimizes
its total cost of energy purchase noticeably. As Fig. 7 shows,
on average, the cost reduction of the proposed case is53.8%
compared to the case in which the SFC does not take part in
the game. As can be seen from Fig. 7, the performance is even
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Fig. 8: Change in cost savings with the change of the capacityand
charging rate of the SD.

more impressive when compared to case 1.
However, cost savings are greatly affected by the SD’s

characteristics such as its capacity. In fact, for a particular
charging rate, higher capacity can considerably assist theSFC
to improve its performance in terms of average cost savings
during a day, as shown in Fig. 8. As the figure illustrates,
the cost saving for an SFC by using an SD increases with an
increase in the capacity of the SD. According to Fig. 8, the
savings in daily cost are, on average,54.02% and58.1% per
day for the proposed case compared to the cases when the
SFC does not play the game and when the SFC neither plays
the game nor has any SDs respectively.

VII. C ONCLUSION

In this paper, we have presented an energy management
scheme for a smart community using a non-cooperative Stack-
elberg game. We have designed a system model suitable for
applying the game, and have shown the existence of a strategy
proof, unique Stackelberg equilibrium (SE), by exploring the
properties of the game. We have shown that the use of
distributed energy resources (DERs) is beneficial for both the
shared facility controller (SFC) and residential units (RUs) at
the SE. We have proposed a distributed algorithm, which is
guaranteed to reach the SE of the game. Further, we have
extended the scheme to the case in which the SFC has a
storage device (SD). We have designed an effective charging-
discharging scheme, for the SFC’s SD based on the grid’s
price, which has been shown to have considerable influence
on the cost incurred by the SFC. By the proposed charging-
discharging scheme, the average cost to the SFC during a day
has been shown to be reduced markedly compared to the case
without a SD.

The proposed work can be extended in various ways.
An interesting extension would be to check the impact of
discriminate pricing among the RUs on the outcome of the
scheme. Another compelling addition would be to determine
how to set the threshold on the grid’s price. Furthermore,
quantifying the inconvenience that the SFC/RUs face during

their interaction is another possible future investigation based
on this work.
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