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Abstract — This paper considers the control of a 7-leg back-to-

back Voltage Source Inverter (VSI) arrangement feeding a 4-

wire load from a 3-phase Permanent Magnet Synchronous 

Generator (PMSG) operating at variable speed. The PMSG is 

controlled using a sensorless Model Reference Adaptive System 

(MRAS) to obtain the rotor position angle. The 7-leg converter is 

regulated using Resonant Controllers (RCs) at the load side and 

self-tuning resonant controllers at the generator side. The control 

system is augmented by a feed-forward compensation algorithm 

which improves the dynamic performance during transients. 

Experimental results, obtained from a prototype, are presented 

and discussed. 
 

Index Terms— AC-AC Power Convertion, Power 

generation control, Converters, Variable speed generation. 
 

I.  INTRODUCTION 
 

ariable speed operation of generation systems has several 

advantages which are well reported in the literature. For 

instance more energy capture in wind generators [1]; 

higher efficiency of diesel engines, which can be operated at 

the optimum power/fuel consumption ratio [2]; less stress in 

the mechanical components; smaller portable  generation 

systems [3]; etc.  To connect a 4-wire load (e.g. an off-grid 

residential load) to a 3-phase variable-speed generator, several 

power converter topologies are feasible [4]–[8]. For instance a 

conventional 3-leg back-to-back voltage source converter 

connected to a -Y transformer can be used. The star-

connected secondary of the transformer is then used to allow 

the circulation of zero sequence current through the load. 

However, this is a bulky solution with a low power density. 

Another alternative is to use a conventional back-to-back 

converter with the neutral point of the load connected to the 

middle of a split capacitor bank in the dc-link. The main 

problem of this approach is that relatively large capacitors are 

required to minimise the ripple [8]. A different topology is 

presented in [7], where a 4-leg matrix converter is proposed to 
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feed the output load.  This is a good solution if a compact 

generation system with a high power density is required. 

However there are also some problems with the matrix 

topology which have been reported in the literature. For 

instance matrix converters do not have boost capability [4]; 

therefore low speed operation of the generator is not feasible if 

constant load voltage is required. Another problem is 

produced when the generation system feeds unbalanced/non-

linear loads. In this case, because of the lack of a dc capacitor 

bank, pulsations in the instantaneous output power produce 

harmonic distortion in the input current [6].   

In this paper the application of a 7-leg back-to-back 

voltage source PWM converter is proposed with a 3-leg 

Machine-Side Converter (MSC) and a 4-leg Load-Side 

Converter (LSC) as shown in Fig. 1. Both converters are 

controlled using space vector modulation algorithms and RCs.  

RCs have been selected in this application because they 

have several advantages in 4-wire applications. For example 

they provide the capability to control zero sequence currents 

and voltages [5]–[7] (which do not exist in signals obtained by 

conventional - and d-q transformations) and they also allow 

straightforward implementation of power factor control at the 

generator side (as discussed in Section IIIA). Additionally, 

RCs provide a simple approach to eliminate waveform 

distortion using cascade controllers [9]–[14]. Moreover, in  

 
Fig. 1. Proposed 7-leg variable speed generation system. 
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this paper a feed-forward compensation algorithm is proposed 

(see Fig. 1) which is more conveniently implemented when 

both sides of the 7-leg converter are controlled using resonant 

controllers. 

In this paper the LSC output is controlled to operate at a 

constant 𝜔𝑒
∗, corresponding to an electrical  frequency of 

50Hz. Therefore the resonant controllers of the LSC are tuned 

to operate at fixed frequencies and they have to regulate the 

positive, negative and zero sequence load-voltage 

components. When non-linear loads are fed by the LSC, 

waveform distortion has to be also eliminated using RCs. In 

the MSC side the generator output frequency varies with 

rotational speed. Therefore a resonant controller is proposed 

which has a frequency adaptive (self- tuning) structure, 

designed to obtain a good dynamic performance over the 

whole operating range. 

In Fig. 1 a speed demand calculation block is required to 

adaptively change the speed according to some control law, 

e.g. to reduce the fuel consumption in a diesel-based 

generation system, to increase the performance of a micro-

hydro system, or  to improve the energy capture in  a wind 

energy conversion system. The control system proposed in this 

work has been designed to operate across the whole speed 

range and the calculation/regulation of the optimal rotational 

speed, is considered outside the scope of this paper. 

The contribution of this work can be summarised as 

follows: 

 To the best of our knowledge this is the first paper where a 

variable speed generator is interfaced by a 7-leg back-to-

back VSI to a 4-wire load.  The power converter topology 

presented in this paper can be applied to variable speed 

diesel systems [15], low voltage micro-grids [16][17], [18], 

wind-diesel hybrid systems[19],  utility power supplies [3],  

etc. In general this topology can be used in any application 

where a variable speed 3 generator has to be interfaced 

with a 4-wire load/grid. 

 A new methodology for the design of a self-tuning RC, 

capable of operating over a wide frequency range, is 

presented. The RC is designed in the z-domain, to avoid the 

problems related with the bilinear transform or other 

discretisation methods [20]. This design methodology can 

be advantageously used for grid connected power 

converters, [21], [22], droop-controlled converters for  

micro-grids and variable speed machines [23], [24]. The 

design methodology presented in this paper is certainly 

superior to that conventionally used to implement the “PR 

controller” reported in the literature [25].   

 A novel feed-forward compensation algorithm is analysed 

and presented. The feed-forward term compensates the 

perturbations produced by fast variations of an unbalanced 

linear/non-linear load on the dc-link voltage. This feed 

forward compensation method can be used in other 

applications where high dynamic response (in the presence 

of power oscillations produced by unbalanced signals) is 

required. For instance in conventional 3-leg back to back 

converters, [1] and even single phase systems. 

 Small signal models are presented, describing the dynamics 

of the dc-link, power balance equation, dynamics of the 

PMSG, etc. These small signal models consider the effect of 

non-linear loads and can be used to design the controllers 

using conventional linear control tools. The linearised 

models presented in this work can be extended to other 

applications where power converters are used to feed non- 

linear unbalanced loads.   

The remainder of the paper is organised as follows. Section 

II briefly discusses the sensorless control system; In Section 

III the self-tuning resonant control system is analysed; the 

load-side resonant control is very briefly presented in Section 

IV. Section V discusses the feed-forward algorithm and 

Section VI presents results from an experimental prototype. 

Finally, Section VII discusses the conclusions from the work. 

Parameters of the experimental rig are presented in the 

Appendix.  

II.  SENSORLESS CONTROL 

Later, in Section III, it is shown that for the 

implementation of the self-tuning resonant controller, the rotor 

position (θr) and rotational speed (r) of the Permanent 

Magnet Synchronous Generator (PMSG) are required. In this 

work θr and r are estimated using a sensorless Model 

Reference Adaptive System (MRAS) observer. Such systems 

have been extensively discussed in the literature before [26]–

[29] so only a brief discussion is provided here for 

completeness. 

The MRAS observer is based on a reference model and an 

adaptive model [28], [29], [31]. The reference model is 

obtained as: 
 

𝜓𝑠 = ∫(𝑣𝑠 − 𝑅𝑠𝑖𝑠)𝑑𝑡              (1) 

Where 𝜓𝑠 is the stator flux, 𝑣𝑠 is the stator voltage,  𝑖𝑠 is the 

stator current and Rs is the stator resistance (0.2).  

 Unlike motors, PMSG are not expected to operate at very 

low rotational speeds. As stated in Section III.C it is assumed 

in this work that the PMSG is operating between 500rpm-

2000rpm (0.25n to n). Therefore, even at 500rpm, the 

voltage 𝑣𝑠 is relatively large compared to the small voltage 

drop variations produced by changes in Rs with temperature 

(see (11)).  

 For instance if the PMSG winding temperature varies from 

20C to the maximum value of 140C, the stator resistance 

will change from Rs0.2 to a Rs0.294 (assuming a 

temperature coefficient =0.00393/C for the copper 

windings). Therefore the resistive voltage drop will change 

from 3V to 4.4V at rated current (i.e. V1.4V). Hence even 

for the extreme case of rated current, minimum speed and the 

maximum allowable temperature rise, the change in resistive 

voltage drop is less than 5% of the phase voltage. Moreover, 

as reported in [31],  for permanent magnet machines the 

stability of MRAS-based sensorless control loops is not 

compromised by stator resistance variation.  

  The adaptive model is obtained using: 
 

�̂�𝑠 = 𝐿𝑠𝑖𝑠 + 𝜓𝑚𝑒𝑗�̂�𝑟              (2) 

Where the superscript “

“ indicates an estimated variable. In 

(2) Ls is the stator inductance and 𝜓𝑚 = 𝜓𝑚𝑒𝑗�̂�𝑟 is the 

estimated rotor flux. A smooth air-gap permanent magnet 

machine is used in this work (i.e. Ld=Lq=Ls).  

The error between the stator flux estimated by the adaptive 
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model and that obtained from (1) is defined as: 

𝜀 = |𝜓𝑠 ⊗ �̂�𝑠| = |𝜓𝑠𝛽�̂�𝑠𝛼 − 𝜓𝑠𝛼�̂�𝑠𝛽| = | 𝜓𝑠| |�̂�𝑠| sin (𝜃)  (3) 

In (3) the symbol  represents cross-product and   is the 

phase angle between the vectors 𝜓𝑠  and �̂�𝑠. The advantages 

of using cross product for the calculation of 𝜀 are discussed in 

[32].  

 Unlike induction machines, in a PMSG there is no slip 

velocity (i.e. slip=0) and the rotational speed is equal to the 

stator electrical frequency. Therefore the speed can be 

correctly estimated from the frequency of the electrical 

signals, even if the stator resistance is affected by temperature 

variations. This is also concluded by inspecting (2)-(3) and a 

rigorous mathematic demonstration is presented in [31].    

 However because the error 𝜀  is defined as the cross product 

between 𝜓𝑠  and �̂�𝑠 (see (3)), the rotor position angle �̂�𝑟 can 

be incorrectly estimated if the phase angle of the stator flux 𝜓𝑠 

(obtained from (1)) is affected by large stator resistance 

variations. Nevertheless, as discussed before, for the speed 

operating range the variation in the stator resistance voltage 

drop, due to temperature effects, is relatively small compared 

with the PMSG internal voltage (see Fig. 2a). Moreover, in 

this work the generating system is designed to operate with a 

power factor close to unity. Hence, the position error in 𝜓𝑠 is 

further reduced considering that 𝑣𝑠 and −𝑅𝑠𝑖𝑠 (see (1)) have 

almost identical phase. This is depicted in Fig. 2a, where the 

calculation of the vectors 𝑣𝑠 − 𝑅𝑠𝑖𝑠  and 𝑣𝑠 − (𝑅𝑠 + ∆𝑅𝑠)𝑖𝑠   is 

shown. If the angle 0 (corresponding to close to unity power 

factor operation of the PMSG), then the phase shift between 

both vectors is also zero. Notice that Fig. 2a is not drawn to 

scale  and  the  voltage  drops 𝑅𝑠𝑖𝑠 and 𝛥𝑅𝑠𝑖𝑠 have  been  

 
 

 
Fig. 2. a) Phasor diagram showing the calculation of the vectors  𝑣𝑠 − 𝑅𝑠𝑖𝑠  

and 𝑣𝑠 − (𝑅𝑠 + ∆𝑅𝑠)𝑖𝑠    b) Proposed  MRAS observer. 

magnified in that figure. 

If the PMSG is utilised at an operating point where the 

effect of the stator resistance variation is no longer negligible, 

then the implementation of on-line identification methods 

could be required. For instance the PMSG parameter 

identification method reported in [16]  based on adaptive 

observers, or the sliding-mode observer proposed in [33]. 

Alternatively some of the methods proposed for stator 

resistance identification in induction machines, e.g. the P-

based MRAS observer reported in [34] could be modified for 

Rs identification in PMSGs.  

The MRAS observer used in this work is shown in Fig. 2b. 

To avoid the drift produced by integrating dc signals,   the 

reference stator flux 𝜓𝑠 is calculated using a band-pass filter 

instead of a pure integrator. The cross-product is calculated 

using the -β components of (1)-(2). In Fig. 2b a PI controller 

is used to drive the error of (3) to zero, by adjusting the 

position of the magnetic flux  𝜓𝑚.   

In most of the applications related to variable speed 

generation of electrical energy (e.g. wind energy systems, 

diesel generation, etc.) the changes in rotational speed are 

relatively slow, due to the inertia of the prime-mover. 

Therefore to design the PI controller of Fig. 2b, a simplified 

small-signal model can be used, similar to that discussed in 

[26].  

Using the parameters of the PMSG and experimental rig 

(see the appendix), the MRAS has been designed for a 

bandwidth of about 20Hz. 

III.  SELF-TUNING RESONANT CONTROL OF THE MACHINE-SIDE 

CONVERTER 

A.  Proposed Control System for the MSC. 

The position angle �̂�𝑟 is estimated from the MRAS 

observer of Fig. 2. Because �̂�𝑟 corresponds to the flux vector 

𝜓𝑚 angle, (see Fig. 3), the position of the PMSG machine 

internal voltage �̂�𝑀 is estimated as: 

�̂�𝑀 = �̂�𝑟 +
𝜋

2
                (4) 

Figure 3 shows the proposed control system for the MSC. A 

PI controller, whose output is the current iP, regulates the dc-

link voltage of the back-to-back converter. An additional term 

from a feed-forward compensation algorithm (see iff in Fig. 3) 

can be used to improve the dynamic performance of the dc-

link voltage. This is further discussed in Section V.  

In order to operate the generator with unity displacement 

factor, the reference currents required are: 

𝑖𝛼
∗ = 𝑖𝑀 cos(�̂�𝑀)  

 

𝑖𝛽
∗ = 𝑖𝑀 sin (�̂�𝑀)                (5) 

It is also possible to introduce a phase shift angle 𝜃𝑝ℎ between 

the voltage and stator current of the PMSG. For instance three 

alternatives to obtain 𝜃𝑝ℎ have been presented in the literature 

[27], [35]  (see the phasor diagram of Fig. 4). Option 1 

operates the PMSG at unity power factor, maximising the 

power transfer  from the PMSG to the load [27], with the MSC 

providing the reactive power required by the inductance Ls. 

Option 3 operates the MSC at unity power factor with the  
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Fig. 3. Generator-side control system. 

 
Fig. 4. Phasor diagram corresponding to the input stage. 

 

required phase angle 𝜃𝑝ℎ calculated by setting 𝑣𝑀 ≈ 𝜔𝑟𝜓𝑚 

yielding: 

𝜃𝑝ℎ ≈ −𝑠𝑖𝑛−1 (
𝐿𝑠

𝜓𝑚
 |𝑖𝑀|)              (6) 

Option 2 attempts to reduce saturation and obtain a 

compromise between the converter rating and the generator 

rating [35], by locating the current mid-way between the 

voltage vectors 𝑣𝑀 and 𝑣𝑐 with 𝜃𝑝ℎ set to half the value of (6). 

The control system proposed in this work could be used to 

implement any of these power factor control strategies. 
 

B.  Design of the dc-link Control System. 

As discussed before, the machine stator current magnitude 

is controlled using a PI controller augmented by a feed-

forward compensation term (see iff in Fig. 3). The design of 

the PI controller is discussed below. The feed-forward 

algorithm is discussed in Section V. 

Neglecting the MSC losses, the power supplied by the 

PMSG is equal to that supplied by the MSC to the dc-link. 

Therefore, the following expression can be written: 
 

𝐸𝑑𝑐𝑖𝑑𝑐_𝑖𝑛 = 𝑘𝛼𝛽(𝑣𝑀𝛼𝑖𝑀𝛼 + 𝑣𝑀𝛽𝑖𝑀𝛽)             (7) 
 

Where 𝑖𝑑𝑐_𝑖𝑛 is the dc current on the generator side and 𝑘𝛼𝛽 is 

dependent on the - transformation being used. Using the 

angle 𝜃𝑝ℎ, then (7) can be written as:  
 

𝐸𝑑𝑐𝑖𝑑𝑐_𝑖𝑛 = 𝑘𝛼𝛽 𝑖𝑀 𝑣𝑀cos (𝜃𝑝ℎ)            (8) 
 

where vM and iM are the magnitude of the generator voltage 

and current vector respectively. For a PMSG 𝑣𝑀 ≈ 𝜓𝑚𝜔𝑟. 

Therefore, the dc link current 𝑖𝑑𝑐_𝑖𝑛 is obtained as: 

𝑖𝑑𝑐_𝑖𝑛 = 𝑘𝛼𝛽
𝜔𝑟𝜓𝑚

𝐸𝑑𝑐
𝑖𝑀 cos (𝜃𝑝ℎ)            (9) 

Linearising the system about an operating point indicated by 

the subscript “0” yields:  
 

∆𝑖𝑑𝑐𝑖𝑛
= 𝑘𝛼𝛽𝜓𝑚cos (𝜃𝑝ℎ) [

𝜔𝑟0

𝐸𝑑𝑐0
∆𝑖𝑀 +

𝑖𝑀0

𝐸𝑑𝑐0
∆𝜔𝑟 −

𝜔𝑟0𝑖𝑀0

𝐸𝑑𝑐0
2 ∆𝐸𝑑𝑐]                              (10) 

 

 

As discussed before, in this work it is assumed that the PMSG 

speed changes slowly, therefore the term ∆𝜔𝑟 can be 

neglected when the dynamics of the current iM are considered.    

Moreover the variation idc_in produced by Edc (last term in 

(10)), is compensated by an identical variation in idc_out at the 

LSC side. This is due to the fact that the LSC is operating with 

constant power output and the load voltage is regulated with a 

fast dynamic response. Therefore neglecting ∆𝜔𝑟 , Δ𝐸𝑑𝑐 the 

current ∆𝑖𝑑𝑐  circulating through the dc link capacitors is 

obtained as: 

Δ𝑖𝑑𝑐 = 𝑘𝛼𝛽cos (𝜃𝑝ℎ)
𝜔𝑟𝑜𝜓𝑚

𝐸𝑑𝑐𝑜
Δ𝑖𝑀                (11) 

The transfer function of (11) and the small signal model of 

Fig. 5 can be used for the design of the dc-link PI controller. 

Notice that the gain of the controller is a function of r. This 

allows the system to remain tuned in spite of speed variations 

(see (11)). Moreover, even if the relatively small losses of the 

system (not considered in (7)) affect the gain of (11), linear 

control tools can be used to design a robust PI controller 

whose performance is little affected by small variations of this 

gain.  

Notice that in (9-11) it is assumed that the feed-forward 

current (∆𝑖𝑓𝑓) is an external perturbation. Therefore it can be 

considered that ∆𝑖𝑃 = ∆𝑖𝑀 because the closed loop poles of 

the dc link voltage control system are not affected by the feed-

forward compensation algorithm. 

C.  Generator-Side Resonant Control System. 

 

Resonant Controllers are based on the internal model 

principle and they can be used in control systems with 

sinusoidal reference signals [5]–[7], [9], [10], [25], [36]–[38]. 

One of the advantages is that a single RC per phase can be 

used to regulate the positive, negative and zero sequence 

signals at the load-side converter. In this application RCs are 

used to regulate the stator current in the PMSG and the voltage 

of the load fed by the LSC.  

 Resonant controllers have been discussed in the literature  

however RCs are generally used in applications where 

variations in the resonant frequency are small, e.g   for grid-

connected converters [10], [25], [36]. However, in the 

proposed system, the PMSG can operate over a wide speed 

range (e.g. 500rpm to 2000rpm). Therefore, the coefficients 

of the resonant control system have to be adjusted according 

to the stator frequency variation, in order to operate with a 

suitable bandwidth and phase margin over the whole speed  

 
Fig. 5. Control system for the regulation of the dc-link voltage. 
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range. This type of controller is usually called a “self-tuning” 

resonant controller in the literature [23], [24], [39], [40]. To 

the best of our knowledge, [39] is the only paper where a self- 

tuning RC is designed and experimentally tested for a system 

where operation over a wide frequency range is considered. 

However, in contrast to the approach proposed here, the 

methodology reported in [39] proposes to locate the resonant 

poles in a position where the PMSG stator currents cannot be 

regulated with low or zero steady state error. In this paper, 

digital design in the z-plane is proposed, avoiding the 

problems associated with the conventional implementation of 

resonant controllers based on discretisation methods [20]. 

The stator current of the PMSG is obtained from:  

𝑣𝑀 = 𝑅𝑠𝑖𝑀 + 𝐿𝑠
𝑑𝑖𝑀

𝑑𝑡
+ 𝑣𝑐            (12) 

where 𝑣𝑐 is the MSC voltage vector. Using (11)-(12) the 

control loop shown in Fig. 6 is proposed where the reference 

current vector ( 𝑖𝑀
∗ ) is derived from (5). The MSC voltage 

vector 𝑣𝑐 is obtained at the output of a self-tuning resonant 

controller (block labelled “RC” in Fig. 6) whose transfer 

function is: 

𝑅𝐶(𝑧) = 𝐾𝑟
(𝑧−𝑟(�̂�𝑟)𝑒𝑗�̂�𝑟𝑇𝑠)(𝑧−𝑟(�̂�𝑟)𝑒−𝑗�̂�𝑟𝑇𝑠)

(𝑧−𝑒𝑗�̂�𝑟𝑇𝑠)(𝑧−𝑒−𝑗�̂�𝑟𝑇𝑠)
   (13) 

 

Notice that in (13), ω̂r is the rotational speed (in electrical 

rad/s) estimated by the MRAS observer. As demonstrated in 

[31], tracking of the rotational speed by an MRAS observer in 

a PMSG is not affected by inaccurate identification of the 

machine parameters, i.e. Rs, Ls , therefore if the rotational 

speed changes relatively slowly, the resonant controller of (13) 

is tuned to the correct frequency even if the machine 

parameters change.   In Fig. 6 the SVM and MSC is 

represented as a zero order hold (see block labelled “ZOH”) 

and a delay of one sampling period. 

The controller of (13) has two poles located in the unit circle 

(see Fig. 7) and two zeroes, relatively closed to the poles, used  

 to increase the damping coefficient of the closed loop system. 

In (13), Ts is the sampling time, Kr is the controller gain and 

𝑟(�̂�𝑟) is the distance from the controller zeros to the origin. 

For variable speed operation of the PMSG, the poles of (13) 

are moved along the unit circle in order to track, with zero 

steady-state error, the reference currents of (5) (see Δ�̂�𝑟  in 

Fig. 7). 

  In this work the values of Kr and 𝑟(�̂�𝑟) have been tuned 

using Bode diagrams and Evan’s root locus at different 

operating points. For instance in Fig. 8 the open loop Bode 

diagram, considering operation of the PMSG at 2000rpm, is 

shown. The control system has been designed to obtain a 

phase margin of 60 at this operating point with a current 

control system bandwidth of 60-65Hz. 

 

 
Fig. 6. Resonant control system for the generator side converter.  

 

Fig. 7. Poles and zeroes of the resonant controller. 

 

Fig. 8. Open loop bode diagram for operation at 2000rpm. 

 

 From the analytical and experimental work, and considering 

the parameters of the experimental system presented in the 

appendix, it has been concluded that for most of the operating 

range an almost fixed value of 𝑟(�̂�𝑟) ≈ 0.95 produces a good 

dynamic response. However for a relatively low speed (close 

to 500rpm), the plant pole is closer to the poles and zeroes of 

the RC (see Fig. 7) and the value of  𝑟(�̂�𝑟) has to be changed 

in order to maintain a good dynamic performance. This 

approach is simple to implement and produces a good result 

considering that the PMSG acceleration is relatively slow. A 

small look-up table or similar implementation methodology 

can be used to obtain the value of 𝑟(�̂�𝑟). 

Expanding (13), the z-plane transfer function is obtained as: 

𝑅𝐶(𝑧) = 𝐾𝑟
(𝑧2−2𝑟(�̂�𝑟)𝑐𝑜𝑠(�̂�𝑟𝑇𝑠)𝑧+𝑟(�̂�𝑟)2)

(𝑧2−2𝑐𝑜𝑠(�̂�𝑟𝑇𝑠)𝑧+1)
     (14) 

Using (14) the self-tuning resonant controller can be 

implemented in real time using a Digital Signal Processor 

(DSP). 

IV.   CONTROL OF THE LOAD SIDE CONVERTER 

In order to feed a stand-alone load and provide a path for the 

circulation of zero sequence currents, the LSC has 4 legs at the 

output  (see Fig. 9). Resonant  controllers  are  used  to 

regulate the load phase-to-neutral voltages (van,vbn,vcn). It is 

assumed that the output frequency is constant; therefore, the 

LSC resonant controllers do not require frequency adaptation. 

The approach is essentially the same as that discussed in [5]–

[7] for a 4-leg matrix converter so only a brief treatment is 

given here. 

 Assuming a resistive load, the transfer function relating the 

phase to neutral voltage of the load to that at the output of the 

LSC is: 
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Fig. 9. LSC feeding an unbalanced linear/non-linear load. 

 

𝑣𝑎𝑛(𝑠)

𝑣𝑜𝑎(𝑠)
=

𝑅𝐿𝑎

𝑠2𝑅𝐿𝑎𝐶𝑓𝐿𝑓+𝑠𝐿𝑓+𝑅𝐿𝑎
            (15) 

 

where van is the load voltage and voa is the output voltage of 

the LSC; RLa is the load resistance and Cf, Lf are the 

capacitance and inductance of the second order output filter 

respectively. A resistive load has been assumed in (15), 

however the control system presented in this work can be used 

with both leading and lagging power factor loads. Substituting 

RLb and RLc for RLa, transfer functions similar to (15) are 

obtained for the voltages vbn and vcn in terms of vob and voc. 

The resonant control system is designed for the worst case 

operating point, i.e. when there is no load connected to the 

output of the power filter, and the transfer function of (15) is: 
 

𝑣𝑎𝑛(𝑠)

𝑣𝑜𝑎(𝑠)
=

1

𝑠2𝐶𝑓𝐿𝑓+1
                (16) 

in this case the damping coefficient of the second order system 

is =0 and the poles of (16) are located on the j axis. Using 

(16) the control system shown in Fig. 10 is designed and 

implemented.  

 For the control system shown in Fig. 10, only one RC per 

phase is used. However if the output load is strongly non-

linear, multiple resonant controllers could be required to 

supply voltages with low harmonic distortion to the load. 

 In the experimental work discussed in this paper, the control 

of the LSC is realised using a single RC per phase when the 4-

leg front-end converter is feeding linear loads. For loads with 

strong non-linear behaviour three controllers per phase are 

implemented for the regulation of the load voltage (see 

Section VI). A full discussion of the issues related to the 

implementation of multiple order fixed-frequency resonant 

controllers, is considered outside the scope of this paper and 

the interested reader is referred elsewhere [5], [7], [36].  

V.  FEED-FORWARD COMPENSATION ALGORITHM 

The PMSG stator current control system is augmented with 

a feed-forward compensation term (see iff in Fig. 3) improving 

the dynamic response of the system when fast variations in the 

load fed by the LSC are produced. The feed-forward algorithm 

is based on input/output power balancing. 

 

Fig. 10. Resonant control system for the LSC. Only one phase is shown. 

Assuming that the load voltage is well regulated and 

balanced, the instantaneous LSC output power is calculated as: 
 

 𝑃𝑜𝑢𝑡 = 𝑅𝑒(𝑘𝛼𝛽𝑣𝐿𝑖𝑜
𝑐)               (17) 

 

where the superscript “c” is the complex conjugate operator,  

𝑣𝐿 is the load voltage vector (see van,vbn,vcn in Fig. 9) and 𝑖𝑜   

is the LSC output current vector. Expanding (17) Pout is 

obtained as: 
 

𝑃𝑜𝑢𝑡 = 𝑅𝑒[𝑘𝛼𝛽𝑣𝐿𝑒𝑗𝜔𝑒𝑡(∑ 𝑖𝑘𝑒𝑗(𝜔𝑒𝑘𝑡+𝜃𝑘)
𝑘 + ∑ 𝑖ℎ𝑒−𝑗(𝜔𝑒ℎ𝑡+𝜃ℎ)

ℎ )
𝑐
 ]  (18) 

 

which can be rewritten as: 
 

𝑃𝑜𝑢𝑡 = 𝑅𝑒[𝑘𝛼𝛽𝑣𝐿 (∑ 𝑖𝑘𝑒𝑗((1−𝑘)𝜔𝑒𝑡+𝜃𝑘)
𝑘 + ∑ 𝑖ℎ𝑒𝑗((ℎ+1)𝜔𝑒𝑡+𝜃ℎ)

ℎ )]   (19) 
 

With 𝑘, ℎ ≥ 1. In (18-19) the index “k” is used to denote the 

positive sequence LSC output currents, and “h” is used for the 

negative sequence components. It is assumed that (k, h) are 

arbitrary phase angles.  

Neglecting the losses, the power balance in the 7-leg 

converter can be written as: 

𝑅𝑒(𝑘𝛼𝛽𝑣𝑀𝑒𝑗𝜔𝑟𝑡𝑖𝑀) =

 
1

2
𝐶

𝑑𝐸𝑑𝑐
2

𝑑𝑡
+

𝑅𝑒[𝑘𝛼𝛽𝑣𝐿 (∑ 𝑖𝑘𝑒𝑗((1−𝑘)𝜔𝑒𝑡+𝜃𝑘)
𝑘 + ∑ 𝑖ℎ𝑒𝑗((ℎ+1)𝜔𝑒𝑡+𝜃ℎ)

ℎ )] (20) 

 

where the term at the left hand side of (20) is the power 

supplied by the PMSG and the term (1 2⁄ )𝐶(𝑑𝐸𝑑𝑐
2 𝑑𝑡⁄ ) is the 

instantaneous power absorbed or supplied by the dc-link 

capacitor bank C.   

From (20) a feed-forward term can be calculated in order to 

improve the regulation of the dc-link voltage Edc. However, it 

is relatively simple to demonstrate that the instantaneous 

power absorbed/supplied by the dc-link capacitance C cannot 

be driven to zero without producing harmonic distortion in the 

PMSG stator current when the LSC feeds an unbalanced non-

linear load.  Therefore some voltage variation has to be 

allowed in Edc which can be obtained using: 
 

𝐸𝑑𝑐
𝑑𝐸𝑑𝑐

𝑑𝑡
= −

1

𝐶
𝑅𝑒[𝑘𝛼𝛽𝑣𝐿 (∑ 𝑖𝑘𝑒𝑗((1−𝑘)𝜔𝑒𝑡+𝜃𝑘)

𝑘 +

∑ 𝑖ℎ𝑒𝑗((ℎ+1)𝜔𝑒𝑡+𝜃ℎ)
ℎ )]   ( 𝑘 > 1)                                         (21) 

 

 Eq. (21) can be useful for designing the dc-link capacitor 

bank considering the expected load characteristics.  

Harmonic distortion of the stator currents are not produced 

when the power generated by the PMSG is balanced with the 

dc instantaneous power produced by the positive sequence of 

the fundamental load current. Therefore replacing 𝑣𝑀 ≈ 𝜓𝑚�̂�𝑟  

a feed-forward compensation current can be obtained 

calculating the term |𝑖𝑀| in (20) as: 
 

|𝑖
𝑀

| = 𝑖𝑓𝑓 =
𝑃𝑎𝑣𝑔

𝑘𝛼𝛽𝜓𝑚�̂�𝑟cos (𝜃𝑝ℎ)
          (22) 
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where Pavg is the dc component (i.e. obtained using k=1, ih=0 

in (21)) of  the load power.  

 The proposed feed-forward control system is shown in Fig. 

11. The power Pavg  is calculated using: 

𝑃𝑎𝑣𝑔 = 

(𝑣𝑎𝑛𝑖𝑜𝑎 + 𝑣𝑏𝑛𝑖𝑜𝑏 + 𝑣𝑐𝑛𝑖𝑜𝑐)
∏ (𝑠2+𝑚2𝜔𝑒

2)𝑚

∏  (𝑠2+4𝜁𝑚𝜔𝑒𝑠+𝑚2𝜔𝑒
2)𝑚

      (23) 
 

The term at the right of (23) represents a cascade of notch 

filters tuned at 𝑚𝜔𝑒, where 𝜔𝑒 is the output frequency. If the 

load is unbalanced but linear, only one notch filter is required 

tuned at 2𝜔𝑒. If the load is non-linear, additional notch filters 

are required to eliminate the power pulsations due to the 

current distortion. 

 Fig. 11 shows the implementation of the feed-forward 

compensation term.  The output power is calculated using 

measurements of the phase to neutral load voltages and LSC 

output currents. From these measurements the average power 

Pavg is calculated using (23). Because of simplicity only one 

notch filter is shown in Fig. 11. An additional low-pass filter is 

used to eliminate the harmonics produced by the switching of 

the IGBT devices.  

Interconnection of the control systems, discussed in the 

previous sections, is shown in Fig. 12.  

VI.  EXPERIMENTAL WORK 

 The control system of Fig. 12 has been experimentally 

implemented (see Fig. 13) using a DSP based control board 

and an FPGA, the latter providing the switching signals for the 

14 IGBT gate drivers.  Data acquisition uses 20 Analogue to 

Digital (ADC) channels of 14bits, 1μs conversion time each, 

interfaced to the DSP. Additionally two digital oscilloscopes, 

operating simultaneously in single shot mode (with sampling 

frequencies of 5MHz) have been used in some of the 

experimental tests to store the current and voltages of the input 

and output side of the 7-leg converter.   Hall-effect transducers 

are used to measure the input currents, input voltages and 

output load voltages.  A switching frequency of 10kHz has 

been used to implement the SVM algorithms. 

For the experimental tests a Control Techniques, 4kW, 

2000rpm, 8 pole PMSG with surface mounted magnets is 

used. This PMSG supplies a sinusoidal voltage waveform with 

a Total Harmonic Distortion (THD) of less than 1.1% (the 

PMSG  voltage  waveforms  are  shown  in  Fig  13a).  The  

 
Fig. 11. Feed-forward compensation system. 

 
 

Fig. 12. Proposed control system for the 7-leg converter. 

 

parameters of the PMSG are given in Table I at the appendix. 

The prime mover  is  a  2  pole, 2910rpm, 5kW cage machine. 

A commercial inverter is used to drive the cage  machine using 

V/F control. The machines are shown in Fig. 13c. The position 

encoder has not been used to implement the control strategies. 

 A 7-leg power converter has been designed and 

implemented for the experimental validation of the proposed 

control system. The PCB is shown in Fig. 13b. Each leg has 

been implemented using a 1200V, 35A dual IGBT switch 

Infineon BSM35GB120DN2 device. The experimental system 

is controlled using a Texas Instruments TMS320C6713 DSP. 

A daughter board with an ACTEL FPGA is used to implement 

the PWM generation and for interfacing the A/D, D/A 

converters to the DSP. A 3 resistor bank with resistor taps of 

10.7 and 14.7 is used for the load. An electronic relay 

controlled using one of the D/A output channels is used to 

implement the load-step variations presented in this section. 

 Figs. 14-15 show the control system performance for an 

unbalanced load-step. Before the load-step the system is 

operating with a dc-link voltage Edc=325V, a load voltage of 

115V peak, r=1650rpm and a balanced LSC output current of 

5.3A (rms). At t42ms additional resistors are connected 

increasing the current to 12.4A (rms) in two of the phases. The 

output currents ia, ib and ic are shown in Fig. 14a. The neutral 

current, with the presence of zero sequence components, is 

shown in Fig. 14b. Finally Fig. 14c shows the load voltage 

which has a small perturbation when the load impact is 

applied; this is eliminated in less than 5ms (a quarter of a 

cycle) by the load-side RCs. 

Fig. 15 shows more experimental results corresponding to 

the unbalanced load step of Fig. 14. Fig. 15a shows the 3 

output power. Before the unbalanced load-step, the power is  
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Fig. 13. a) Two line to line voltages for the PMSG operating at 2150rpm b) 7-
leg converter designed and implemented in this work. c) 8-pole PMSG and 2-

pole cage machine.  

 

1.27kW without oscillations. After the load-step the mean 

output power is about 2kW with a relatively large 100Hz 

component. Using a digital notch-filter tuned at 100Hz and a 

first-order digital low pass filter tuned at 50Hz (see Figs. 11-

12 and (23)), the feed-forward current iff is calculated by the 

DSP using (22)-(23) and depicted in Fig. 15b. As discussed in 

Section V, this current is fed-forward to the stator current 

control system, to improve the dynamic response of the dc-

link voltage regulation. 

 In Fig. 15c the dc-link voltage is shown. With feed-forward 

compensation, the dip is only 6V. Notice that the dc- link has 

a 100Hz oscillation after the unbalanced load-step is applied. 

As discussed in Section V the controller has not been designed 

to compensate the ac ripple in the dc-link voltage, to avoid 

distortion in the PMSG stator currents. 

 Notice that Fig. 15c has a different time scale. In Figs. 15a 

and 15b signals internally calculated by the DSP are shown. 

Fig. 15c shows a dc voltage signal which is captured by the  

digital scope. 

 Fig. 16a shows the PMSG stator current corresponding to  

 
Fig. 14. Response of the LSC control systems for an unbalanced load step in 

two of the phases. a) LSC output currents. b) LSC neutral current. c) Load 

voltages. 

 
Fig. 15. a) 3 output power. b) feed-forward compensation current. c) dc-link 
voltage 

 

the test depicted in Figs. 14-15. The input current has a 

frequency of about 110Hz with virtually no distortion. For this 

case the current is regulated with  𝜃𝑝ℎ ≈ 0 (see Fig. 3).  Figs. 

16b and 16c show the - tracking error of the self-tuning 

resonant control system. For the whole test the tracking error 

is low, with a peak below 0.75A produced when the current iff  

has a fast variation from iff 12A to iff 18A (peak current) in 

t0.5s. 

 The control system of Fig. 12 has been tested considering a 

relatively fast ramp speed variation. For this test the 

experimental results are shown using the effective (rms) 

current of each phase. This methodology is preferred because 
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of the problems associated with displaying d-q currents under 

unbalanced operation. Moreover, the zero sequence 

components are not reflected in the d-q signals. 

 The LSC (rms) output currents are calculated using a digital 

implementation of:  

𝑖𝑟𝑚𝑠 = √
1

𝑇
∫ 𝑖2(𝑡)𝑑𝑡               (24) 

A low pass filter is used to calculate the root mean square 

value of (24). 

 
Fig. 16. Input currents a) Instantaneous input current. b) -axis (rms) stator 

current tracking error. c) -axis (rms) stator current tracking error. 

 

 
Fig. 17. Control system performance for a ramp step variation. a) Reference 

(𝜔𝑟
∗) and estimated (�̂�𝑟) rotational speeds. b) LSC output currents ia and ib. c) 

LSC output currents ic. d) Neutral current. 

 Fig. 17 shows results for a speed ramp variation between 

r800rpm to 1500rpm.  At t2s an unbalanced load step is 

applied to two of the phases and disconnected at t7.3s. Fig. 

17a shows the estimated rotational speed �̂�𝑟 and the reference 

speed  𝜔𝑟
∗ sent to the commercial inverter. In Figs. 17b-17c the 

LSC output currents ia, ib and ic are shown. Notice that the 

effective current is constant in phase c and that the unbalanced 

load-step variations are applied to phases b and c. Finally Fig. 

17d shows the zero sequence components circulating through 

the 4
th 

leg, used as a neutral connection in this application. 

 Fig. 18 shows additional signals corresponding to the ramp 

speed variation test shown in Fig. 17. Fig. 18a shows the 

magnitude of the PMSG d-q stator current. Because the 

system is feeding a constant load at the output, the PMSG 

power current is proportional to 1/r. Fig. 18b shows the 

instantaneous power measured at the output. As explained 

before, this power is filtered and the feed-forward 

compensating current is obtained using (22)-(23). Fig. 18c 

shows the phase to neutral load voltage. Because of the boost 

capability of the MSC the load voltage can be regulated to a 

value which is  higher than the internal voltage (a phase 

voltage of 40V at 800rpm). This is an advantage compared to 

previous  implementations (see [5]). Notice that the load 

voltage is well regulated with a dip and an overshoot of less 

than 5V. Finally Fig 18d shows the dc-link voltage. For this 

test the dc-link voltage is well regulated (𝐸𝑑𝑐
∗ = 300𝑉) with a 

dip and overshoot of less than19V (6% of Edc).  

 The performance of the feed-forward compensation 

algorithm, for the regulation of the dc-link voltage, is shown 

in Fig. 19. The  system  is operating  with a rotational speed of  

  
Fig. 18. Control system performance corresponding to the ramp step variation 

of Fig. 17. a) PMSG stator current.  b) Instantaneous load power c) Magnitude 

(obtained from d-q coordinates) of the load voltage. d) dc-link voltage.  
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Fig. 19. Performance of the feed-forward compensation algorithm. a) 3 

balanced load step. b) dc-link voltage variation without considering feed-

forward compensation. c) dc-link voltage variation considering feed-forward 
compensation. 

 

750rpm, the dc-link voltage is regulated to 200V and a 3 

balanced load-step is applied. Fig. 19a shows the output power 

variation from 500W to 1250W.  Fig. 19b shows the response 

of the dc link control system without the feed- forward term of 

(22). The nominal voltage is 200V and the dip and the 

overshoot are about 25V for a dc-link capacitor bank of about 

1600F. When the feed- forward term is included (Fig. 19c) 

the dip and the overshoot are reduced to 15V and the settling 

time (considering a 2% band) is reduced from 90ms to 

20ms for the same power step. 

 In Fig. 20 the performance of the proposed control system, 

for a non-linear load-step, is shown. The system is operating 

with a balanced load of about 1300W, 1650rpm, when at 

t58ms a non-linear load composed of a 14.7 resistor, in 

series with a rectifier diode, is applied to phase a. For this case 

additional resonant controllers, tuned to eliminate dc signals 

and third order harmonics are implemented in the LSC control 

system to regulate the load voltage. The implementation of 

high order resonant controllers is discussed in [5], [9], [36], 

[37]. 

Fig. 20a shows the LSC output currents ia, ib, ic. Before the 

non-linear step, the current in phase-a has negligible 

distortion. After the non-linear load step the current in phase-a 

is increased with a noticeable dc component whose magnitude 

is 32% with respect to the fundamental. Moreover, after the 

step, the second and the fourth harmonics are also present in ia 

with magnitudes of 11% and 3% respectively. Fig. 20b 

shows the zero sequence current components (produced by the 

non-linear load) that circulate in the neutral leg.  

 Fig. 20c shows the stator current which is well regulated 

with little distortion. Finally the load voltage is shown in Fig. 

20d. As shown in this graphic, the load voltage is well 

regulated and the effects of the non-linear step are negligible. 

Moreover the high order resonant controller reduces the 

distortion in the load voltage. 

 
Fig. 20.  Control system performance considering a non-linear load step. a) 

LSC output currents ia, ib and ic. b) Neutral current. c) PMSG stator currents. 

d) load voltage. 

VII.  CONCLUSIONS 

 A control method for a 7-leg back-to-back voltage source 

inverter has been presented. It is based on resonant controllers 

and a feed-forward compensation term. A frequency adaptive 

control system for the regulation of the PMSG stator current 

has been presented and experimentally validated. A control 

system topology for the regulation of the dc link voltage, 

avoiding distortion in the generator current, has been analysed 

in this work. A feed-forward compensation algorithm has been 

proposed that effectively improves the dynamic performance 

of the dc-link voltage control. 

The proposed control system has been tested considering 

balanced, unbalanced and non-linear load operating under 

variable/fixed rotational speed. The results have shown the 

good performance achieved with the proposed control 

methodology. 

APPENDIX 

 
TABLE I 

PARAMETER OF THE PMSG 

Nominal rotational speed 2000rpm 

Nominal Power 4kW 

Maximum Rotational Speed 2800rpm 

Torque constant 1.4Nm/A 

Nominal Torque 20Nm 

Voltage Constant 85.5V/Krpm 

(line voltage) 

Recommended Drive PWM 220/240V 

500

1000

1500

170

190

210

230

0 0.2 0.4 0.6 0.8 1
170

190

210

230

P
o

w
e

r 
(W

)
d

c
-l
in

k
 v

o
lt
a

g
e

 (
v
)

a)

b)

c)

Time (s)

-15

-5

5

-15

-5

5

15

0 0.04 0.08 0.12
-150

-50

50

150

-15

-5

5

15

a)

b)

c)

d)

C
u
rr

e
n
t

(A
)

L
o
a
d
 V

o
lt
a
g
e

(V
)

Time (s)

C
u
rr

e
n
t

(A
)

C
u
rr

e
n
t

(A
)



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 

Voltage (line voltage) 
Stator Inductance 4mH 

Stator Resistance 0.2 

Output Waveform Sinusoidal 

(THD<1.1%) 
 

 

TABLE II 

PARAMETER OF THE EXPERIMENTAL SYSTEM 

Switching Frequency 10kHz 
Output Filter Inductance Lf= 2.5mH   

Output Filter Capacitance Cf= 40 μF 

Output frequency 50Hz 
dc-link capacitance 1600F 
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