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~ Network-Based Event-Triggered Control for
Singular Systems With Quantizations

Peng Shi, Fellow, IEEE, Huijiao Wang, and Cheng-Chew Lim, Senior Member, IEEE

Abstract—This paper investigates the problem of event-
triggered H,, control for a networked singular system
with both state and input subject to quantizations. First,
a discrete event-triggered scheme, which activates only at
each sampling instance, is presented. Next, two new sector
bound conditions of quantizers are proposed to provide
a more intuitive stability analysis and controller design.
Then, network conditions, quantizations, and the event-
triggered scheme are modeled as a time-delay system. With
this model, the criteria are derived for H_,, performance
analysis, and codesigning methods are developed for the
event trigger and the quantized state feedback controller.
An inverted pendulum controlled through the network is
given to demonstrate the effectiveness and potential of the
new design techniques.

Index Terms—Event-triggered control, networked singu-
lar system, quantization, sector bound condition.

[. INTRODUCTION

VENT-TRIGGERED schemes, where the sampled signal

is transmitted according to an event-triggered condition
other than a fixed time interval, have received increasing atten-
tion due to its capacity for reducing communication load. Many
results have been reported on the problem of event-triggered
control or event-based control, such as [1]-[4] and the reference
therein. Among them are two types of event-triggered scheme:
one with a continuous event-triggered condition [1], [2], and
the other with is a discrete event-triggered condition [3], [4].
The continuous event trigger relies on additional hardware to
continuously supervise the system state to detect whether the
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current state exceeds a trigger threshold. Moreover, the con-
tinuous event-triggered scheme can only be effective under a
given controller, and the controller and the triggered parameters
cannot easily be codesigned. In the discrete event-triggered
scheme, the triggered condition is detected in discrete sampled
instants, and incorporating a codesign algorithm is readily
achievable for most practical systems.

In networked control systems (NCSs), the sharing of limited
network bandwidth often causes network-induced delays, and
data packet dropouts and disorder, which can deteriorate the
performance and even destabilize the systems [S]-[11]. In the
past decade, many methods have been developed to deal with
these network-induced challenging issues, for example, the fil-
tering, identification, and estimation problem in [12]-[15] and
the output feedback problem in [16]-[18]. However, most are
based on a time-triggered scheme, which can be inefficient in
terms of reducing the utilization of limited network bandwidth.

Furthermore, quantization problems inherent in sampled-
data systems have been investigated in recent years [19]-[24].
It was shown in [25] that the coarsest quantizer is logarithmic,
and the sector bound method is applicable for stabilizing lin-
ear single-input-single-output systems with state quantization.
The sector bound method in [25] was extended to multiple-
input-multiple-output systems in [26] and to guaranteed cost
control of continuous systems over networks with state and
input quantizations in [27]. In addition, the networked H,,
control for continuous-time linear systems with state quantiza-
tion was discussed in [28], and the problem of H, estimation
was studied in [29]. The reset quantized state control problem
was studied in [30] and [31]. Meanwhile, singular systems are
frequently encountered in electronic and economic systems,
aerospace, and chemical industries [32]-[36]. Hence, there will
be a profound meaning applying quantized control to singular
systems. Indeed, the problem of a networked H, filter for sin-
gular systems with state quantization was investigated in [6] by
the similar method used in [29]. However, when using the sector
bound method, the quantization errors have been regarded as
a class of uncertainties, which present difficulties in controller
design. To the best of the authors’ knowledge, although discrete
event-triggered control for linear systems has been discussed
in [3] and [4], there is no result reported on event-triggered
control for networked singular systems that are subject to quan-
tizations. This motivates the research presented in this paper.

The works most pertinent to this paper are [37] and [38].
In fact, this paper stems from the following motivations. First,
the quantized control under event-triggered networked systems
investigated in [37] is novel but only for regular systems. On
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the other hand, the new sector bound approach used in [38] is
under a time-triggered scheme, which has its useful properties,
but may lead to the unnecessary usage of limited communica-
tion resources. Our aim here is to find a more effective and
efficient discrete event-triggered scheme, which only detects
the difference between the states sampled in discrete instants
regardless of what happens in between updates, and to codesign
the event-triggered H,, controller for networked singular sys-
tems taking into account both communication delays and signal
quantizations.

In this paper, the problem of event-trigged H,, control for
networked singular systems with both state and control input
quantizations is investigated. Our contributions are as follows:
1) A new sector bound approach, by which no transformation is
needed from system models to uncertain systems, is presented;
2) a discrete event-triggered scheme that only needs supervi-
sion of the system state in discrete instants is presented for
networked singular systems; and 3) a unified framework, which
takes network-induced delays, state and input quantizations,
and event triggers into account, is given for codesigning the
event detector and the state feedback controller.

The remainder of this paper is organized as follows.
Section II formulates the problem. H,, performance analysis
and quantized state feedback controller design are presented
in Section III. Illustrative examples are given in Section IV to
demonstrate the effectiveness of the presented method. Finally,
this paper is concluded in Section V.

Notations: Throughout this paper, the superscripts ““I”” and
“—1” stand for the transpose of a matrix and the inverse of a
matrix; R™ denotes n-dimensional Euclidean space; R™*™ is
the set of all real matrices with n rows and m columns; P > 0
means that P is positive definite; I is the identity matrix with
appropriate dimensions; the space of square-integrable vector
functions over [0, c0) is denoted by L2[0, 00), and for w(t) €

\/ Jo lw(t)|?dt; for
a symmetric matrix, * denotes the matrix entries implied by
symmetry.

L]0, 00), its norm is given by ||w(¢)||2 =

[I. PROBLEM FORMULATION
A. Plant Description

The networked singular system, as shown in Fig. 1, com-
prises a continuous-time-controlled singular system, a set of
sensors to provide the state signals, an event detector, two
quantizers f(-) and g(-), a zero-order hold (ZOH), actuators,
and a data network.

The networked singular system is described as follows:

ey
z(t) = Cx(t) + Du(t) + Fw(t)

{Ex'(t) = Az(t) + Bu(t) + Gu(t)
where z(t) € R™ is the state vector, u(f) € R™ is the control
input vector, w(t) € RP? is the disturbance input, and z(t) € R?
is the controlled output of the plant. The matrices A, B, C, D,
FE, F,and G are constant matrices with appropriate dimensions,
where E may be singular, and we assume that rank £ =r <

o(f)
u(t) — ) (1)
Siigular Sensors
System

on |

T

ca

Network

Quantizer g(-

(3

u(t)

Fig. 1. Block diagram of an event-triggered controlled singular system.

n. For the networked singular system shown in Fig. I, the
following conditions are assumed in this paper.

1) The sensors are time triggered with a constant sampling
period h. The sampled x(kh) is transmitted to the event
detector and is transmitted (or released) at instant ¢/ by
the event detector, which is located between the sensors
and the controller. All state variables of the singular NCS
are measurable.

2) The signal in the network is transmitted with a single
packet, and the data packet loss does not occur during
transmission.

B. Event-Triggered Scheme

To reduce the utilization of the limited network bandwidth,
a discrete event-triggered scheme is proposed in this paper to
replace the conventional time-triggered mechanism [3], [4].
The event detector uses the following condition to decide
on whether the current signal should be transmitted to the
controller:

tk+1h:tkh+mlin{lh|eT(ikh)<I>e(ikh) >oa’ (th)@a(tyh) }
(2

where 0 < o < 1 is a given scalar parameter, ® > 0 is a posi-
tive matrix to be determined, and e(ixh) is the error between
the two states at the latest transmitted sampling instant and
the current sampling instant, i.e., e(izh) = x(txh) — x(ixh),
where ixh = tph + lh,l € N.

When the data released at ¢; by the event monitor are
transmitted to the controller, it incurs a communication delay
called the sensor-to-controller delay 7. () ). Similarly, the con-
troller forwarding the actuation signals at ¢; to the actuator
incurs another communication delay called the controller-to-
actuator delay 7., (tx ). These two network-induced delays can
be lumped together as the time-varying delay 7, , and

Tty = Tsc(th) + Tea(tr), 0 < 7y < 7, < Ts ©)

where 7, and 7); denote the lower and upper delay bounds,
respectively.
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C. Event-Triggered Quantized H., Control Problem

The problem of event-triggered H,, control with quantiza-
tions to be addressed in this paper is to design a state feedback
controller, i.e.,

u(t) = Kx(t) “4)

where K is the controller gain, such that:
1) the resultant closed-loop system with w(t) = 0 is regular,
impulse free, and stable; and
2) under zero initial conditions, for any nonzero w(t) €
L]0, 00), the controlled output z(t) satisfies ||z(t)]|2 <
y|lw(t)||2, where ~ is a prescribed performance index.

Considering the behavior of the ZOH, the input signal is

u(t) = g (K f (z(tch))) ,t € [teh + Toy, theprh + Tepsy) -
(5)
Refer to Fig. 1. We now denote the quantized measurement of
x(tph) as Z(txh), the control signal as @(t), and the control
input signal as wu(t). Then, at the release instant ¢;h, the
following equations can be deduced:

T(tph) = f (z(trh))
'a(tkh‘FTsc(tk)) = K'i(tkh) (6)
u(tph+7,) = g (@ (tkh + Tse(tr))) -

The quantizers f() = [f1(), f2(),-... fa(-)]" and g() =
[91(:),92(-), -+, gp(-)]T are assumed to be symmetric,
that is, f;j(—v)=—f;(v)(j =1,2,...,n) and gn,(—v) =
—gm(v)(m =1,2,...,p). Similar to [27], [29], and [37], the

quantizers considered in this paper are logarithmic static and
time invariant. For each f(-), the set of quantized levels is
described as in [26] and [37] by

y — {iugﬁ,ugﬁ = aluf),i=+1,+2,.. } U {iuéj)}
U{0},0<a; < Luf’ >0. (7)

The associated quantizer f;(-) is defined as

qu), ifﬁuij) <v < %ﬁugj),v>0
fi(v) =40, ifv=0
—fi(=v), ifv<0

where 0; = (1 — a;)/(1 + ¢ ), and «; is also called the quan-
tization density of quantizer f;(-). Similarly, the quantizer
9;(:)(7=1,2,...,p) is of quantization densities p; and de-
note; = (1 — p;)/(1 + p;). For a given logarithmic quantizer
f;(+), a sector bound condition was proposed as follows:

fitv) = (I + Ap)v (®)

where Ay = diag{Ay,,Ay,,..., Ay, },and Ay, € [—0j,0/].
For the quantizer on the controller side, the same definition can
be applied. It follows that

9i(v) = (I + Ag)v ©

where Ay = diag{Ay,,Ay,,..., Ay },and Ay € [—m;, 7;].
Combining with (6)—(9), we have

u(th+ 1) = (I +Ag)K(I+ Ap)z(tyh)

t € [teh + 7o, teprh + 7., ) . (10)

Then, the system can be transferred to linear systems with
norm-bounded uncertainty, which was employed in [29] and
[37]. However, due to the uncertainties on both sides of con-
troller gain matrix K, the controller is difficult to design.

In the following, two new sector bound conditions of quan-
tizers are proposed. We first denote

.,O'n}7 AOZI—A,A1:I—|—A
Lk, Mo =T —1LT0 = T +11

A= diag{al,ag, ..
IT = diag{m, o, . .

Then, for any diagonal matrices S > 0 and H > 0, the follow-
ing inequalities hold:

[f(@(tih))—Nox(tih)]" S [f (x(teh)) — Mz (teh)] <O (11)

g (K f (a(tyh))) — MoK f (x(txh))]" H

x g (K f (z(txh))) — ILK f (x(trh))] < 0. (12)

Remark 1: 1t should be mentioned that the sector bound
conditions are much simpler and more applicable. Unlike some
existing works (for example, [27], [29], and [37]), the difficulty
associated with stability analysis and H, controller design can
be effectively overcome by using these conditions.

Substituting (5) into (1) yields the following closed-loop
system:

{Ea’:(t) = Az(t) + Bg (K f (z(txh))) + Guw(t) 13

2(t) = Cx(t) + Dg (K f (x(txh))) + Fw(t).

D. Time-Delay Modeling

Next, using the same technique as in [37], we convert the
event-triggered NCSs (13) into a new time-delay system, which
can be analyzed by the well-developed theory on time-delay
systems. First, suppose there exists a finite positive integer
m such that t;41 =t +m + 1. Then, the interval [t;h +
Ttpstks1h + 7y,,,) can be decomposed into the following
subintervals:

[teh + 71, trprh + 7, ) = T (14)
=0

where 1] = [Zkh + Tistkh + h + Tik+1), ith =tyh +1h,l =
0,1,...,m. Moreover, z(t;h) and z(txh + lh) satisfy the
event-triggered sampling scheme (2).

For convenience, we denote

T(t) =t —ixh (15)
where t € T, and we have
0<7m <7(t) <7TM +h=T. (16)
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Based on the above analysis, the closed-loop system (13) can
be rewritten as

Ei(t)=Ax(t)+Bg (K f (x (t—7(t))+e(ixh)))+Guw(t)
z(t) = Ca(t) + Dg (K f (x (t — 7(t)) + e(ikh)))
+Fw(t),t € [tih + Ty, i1 h + To )

CL'(t) = ¢(t)at € [_7_—7 O)
(17)

where ¢(t) is the initial function of x(t).

Remark 2: The problem formulated above differs from
some existing works concerned with quantized feedback con-
trol, for example, [6] and [38], in which only the effect of
quantization was considered. In this work, we consider not
only the effect of quantization but also the event-triggered
scheme, which is used to save the limited communication
resources, for networked singular systems. Moreover, the event-
triggered condition (2) only supervises the difference be-
tween the states sampled in discrete instants, and it needs
no extra hardware to continuously monitor the state of the
plant.

We end this section by recalling the following lemma, which
will be used in the sequel.

Lemma 1: [39] For any vectors X,Y € R™ and positive-
definite matrix @) € R"*", the following inequality holds:

2XTy < XTQX +YTQ Y.

[ll. MAIN RESULTS

Here, we consider the quantized H,, control of the net-
worked singular system (17) under the event-triggered scheme
based on (2). We first give sufficient conditions for the closed-
loop system (17) to be regular, impulse free, and stable with an
H, performance index ~. Then, we propose a design method
for the quantized state feedback controller.

A. H,, Performance Analysis

Based on the new sector bound conditions (11) and (12), we
present the following H, performance analysis result.

Theorem 1: Given scalars v >0, 0 <o < 1, 7, 7, and
the controller gain matrix K, the closed-loop system (17) is
regular, impulse free, and stable with H,, performance index
~ under the event-triggering scheme (2), if there exist matri-
es Q1 =0T >0,0:=QY >0,2, =2 >0(i=1,2,3),
® > 0, P, N, M, and any diagonal matrices S > 0 and H > 0
with appropriate dimensions such that

ETP=PTE>0 (18)
Rl gﬂ <0 (19)

where
(o +T+IT VAN VTM
\Ifl = * —Zg 0
| * * —Z3
T, T 7 21 FT  GTz
Uy = {0 0 0|, vs= * —I 0
| 0 0 0 * * -7
Tn=[c o o o o o D]
T,=[G"P 0 0o 0 o0 0 o0
Z=[A 0 0o 0 o o B
Z =TmZ1+ (T — Tim) 22 + 2773
=[N —-N+M 0 M 0 0 0FE
(11 0 13 0 0 0 PTB
* P22 0 0 ©Y25 25 0
* * ©33 P34 0 0 0
Y= * * * P44 0 0 0
* * * ©55 25 0
* * * * 3066 5067
| * * * * —2H_
11 =PTA+ AP+ Q1+ Q2 — (1/7)E" (21 + Z3)E
Y13 = (1/Tm)ET(Z1 —|— Zg)E
Y22 = o — 2A15A0, Y25 = —2A15A0
033 = —Q1 — 1T + 1/(F — 7o) ET(Z1 + Z3)E
p3a = [1/(T — ;)] E" (Z2 + Z3)E
paa = —Q2 — [1/(T — 7)) ET(Z2 + Z3)E

P55 = —d — 2A15A0
wos = —28 — 2K Tl HIL K, g7 = 2K 7 H.

Proof: We first show that the networked singular system
(17) is regular and impulse free. Si~nce rapk E = r <n, there
must exist two invertible matrices G' and H € R™*"™ such that

Aj 12
Ai 22|

I
0

= GER = { 0} GAR = [Aw
0 1,21
Similar to the method used in [35], we know that A; o9 is
nonsingular, which implies that the pair of (E, A) is regular and
impulse free, it follows that the networked singular system (17)
is regular and impulse free. In the following, we will show that
the networked singular system (17) is stable under the event-
triggering scheme (2).
Consider when the system is free from external disturbances,
with w(t) = 0. We define the following functional:

V(t) =Vi(t) + Va(t) + Va(2) (20)
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where
Vi(t) =27 (t)ET Px(t)

¢
Vo = / | xj(S)le(S)ds g / o7 ()Qaa(s)ds
Va(t) =7 Zi +/9 a:T(s)ETZlEa':(s)des
+ _[ t +/9 i (s)ET ZyEi(s)dfds
+2/”+/9 (s)ET Z3EBi(s)dfds.

Taking the derivative of V(¢) for t € [txh + 74, , tkr1h +
Ttiin ), we introduce the free weighting matrices, i.e.,
t

0y = 26T(t)N | Ex(t)— Ex (t — 1(t)) — / Ei(s)ds|=0

t—7(t)
0o = 26T M| Ba(t—r(t))— Ex(t—7)— / Fi(s)ds| =0

1)
where ¢7'(t) = [nT(t) e (ixh)], with

n"(t) = [z"(t) 2" (t—7(t) at(t—7)]

and N and M are matrices with appropriate dimensions. Ac-
cording to Lemma 1 and combining the sector bound conditions
(11) and (12) with the event-triggered scheme (2), we have

V(t) < T (H)ZE() (22)
where 2=+ T+ TT+7NZ INT+7 M Z ' MT + o/ Z/7,
with Z = 7,21 + (T — Tin) Z2 + 27 Z3. According to Schur
complement, from (19), we have

2L (t — 1)

o+ +IT VN VTM 7
* —Zg 0 0
* * —Z3 0 <0 (23)
* * * —Z

which means V (¢) < 0. Therefore, system (17) is stable.

Now, we address the H,, performance of the networked
singular system (17). Consider when the system is subject to
external disturbances, with w(t) # 0. We use the following

performance index:
o0

o0 = [ 00 2P (u] .
0
Under zero initial conditions, we have

o0

p(t) = / [zT(t)z(t) — 72wt (t)w(t) + V(t)} dt — V(o0)

=4+ Ty + TlT 15 ( )
* —2T+ FTF +GTZG|*

with T (t) = [¢T(t) w™ (t)]. By Schur complement, from (19),
we have
E+T+TF Ts

x 21 + FTF + GTZG

which means (¢) < 0. That is, under zero initial conditions,
for any nonzero w(t) € £3]0, c0), the control output z() satis-
fies ||z(¢)||2 < 7||w(¢)||2. This completes the proof. [ |

B. Quantized State Feedback Controller Design

Based on Theorem 1, we present the codesign algorithm for
the networked singular system (17) as follows.

Theorem 2: For given scalars v > 0,0 < o < 1, 7, T, and
pi (i=1,2,...,5), the singular NCS (17) is regular, impulse
free, and stable with an Ho performance index ~ under the
event- trlggermg scheme (2), if there exist matrices Q1 Q1
0,Q:=QF >0,Z; = ZT>O(Z—1,2,3) ®>0,N,M,Y,
nonsmgularP and any diagonal matrices S > 0,S>0,H>0
with appropriate dimensions such that

PTET =EP>0 (24)
b, U,
> 25
Ve e
where
[G+T+I7T VAN VM T T
R E3 —23 QV O O
vy = * * — 73 0 0
* * * —~21  FT
L * * * -1
(o o o T3 Ty
i 0 0 0O 0 0
Uy= 1|0 0 0 0 0
GT 6T GT 0 0
L0 0 0O 0 0
U3 = diag{01, 02, 03, 04, 05 }
1~ - 1 . -
o1 = 71—2pEP), o= ———(Zy—2ps EP
1 Tnip%( 1—2p1EP), 02 (Tl—Tm)pg( 2—2p2EP)
O3 = — (75— 2p3EP), 94 = —(p2S — 2p41
03 2?;)%( 3 P3 ), 04 2(04 P4 )
1
05 =35 (P2H —2ps1)
~ ro— T
Tn=lcP Dv o 0o DY DY D]
h=[G" o o o o o o
~ r - . T
Ts=lo APT 0 0o APT 0 o]
Ty=[0 1my o o ny 1y o
4 =|AP BY 0 0 BY BY B}
I=[N —N+M 0 M 0 0 0}
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o,
I\
I u(t)
M f—
O O

(b)

Fig. 2. Networked inverted pendulum. (a) Inverted pendulum in the
laboratory at The University of Adelaide. (b) Schematic of the inverted
pendulum.

(11 BY  ¢13 0 BY BY B 7
x  o® 0 0 0 0 0
* * 33 P34 0 0 0
o= % * * P44 0 0 0
* * * * ) 0 0
* * * * * 28 0
L * * * * * * —2H |

$11 = AP + PAT + Q1 + Q2 — (1/7)(Z1 + Z3)

P13 = (1/7m)(Z1 + Z3),

Pss = —Q1 — (1/7m), (Z1 + Z3) — [1/(7 — 7n)] (Z2 + Z3)
Paa = [1/(F = 7)) (Z2 + Zs),

Pas = —Qo — [1/(F — )] (Z2 + Z3).
Furthermore, a desired state feedback controller gain is

K=YP" (26)
Proof:  Similar to the method used in [4, Th. 2],
Theorem 2 can be proved.

IV. EXAMPLES

We use two examples to demonstrate the effectiveness of
the proposed method. The first example is a networked regular
system to show less conservatism of our results, whereas the
second example is a networked singular system to show the
effectiveness in reducing the network usage of the proposed
method.

Example 1: Consider an inverted pendulum on a cart con-
trolled over a network. The schematic of an inverted pendulum
is shown in Fig. 2, and the linearized plant model (1) is
characterized by the following parameters [3] and [37]:

0 1 0 0 0

B 0 0 -—mg/M 0 E
E=I A= 0 0 0 1{’ b= 0
0 0 g 0 7

where M = 10 kg is the cart mass, m = 1 kg is the mass of the
pendulum bob, [ = 3 m is the length of the pendulum arm, and
g = 10 m/s? is the gravitational acceleration.

Since the eigenvalues of A are {0, 0, 1.8257, —1.8257}, the
system is unstable without a controller. The state variables
x; (i=1,2,3,4) are the cart position, the cart velocity, the
pendulum bob angle, and the pendulum bob angular velocity.
The initial state vector is set as zo(t) = [1.5 —0.50.8 — 1]T.

We consider two cases with different parameters.

Case 1—H,, Control Without Quantizations:

C=G"=F"=[1 1 1 1, D=01, A=1=0
wlt) = {(an (sin(t)), i)ft:lei.[O, 10]
Case 2—H ., Control With Quantizations:
C=G"=F"=[1 1 1 1], D=0l

v {(S)gn o i)ftltlefs[o, .

and the parameters for the quantizer f(-) are assumed to be
a1 = a3z = 0.9and as = ay = 0.8, that is

0.0526 0 0 0
A | 0 0.1111 0 0
0 0 0.0526 0

0 0 0 0.1111

whereas the quantized density of g(+) is assumed to be «; =0.9,
that is, II = 0.0526.

In Case 1, under the conditions of A =0.01, 0 =0.1,
7=0.16, p1 = p2 = p3 = 0.46, and py = p5 = 0.23, the H
performance index in [3] is v = 200. In our scheme, according
to Theorem 2 and setting 7,,, = 0.01, the minimum of H
performance index ymin = 85. The correspondent feedback
gain K5 and the event-triggering matrix ®5 are

K, =[5.8955 16.2858  334.4121  186.8863]
4.2235  —4.6241 —18.8239  33.11503
o — | ~46241 125586 44.1248  —78.4754
57 1-18.8239  44.1248  170.8534  —302.9154
33.1150 —78.4754 —302.9154  537.1290

The state responses x(t) and release instants are shown in
Fig. 3 for this setting. The number of triggers is 86 times.

In Case 2, the effect of two quantizers is considered. We set
77'20.24, Tm 2001, P1L=pP2 = P3 2044, and P4 =pPs5 2021,
and Table I gives the different results for different triggered
parameter values of o. It shows that the larger the parameter
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Fig. 3. State response z(¢) and release instants under K2 and ®s.
(a) State response z(t). (b) Release instants.

TABLE |
Ymin, K3, AND ®g FOR DIFFERENT o VALUES

e 0 001 0.02 0.03
Ymin 65 68 72 75

K3 Kz1 Kzp Kzz Kzg

D Pe1 Pe2 Pz Deu

o, the larger the minimum value of ~. Other parameters and
values in Table I are

K1 =[4.9257 13.6401  283.3992  158.1448]
K3o = [5.3323  14.8106  302.2490  168.8918]
Ks3=[5.0048 14.5901  304.2014  169.9699)]
Kya=[4.7482  14.0801  301.9530  168.6491]
2.5368  —0.0000 —0.0000  0.0000 ]
B — 102 » [70-0000 25368 0.0000  —0.0000
6,1 = —0.0000  0.0000 2.5368  —0.0000
0.0000  —0.0000 —0.0000  2.5368 |
17.0000 —8.8000  —36.6000 63.7000 ]
., | —8:8000  35.9000 117.1000  —209.4000
627 1-36.6000 117.1000  522.9000 —927.5000
63.7000  —209.4000 —927.5000  1645.3000
[ 7.8968 —4.4337  —21.8893 38.1572
B .| 44337 16.3175 54.8386 —97.9276
63 71-21.8803  54.8386 253.9125  —449.5681
| 38.1572  —97.9276 —449.5681  796.1969
[ 4.7845 —2.7674  —14.0746 24.5370
o | 27674 10.0585 33.4759  —59.7880
64 71-14.0746  33.4759  155.5644 —275.2709
| 24.5370  —59.7880 —275.2709  487.2295

Fig. 4 shows the state responses x(¢) and release instants. Over
the simulation period, there are 82 triggers. We remark that if a
time-triggered scheme is used instead, the number of triggers
will be 3000 times. The result is a clear indication that our

) w

(=)

5 10 15 20 2 30
(b)

Fig. 4. State response z(t) and release instants under K3 4. (a) State
response z(t). (b) Release instants.

event-triggered approach is efficient in terms of utilizing the
network bandwidth resource.

Example 2: This example illustrates the quantized H
control on a singular NCS. Consider the singular NCS (1). The
associated parameters are

10 0 0 01 0 0 0
01 0 0 00 -1 0 0.1
E= 0 0 0 oy A= 0 0 0 1) B= 0
0 0 0 1 0 0 03 O 0.033
C=G"=F"=[1 1 1 1],D=01
wit) = sgn (sin(t)), ift € [0, 10]
0, others.

The parameters for the quantizer f(-) are taken as a; =a3=0.9
and ao = ag = 0.8. We set 7 = 0.24, 7,,, = 0.01, p; = p2 =
p3 = 0.44, ps = ps = 0.21, and ¢ = 0.02, and according to
Theorem 2, the minimum H, performance index v,in, =51.36.
The corresponding feedback gain and the event-triggered
matrix are

Ks = [2.5480 9.3207  237.6465 161.8992]
2.0941 —0.0477  —0.0049  —0.2502
Do — —0.0477 1.7747 —0.2384¢  —0.1521
87 1-0.0049  —0.2384 0.0713 —0.0431
—0.2502  —0.1521  —0.0431 0.1580

Furthermore, the initial state is zo(t) = [1.5 — 0.5 0.8 — 1]7,
and the state responses for x:(t) and the release instants are
shown in Fig. 5. We observe that the number of triggers is 627,
which is much lower than 15 000 triggers when using the time-
triggered scheme. The result again demonstrates the capability
of the event-triggered approach in reducing the network band-
width usage.

V. CONCLUSION

Aiming to reduce the load of network communication, the
problem of event-triggered H,, control for networked singular
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(@)

Fig. 5. State response z(t) and release instants under K. (a) State
response z(t). (b) Release instants.

systems with quantizations in both the measured states and
the generated control inputs has been studied in this paper.
By considering the characteristics of event-triggered schemes
and taking the quantizations into account, we presented a new
time-delay model. Based on this model, we derived a new
H, performance criterion that guarantees that the closed-loop
system of the singular networked system is regular, impulse
free, and stable with a prescribed H, performance index . The
codesign of the event-triggered condition and the state feedback
controller has also been derived based on a free-weighting-
matrix approach. Two examples have been given to show the
effectiveness of the theoretical results obtained.
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~ Network-Based Event-Triggered Control for
Singular Systems With Quantizations

Peng Shi, Fellow, IEEE, Huijiao Wang, and Cheng-Chew Lim, Senior Member, IEEE

Abstract—This paper investigates the problem of event-
triggered H,, control for a networked singular system
with both state and input subject to quantizations. First,
a discrete event-triggered scheme, which activates only at
each sampling instance, is presented. Next, two new sector
bound conditions of quantizers are proposed to provide
a more intuitive stability analysis and controller design.
Then, network conditions, quantizations, and the event-
triggered scheme are modeled as a time-delay system. With
this model, the criteria are derived for H,, performance
analysis, and codesigning methods are developed for the
event trigger and the quantized state feedback controller.
An inverted pendulum controlled through the network is
given to demonstrate the effectiveness and potential of the
new design techniques.

Index Terms—Event-triggered control, networked singu-
lar system, quantization, sector bound condition.

[. INTRODUCTION

VENT-TRIGGERED schemes, where the sampled signal

is transmitted according to an event-triggered condition
other than a fixed time interval, have received increasing atten-
tion due to its capacity for reducing communication load. Many
results have been reported on the problem of event-triggered
control or event-based control, such as [1]-[4] and the reference
therein. Among them are two types of event-triggered scheme:
one with a continuous event-triggered condition [1], [2], and
the other with is a discrete event-triggered condition [3], [4].
The continuous event trigger relies on additional hardware to
continuously supervise the system state to detect whether the
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current state exceeds a trigger threshold. Moreover, the con-
tinuous event-triggered scheme can only be effective under a
given controller, and the controller and the triggered parameters
cannot easily be codesigned. In the discrete event-triggered
scheme, the triggered condition is detected in discrete sampled
instants, and incorporating a codesign algorithm is readily
achievable for most practical systems.

In networked control systems (NCSs), the sharing of limited
network bandwidth often causes network-induced delays, and
data packet dropouts and disorder, which can deteriorate the
performance and even destabilize the systems [S]-[11]. In the
past decade, many methods have been developed to deal with
these network-induced challenging issues, for example, the fil-
tering, identification, and estimation problem in [12]-{15] and
the output feedback problem in [16]-[18]. However, most are
based on a time-triggered scheme, which can be inefficient in
terms of reducing the utilization of limited network bandwidth.

Furthermore, quantization problems inherent in sampled-
data systems have been investigated in recent years [19]-[24].
It was shown in [25] that the coarsest quantizer is logarithmic,
and the sector bound method is applicable for stabilizing lin-
ear single-input-single-output systems with state quantization.
The sector bound method in [25] was extended to multiple-
input-multiple-output systems in [26] and to guaranteed cost
control of continuous systems over networks with state and
input quantizations in [27]. In addition, the networked H
control for continuous-time linear systems with state quantiza-
tion was discussed in [28], and the problem of H, estimation
was studied in [29]. The reset quantized state control problem
was studied in [30] and [31]. Meanwhile, singular systems are
frequently encountered in electronic and economic systems,
aerospace, and chemical industries [32]-[36]. Hence, there will
be a profound meaning applying quantized control to singular
systems. Indeed, the problem of a networked H, filter for sin-
gular systems with state quantization was investigated in [6] by
the similar method used in [29]. However, when using the sector
bound method, the quantization errors have been regarded as
a class of uncertainties, which present difficulties in controller
design. To the best of the authors’ knowledge, although discrete
event-triggered control for linear systems has been discussed
in [3] and [4], there is no result reported on event-triggered
control for networked singular systems that are subject to quan-
tizations. This motivates the research presented in this paper.

The works most pertinent to this paper are [37] and [38].
In fact, this paper stems from the following motivations. First,
the quantized control under event-triggered networked systems
investigated in [37] is novel but only for regular systems. On

0278-0046 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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the other hand, the new sector bound approach used in [38] is
under a time-triggered scheme, which has its useful properties,
but may lead to the unnecessary usage of limited communica-
tion resources. Our aim here is to find a more effective and
efficient discrete event-triggered scheme, which only detects
the difference between the states sampled in discrete instants
regardless of what happens in between updates, and to codesign
the event-triggered H,, controller for networked singular sys-
tems taking into account both communication delays and signal
quantizations.

In this paper, the problem of event-trigged H,, control for
networked singular systems with both state and control input
quantizations is investigated. Our contributions are as follows:
1) A new sector bound approach, by which no transformation is
needed from system models to uncertain systems, is presented;
2) a discrete event-triggered scheme that only needs supervi-
sion of the system state in discrete instants is presented for
networked singular systems; and 3) a unified framework, which
takes network-induced delays, state and input quantizations,
and event triggers into account, is given for codesigning the
event detector and the state feedback controller.

The remainder of this paper is organized as follows.
Section II formulates the problem. H,, performance analysis
and quantized state feedback controller design are presented
in Section III. Illustrative examples are given in Section IV to
demonstrate the effectiveness of the presented method. Finally,
this paper is concluded in Section V.

Notations: Throughout this paper, the superscripts ‘7’ and
“—1” stand for the transpose of a matrix and the inverse of a
matrix; R™ denotes n-dimensional Euclidean space; R™*™ is
the set of all real matrices with n rows and m columns; P > 0
means that P is positive definite; [ is the identity matrix with
appropriate dimensions; the space of square-integrable vector
functions over [0, c0) is denoted by L2[0, 00), and for w(t) €

\/ Jo lw(t)[2dt; for
a symmetric matrix, * denotes the matrix entries implied by
symmetry.

L2]0, 00), its norm is given by ||w(t)]|2 =

[I. PROBLEM FORMULATION

A. Plant Description

The networked singular system, as shown in Fig. 1, com-
prises a continuous-time-controlled singular system, a set of
sensors to provide the state signals, an event detector, two
quantizers f(-) and g(-), a zero-order hold (ZOH), actuators,
and a data network.

The networked singular system is described as follows:

()= C3(0) + Dutt) + Fu(t) g

{E:sc(t) = Az(t) + Bu(t) + Gu(t)
where z(t) € R™ is the state vector, u(t) € R™ is the control
input vector, w(t) € RP? is the disturbance input, and z(t) € R¢?
is the controlled output of the plant. The matrices A, B, C, D,
E, F, and G are constant matrices with appropriate dimensions,
where E may be singular, and we assume that rank £ = r <

o(t) \ 20)

u(t) - l x(?)
ZOH

T

ca

Network

i i(r) 7,

Controller

Fig. 1. Block diagram of an event-triggered controlled singular system.

n. For the networked singular system shown in Fig. 1, the
following conditions are assumed in this paper.

1) The sensors are time triggered with a constant sampling
period h. The sampled x(kh) is transmitted to the event
detector and is transmitted (or released) at instant ¢ h by
the event detector, which is located between the sensors
and the controller. All state variables of the singular NCS
are measurable.

2) The signal in the network is transmitted with a single
packet, and the data packet loss does not occur during
transmission.

B. Event-Triggered Scheme

To reduce the utilization of the limited network bandwidth,
a discrete event-triggered scheme is proposed in this paper to
replace the conventional time-triggered mechanism [3], [4].
The event detector uses the following condition to decide
on whether the current signal should be transmitted to the
controller:

tk+1h:tkh+mlin{lh|eT(ikh)<I>e(ikh) > o’ (tph)Dx(tih)}
(2

where 0 < ¢ < 1 is a given scalar parameter, & > 0 is a posi-
tive matrix to be determined, and e(ixh) is the error between
the two states at the latest transmitted sampling instant and
the current sampling instant, i.e., e(ixh) = x(txh) — z(ixh),
where iph = tgh +1h,l € N.

When the data released at t;, by the event monitor are
transmitted to the controller, it incurs a communication delay
called the sensor-to-controller delay 7. () ). Similarly, the con-
troller forwarding the actuation signals at tj to the actuator
incurs another communication delay called the controller-to-
actuator delay 7., (tx). These two network-induced delays can
be lumped together as the time-varying delay 7, , and

Tt, = Tsc(tk,) + Tca(tk)7 0 S Tm S Tty S ™ (3)

where 7, and 7); denote the lower and upper delay bounds,
respectively.
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C. Event-Triggered Quantized H., Control Problem

The problem of event-triggered H,, control with quantiza-
tions to be addressed in this paper is to design a state feedback
controller, i.e.,

u(t) = Kx(t) 4

where K is the controller gain, such that:
1) the resultant closed-loop system with w(¢) = 0 is regular,
impulse free, and stable; and
2) under zero initial conditions, for any nonzero w(t) €
L2]0,00), the controlled output z(¢) satisfies ||z(¢)|]2 <
~||lw(t)||2, where ~ is a prescribed performance index.

Considering the behavior of the ZOH, the input signal is

u(t) = g (Kf (x(txh))),t € [teh + Ty, thprh + Topy ) -
)
Refer to Fig. 1. We now denote the quantized measurement of
x(tph) as Z(txh), the control signal as @(t), and the control
input signal as wu(t). Then, at the release instant tih, the
following equations can be deduced:

Z(tkh) = f (z(txh))
ﬂ(tkh‘FTsc(tk)) = K-i(tkh) (6)
u(th +7,) = g (@ (th + 75 (tr))) -

The quantizers f(-) = [fi(), fa(-),- ., fu()]7 and g(-) =

[91(:),92(-); -, gp(-)]T are assumed to be symmetric,
that is, f;j(—v)=—f;(v)(j =1,2,...,n) and gn,(—v) =
—gm(v)(m =1,2,...,p). Similar to [27], [29], and [37], the

quantizers considered in this paper are logarithmic static and

time invariant. For each f(-), the set of quantized levels is

described as in [26] and [37] by

U = {iufﬁ),u?) — atul) i = +1,42, .. } U {iugﬁ}
U{0},0<a; < Lul >0. (7)

The associated quantizer f;(-) is defined as

©) 1,

u;”’, ifﬁui <V U v >0
fiv) =140, ifv=0
—fi(=v), ifv<0

where 0; = (1 — a;)/(1 + ¢;), and «; is also called the quan-
tization density of quantizer f;(-). Similarly, the quantizer
g;(-)(7 =1,2,...,p) is of quantization densities p; and de-
note m; = (1 — p;)/(1 + p;). For a given logarithmic quantizer
£ (+), a sector bound condition was proposed as follows:

filv) = (I + Ag)v (®)

where Ay = diag{Ay,,Ay,,..., Ay, },and Ay, € [—0j,0/].
For the quantizer on the controller side, the same definition can
be applied. It follows that

9i(v) = (I + Ag)v ©)

where Ay = diag{Ay,, Ay, ..., Ay, }, and Ay € [—m;, 7j].
Combining with (6)—(9), we have

u(tgh+ 1) = I+ Ag)K(I + Ap)x(tih)

t € [teh + T, thprh + 7oy, ) - (10)

Then, the system can be transferred to linear systems with
norm-bounded uncertainty, which was employed in [29] and
[37]. However, due to the uncertainties on both sides of con-
troller gain matrix K, the controller is difficult to design.

In the following, two new sector bound conditions of quan-
tizers are proposed. We first denote

A =diag{o1,09,...,0n}, Ao=T—-AN AN =1+A

II = diag{m,WQ,...,wp}, Iy =1-1L1I; =1 + 1L
Then, for any diagonal matrices .S > 0 and H > 0, the follow-
ing inequalities hold:

[f (@(teh)) = Moz (txh)]" S [f (@(teh)) = Mz (tih)] <O (1)

lg (K f ((teh))) = oK f (x(txh))]" H

X g (Kf (z(tih))) — ILK f (x(trh))] < 0. (12)

Remark 1: 1t should be mentioned that the sector bound
conditions are much simpler and more applicable. Unlike some
existing works (for example, [27], [29], and [37]), the difficulty
associated with stability analysis and H, controller design can
be effectively overcome by using these conditions.

Substituting (5) into (1) yields the following closed-loop
system:

{E:sc(t) = Aw(t) + By (K[ (a(tuh)) + Gu(t)

2(t) = Cx(t) + Dg (K f (x(txh))) + Fw(t).

D. Time-Delay Modeling

Next, using the same technique as in [37], we convert the
event-triggered NCSs (13) into a new time-delay system, which
can be analyzed by the well-developed theory on time-delay
systems. First, suppose there exists a finite positive integer
m such that txy1 = tx +m + 1. Then, the interval [t;h +
Ttrstht1h + Ty, ) can be decomposed into the following
subintervals:

(teh + 7o teirh + 7., ) = [ T (14)
=0

where T) = [igzh + 74, ,ikh + h + T, 1), ikh = trh + lh,l =
0,1,...,m. Moreover, x(txh) and x(tih +lh) satisfy the
event-triggered sampling scheme (2).

For convenience, we denote

T(t) =t —ixh (15)
where ¢t € T}, and we have
O<7m <7{t) <TM +h=T. (16)
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Based on the above analysis, the closed-loop system (13) can
be rewritten as

Ei(t)=Az(t)+Bg (K f (x (t—7(t))+e(irh)))+Gw(t)
2(t) = Cx(t) + Dg (K f (xz (t — 7(¢t)) + e(ixh)))
+Fw(t),t € [teh + o, tip1h + To )

z(t) = ¢(t),t € [-7,0)
an

where ¢(t) is the initial function of z(t).

Remark 2: The problem formulated above differs from
some existing works concerned with quantized feedback con-
trol, for example, [6] and [38], in which only the effect of
quantization was considered. In this work, we consider not
only the effect of quantization but also the event-triggered
scheme, which is used to save the limited communication
resources, for networked singular systems. Moreover, the event-
triggered condition (2) only supervises the difference be-
tween the states sampled in discrete instants, and it needs
no extra hardware to continuously monitor the state of the
plant.

We end this section by recalling the following lemma, which
will be used in the sequel.

Lemma 1: [39] For any vectors X,Y € R™ and positive-
definite matrix @ € R™*", the following inequality holds:

2XTy < XTQX +YTQ Y.

[ll. MAIN RESULTS

Here, we consider the quantized H., control of the net-
worked singular system (17) under the event-triggered scheme
based on (2). We first give sufficient conditions for the closed-
loop system (17) to be regular, impulse free, and stable with an
H, performance index ~. Then, we propose a design method
for the quantized state feedback controller.

A. H, Performance Analysis

Based on the new sector bound conditions (11) and (12), we
present the following H, performance analysis result.

Theorem 1: Given scalars v >0, 0< o < 1, 7y, 7, and
the controller gain matrix K, the closed-loop system (17) is
regular, impulse free, and stable with H., performance index
~ under the event-triggering scheme (2), if there exist matri-
es Q1 =0T >0,0:2=QY>0,2, =2 >0(i=1,2,3),
® > 0,P, N, M, and any diagonal matrices S > 0 and H > 0
with appropriate dimensions such that

ETP=PTE>0 (18)
[‘f} gj <0 (19)

where
[0+ T +IT  VZN VTM
\Ifl = * —Zg 0
L ES * —Zg
T, T, SZ 2  FT  GTZ
Up=1|0 0 0|, U3=] =« I 0
0o 0 o0 « —
T
T,=[C 0 0 0 0 0 D]
T,=[G" 0o 0 0 o 0o o
Z=[A 0 0o o o o B]"
Z = TTYLZ1 + (77_ - TnL)ZQ + 277_23
=[N -N+M 0 M 0 0 OE
(11 0 w13 0 0 0 PTB
* P22 0 0 w25 28 0
* * Y33 P34 0 0 0
o= * * * V44 0 0 0
* * * * ©55 28 0
* * * * P66 P67
| * * * * * —2H_

11 =P A+ ATP+ Q14 Q2 — (1/7n)E"(Z1 + Z3)E
p15 = (1/mm)E" (21 + Z3)E

@20 = 0® — 21 S Ao, a5 = —2A1SAg

¢33 =—Q1— [1/T;m + 1/(F — )| ET (Z1 + Z3)E

p3a = [1/(T — ;)] E" (Z2 + Z3)E

pa1 = —Q2 — [1/(1 = )| ET(Z2 + Z3)E

—® —2A,SAg

hS)
o
&

Il

vee = —25 —2KTIHIL K, pg7 = 2KTH.

Proof: We first show that the networked singular system
(17) is regular and impulse free. Si~nce rapk E = r <n, there
must exist two invertible matrices G' and H € R™*"™ such that

A Aq2
1,21 Aq 20

=GR = [Ir 0] GAT = {
0 0

Similar to the method used in [35], we know that A; o5 is
nonsingular, which implies that the pair of (F, A) is regular and
impulse free, it follows that the networked singular system (17)
is regular and impulse free. In the following, we will show that
the networked singular system (17) is stable under the event-
triggering scheme (2).

Consider when the system is free from external disturbances,
with w(t) = 0. We define the following functional:

V(t) = Vi(t) + Va(t) + V3(t) (20)
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where
Vi(t) =27 (t)ET Px(t)

t
Va(t) = / xT(s)le(s)ds—i—/xT(s)ng(s)ds
0
Vs(t) = @7 (s)ET Z, Ei(s)dfds
[
/ / (s)ET ZyEi(s)dfds
-7 t+9
+2 (s)ET Z3Ei(s)dfds.
e

Taking the derivative of V(t) for t € [txh+ 71, ,tp+1h +
Tt ), we introduce the free weighting matrices, i.e.,

t
01 = 26T(t)N| Ex(t)— Ex (t — 7(t)) —

t—7(t)

Ei(s)ds|=0

0o = 26T M| Balt—7(1))— Ba(t—7)— / Fi(s)ds| =0

2

where ¢7'(t) = [nT(t) €T

n"(t)=[z"(t) 2" (t—7(1) at(t—7)]

and N and M are matrices with appropriate dimensions. Ac-
cording to Lemma 1 and combining the sector bound conditions
(11) and (12) with the event-triggered scheme (2), we have

V(1) < €T (H)EE(®) (22)
where 2=+ THTT+7NZINT+ 7 M Z ' MT + o Z77,
with Z = 7,,Z1 + (T — T ) Z2 + 27 Z3. According to Schur
complement, from (19), we have

(Zkh)] , with

2T (t — )

o+T+IT VN VM A7
* —Zg 0 0
* * —Z3 0 <0 (23)
* * * A

which means V (t) < 0. Therefore, system (17) is stable.

Now, we address the H,, performance of the networked
singular system (17). Consider when the system is subject to
external disturbances, with w(t) # 0. We use the following

performance index:
o0

o0 = [ 00 22" Ouv] .
0

Under zero initial conditions, we have
o0

o0 = [ [0 = PuT Oule) +

0

V(t)} dt — V(o)

T E+T+TF Ty
Sg (t)[ * —’)/2I+FTF+GTZG ()

with ¢T'(t) = [¢T(t) wT (t)]. By Schur complement, from (19),
we have
E+T+TF Ty

* I+ FTF+GTzG

which means @(t) < 0. That is, under zero initial conditions,
for any nonzero w(t) € £3]0, 00), the control output z(t) satis-
fies ||z(t)]|2 < 7|lw(t)||2. This completes the proof. [ |

B. Quantized State Feedback Controller Design

Based on Theorem 1, we present the codesign algorithm for
the networked singular system (17) as follows.

Theorem 2: For given scalars v > 0,0 < o < 1, 7y, T, and
pi (i=1,2,...,5), the singular NCS (17) is regular, impulse
free, and stable with an H,, performance index  under the
event-triggering scheme (2), if there exist matrices Q= Ql
0,Q2=QF >0,Z; _ZT>0(z_1,2,3) ®>0,N,M,Y,
nonsmgularP and any diagonal matrices S > 0,>0,H>0
with appropriate dimensions such that

PTET =EP>0 (24)
b, U,
- 2
mE o
where
[G+T+I7 VAN VM Ty T
B E3 —Z3 QV O 0
‘I’l - * ES —Zg 0 0
* * * —'yQI FT
L * * * * —I
(o o o T3 Ty
) 0 0 0 0 0
Ty= |0 0 0O 0 0
GT 6T GT 0 0
0 0 0O 0 0
U3 = dlag{@h 02,03, 04, 05}
o= Z1—2p0EP), 62=— Zo—2po EP
1 ”ip%( 1—2p1EP), 02 (Tl—Tm)pg( 2—2p2EP)
03 = Zs — 2p3EP), o4 = =(p2S — 2p4l
03 27__/)2( 3 P3 ), 04 2(,04 pal)
1
05 =35 (P3H —2p51)
~ ro T
Tn=|lcP Dv o 0o DY DY D]
Th=[G" o o o o o o
~ r -~ ~ T
Ti=lo APT 0 0o APT 0 o}
T,=0 my o o 1y vy o
— roo— T
7 =|AP BY 0 0 BY BY B}
T=[N _—N+4M 0 M 0 0 0}
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u(r)

(b)

Fig. 2. Networked inverted pendulum. (a) Inverted pendulum in the
laboratory at The University of Adelaide. (b) Schematic of the inverted
pendulum.

_S’Ell BY Y13 0 BY BY B T
x  o® 0 0 0 0 0
* * 33 P34 0 0 0
o= * * * D44 0 0 0
* * * * —d 0 0
* * * * * —28 0
L * * * * * * —2H |

$11= AP + PA” + Q1 + Q2 — (1/7)(Z1 + Z3)

G13 = (1/mn)(Z1 + Z3),

Pss = —Q1— (1/7m), (Z1 + Z3) — [1/(7 — 7)] (Z2 + Z3)
Baa =1/ (7 — )] (Z2 + Zs),

Paa = —Qz — [1/(7 = )] (Z2 + Z3).
Furthermore, a desired state feedback controller gain is

K=YP" (26)
Proof:  Similar to the method used in [4, Th. 2],
Theorem 2 can be proved.

IV. EXAMPLES

We use two examples to demonstrate the effectiveness of
the proposed method. The first example is a networked regular
system to show less conservatism of our results, whereas the
second example is a networked singular system to show the
effectiveness in reducing the network usage of the proposed
method.

Example 1: Consider an inverted pendulum on a cart con-
trolled over a network. The schematic of an inverted pendulum
is shown in Fig. 2, and the linearized plant model (1) is
characterized by the following parameters [3] and [37]:

0 1 0 0 0
B |0 0 —-mg/M 0 e
E=I A= 0 0 0 110 B=10
1

0 0 g 0 o

where M = 10 kg is the cart mass, m = 1 kg is the mass of the
pendulum bob, [ = 3 m is the length of the pendulum arm, and
g = 10 m/s? is the gravitational acceleration.

Since the eigenvalues of A are {0,0,1.8257,—1.8257}, the
system is unstable without a controller. The state variables
x; (1=1,2,3,4) are the cart position, the cart velocity, the
pendulum bob angle, and the pendulum bob angular velocity.
The initial state vector is set as zo(t) = [1.5 — 0.50.8 — 1]T.

We consider two cases with different parameters.

Case 1—H,, Control Without Quantizations:

C=GT"=FT'=[1 1 1 1, D=01, A=1I=0
wlt) = {(bfn (sin(t)), ioft}tlei.[o, 10]
Case 2—H,, Control With Quantizations:
C=G"=r"=1 1 1 1], D=0l

v = {(S)gn . i)ftltlefs[07 "

and the parameters for the quantizer f(-) are assumed to be
a1 = a3z =0.9and as = a4 = 0.8, that is

0.0526 0 0 0
A 0 0.1111 0 0
0 0 0.0526 0

0 0 0 0.1111

whereas the quantized density of g(+) is assumed to be oy =0.9,
that is, IT = 0.0526.

In Case 1, under the conditions of A =0.01, 0 = 0.1,
7=0.16, p1 = p2 = p3 = 0.46, and py = p5 = 0.23, the H
performance index in [3] is v = 200. In our scheme, according
to Theorem 2 and setting 7,,, = 0.01, the minimum of H.
performance index vy, = 85. The correspondent feedback
gain K and the event-triggering matrix ®5 are

Ky = [5.8955 16.2858  334.4121 186.8863}
4.2235 —4.6241  —18.8239  33.11503
De — —4.6241 12.5586 44.1248 —78.4754
> 71 -18.8239  44.1248 170.8534  —302.9154
33.1150 —78.4754 —302.9154 537.1290

The state responses z(t) and release instants are shown in
Fig. 3 for this setting. The number of triggers is 86 times.

In Case 2, the effect of two quantizers is considered. We set
77':0.24, Tm :001, P1L=pP2 = P3 :044, and P4=pP5 2021,
and Table I gives the different results for different triggered
parameter values of o. It shows that the larger the parameter
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55 0 B 2 %
@) )

Fig. 3. State response z(t) and release instants under Ky and ®s.
(a) State response z(t). (b) Release instants.

TABLE |
Ymins K3, AND $g FOR DIFFERENT o VALUES

o 0 001 002 0.03
i 65 68 72 75

Ky K31 Ks» K3z Kiza

b Ps1 Pe2 Pz Do

o, the larger the minimum value of ~. Other parameters and
values in Table I are

Ks1=[4.9257 13.6401  283.3992  158.1448]
Kso=[5.3323  14.8106  302.2490  168.8918]
K33 =[5.0948 14.5901  304.2014  169.9699)]
K4 =[4.7482  14.0801  301.9530  168.6491]
2.5368  —0.0000 —0.0000  0.0000 ]
B | — 102 x| 700000 2.5368 0.0000  —0.0000
61— —0.0000  0.0000 2.5368  —0.0000
0.0000  —0.0000 —0.0000  2.5368 |
17.0000 —8.8000  —36.6000  63.7000 ]
o, — | ~8:8000  35.9000  117.1000 —209.4000
627 1-36.6000 117.1000  522.9000 —927.5000
63.7000  —209.4000 —927.5000  1645.3000)
[ 7.8968 —4.4337  —21.8893 38.1572
b .| ~44337  16.3175 54.8386 —97.9276
63 71-21.8803  54.8386 253.9125  —449.5681
| 38.1572  —97.9276 —449.5681  796.1969
[ 4.7845 —2.7674  —14.0746  24.5370
o . | ~27674  10.0585 33.4759  —59.7880
6471140746  33.4759  155.5644 —275.2709
| 24.5370  —59.7880 —275.2709  487.2295

Fig. 4 shows the state responses x(¢) and release instants. Over
the simulation period, there are 82 triggers. We remark that if a
time-triggered scheme is used instead, the number of triggers
will be 3000 times. The result is a clear indication that our

4 14
I
3 <:\“g 12
‘ 1
08
o bebebidedey 06
| ‘ ' 0 [ ] [
iR e e g | I
| —2
: : — X 02
|f | x4
SJ

I S AR N

0 5 10 15
@ (b)

Fig. 4. State response z(t) and release instants under K3 4. (a) State
response z(t). (b) Release instants.

event-triggered approach is efficient in terms of utilizing the
network bandwidth resource.

Example 2: This example illustrates the quantized H
control on a singular NCS. Consider the singular NCS (1). The
associated parameters are

1 00 0 01 0 0 0

0100 00 -1 0 0.1
E=lo 0 0 of o 0 o 1|87 0

00 0 1 0 0 03 0 0.033
c=G"=rF"=[1 1 1 1],D=01

w(t) = {sgn (sin(t)), ift < [0,10]
0, others.

The parameters for the quantizer f(-) are taken as a; =3 =0.9
and ap = ay = 0.8. We set 7 = 0.24, 7,,, = 0.01, p1 = ps =
p3 = 0.44, ps = ps = 0.21, and ¢ = 0.02, and according to
Theorem 2, the minimum H, performance index i, =51.36.
The corresponding feedback gain and the event-triggered
matrix are

Ks = [2.5480 9.3207  237.6465 161.8992]
2.0941 —0.0477  —0.0049 —0.2502
Pe — —0.0477 17747 —0.2384 —0.1521
87 1-0.0049 —0.2384 0.0713 —0.0431
—0.2502 —0.1521  —0.0431 0.1580

Furthermore, the initial state is zo(t) = [1.5 — 0.5 0.8 — 1]7,
and the state responses for x(t) and the release instants are
shown in Fig. 5. We observe that the number of triggers is 627,
which is much lower than 15 000 triggers when using the time-
triggered scheme. The result again demonstrates the capability
of the event-triggered approach in reducing the network band-
width usage.

V. CONCLUSION

Aiming to reduce the load of network communication, the
problem of event-triggered H, control for networked singular
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Fig. 5. State response z(t) and release instants under K. (a) State
response z(t). (b) Release instants.

systems with quantizations in both the measured states and
the generated control inputs has been studied in this paper.
By considering the characteristics of event-triggered schemes
and taking the quantizations into account, we presented a new
time-delay model. Based on this model, we derived a new
H, performance criterion that guarantees that the closed-loop
system of the singular networked system is regular, impulse
free, and stable with a prescribed H, performance index . The
codesign of the event-triggered condition and the state feedback
controller has also been derived based on a free-weighting-
matrix approach. Two examples have been given to show the
effectiveness of the theoretical results obtained.
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