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Abstract—This paper presents a novel predictive model 

reference adaptive system (MRAS) speed estimator for sensorless 

induction motor drives applications. The proposed estimator is 

based on the finite control set-model predictive control principle. 

The rotor position is calculated using a search-based 

optimization algorithm which ensures a minimum speed tuning 

error signal at each sampling period. This eliminates the need for 

a PI controller which is conventionally employed in the adaption 

mechanism of MRAS estimators. Extensive experimental tests 

have been carried out to evaluate the performance of the 

proposed estimator using a 2.2kW induction motor with a field 

oriented control (FOC) scheme employed as the motor control 

strategy. Experimental results show improved performance of 

the MRAS scheme in both open and closed-loop sensorless modes 

of operation at low speeds and with different loading conditions 

including regeneration. The proposed scheme also improves the 

system robustness against motor parameter variations and 

increases the maximum bandwidth of the speed loop controller.  

 
Index Terms—Model reference adaptive control, predictive 

control, induction motor drive, vector control, position 

estimation, speed estimation. 

I. INTRODUCTION 

OWADAYS, Field Oriented Control (FOC) of Induction 

Motors (IM) has established an increasing popularity in a 

wide range of applications and acceptance in the electric 

drives markets worldwide [1]. Over the last two decades, 

significant efforts have been made in AC drives to eliminate 

the speed sensor mounted on the machine shaft. This means 

that the machine speed is estimated rather than measured and 

this technology is referred to as sensorless  control [2]. 

Although sensorless control has been successfully applied in 

medium and high speed operating regions, operation at very 

low speeds still remains a significant problem for IM drives 

[3]. 

In sensorless IM drives, a number of techniques have been 

introduced for speed estimation that vary from open loop to 

artificial intelligence-based estimators [2]. Among these 
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techniques, Model Reference Adaptive Systems-based 

(MRAS) estimators have gained  great popularity because of 

their relative simplicity and ease of application [4]. Rotor flux 

based MRAS has been extensively studied and it has been 

demonstrated that these estimators can have an excellent 

performance down to 5% of rated speed [2, 5, 6]. However, 

rotor flux based MRAS schemes suffer from many problems 

which become dominant at low speed including sensitivity to 

machine parameter variation, pure integration effects, inverter 

nonlinearity, and the quality of stator voltage and current 

acquisition [2, 4, 6-9]. 

Generally, a fixed-gain PI controller is employed in the 

adaptation mechanism of MRAS schemes to produce the 

estimated position or speed. This is because of its simple 

structure and ability to generate a satisfactory performance 

over a wide range of speeds. However, at low speeds, inverter 

nonlinearities and machine parameter variation become more 

dominant. As a result, the fixed gain PI may not be able to 

maintain the system stability or at least to provide the required 

performance. Moreover, tuning of these PI gains is not an easy 

task and little effort has been devoted in the literature to 

address this problem. Various solutions to offer alternative 

approaches to the design of the adaptation mechanism for 

MRAS estimators have been discussed in the literature. These 

solutions have focused on replacing the conventional fixed-

gain PI adaption mechanism with more advanced algorithms 

[10-12]. Replacing the PI adaption mechanism by a Sliding 

Mode (SM) algorithm was suggested in [10, 12]. Although 

this scheme is shown to improve the estimator dynamic 

response, it causes a considerable amount of chattering in the 

estimated speed signal, and a low pass filter is needed to 

smooth out the estimated rotor speed. In [11], another solution 

was proposed where the PI controller is replaced by a fuzzy 

logic (FL) based adaption mechanism. This scheme shows 

improvement in the estimator dynamic response, but the 

computational complexity of the FL controller is the main 

drawback of this scheme.  

Over the last few years, interest has grown in the use of 

predictive control techniques with sensorless applications. In 

[13-16] predictive control is applied to permanent magnet 

sensorless motor drives, and in [17] a predictive torque control 

with sliding mode feedback is used with a sensorless IM drive. 

A speed sensorless control system for an IM with a predictive 

current controller has been proposed in [18], where it has been 

claimed that this combination can improve the system 

robustness against motor parameter variations. A new speed 

and rotor flux linear multivariable generalized predictive 

control has been introduced in [19] where both the flux and 

speed observer are included in the proposed scheme. In [20] 

an encoderless predictive torque control is proposed with a 
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rotor flux model reference adaptive system estimator to reduce 

the system cost. A prediction error method-based self-

commissioning scheme for an IM sensorless drive is proposed 

in [21] and according to the authors; this scheme lowers the 

influence of measurement noise notably. However, in all the 

aforementioned publications, the prediction principle was 

applied on the controller side of the drive, and none of the 

cases considered introducing the prediction principle into the 

design of the speed estimator itself.  

Generally, Model Predictive Controllers (MPC) can be 

classified into classical MPC and Finite Control Set-MPC 

(FCS-MPC) [22]. In classical MPC, the controller generates a 

continuous voltage vector and a modulator is used to apply 

this voltage to the inverter, whereas in FCS-MPC the 

controller directly produces a switching state of the inverter 

[23]. FCS-MPC has increasingly gained popularity and has 

been applied in many different applications because of its 

simplicity, compact design and flexibility to include any 

performance specifications [24-31]. For example in [31], an 

FSC-MPC was applied to drive an IM fed by a matrix 

converter to increase the system efficiency, and in [30] current 

control of a five-phase IM is applied based on the FCS-MPC 

control principle. 

In this paper a novel MRAS speed estimator for sensorless 

vector control IM drives is introduced to solve the problems 

associated with the adaption mechanism design. The FCS-

MPC control concept is incorporated in the estimator design. 

In this scheme, the adaptation mechanism is based on solving 

an optimization problem with the objective of minimizing the 

speed tuning error signal of the MRAS estimator over a finite 

number of rotor position angles. A rotor position search 

algorithm is developed to ensure that the optimal position is 

obtained at each sampling time. The computational 

complexity of the proposed scheme is evaluated and a 

modified method is employed to reduce its execution time to 

make it suitable for practical implementation. The 

performance of the proposed predictive estimator is 

experimentally tested using a 2.2kW IM drive which employs 

FOC as the motor control strategy. A detailed comparison 

between the proposed scheme and the classical rotor flux 

MRAS estimator has been carried out. Results show the 

superior performance of the proposed scheme at different low 

speed operating conditions including regeneration and 

improved robustness against motor parameter variations.  

 

II. CLASSICAL ROTOR FLUX MRAS ESTIMATOR 

The classical rotor flux based MRAS estimator shown in 

Fig.1 was first introduced by Schauder [6]. It mainly consists 

of two mathematical models, the reference and adaptive 

models, and an adaptation mechanism to produce the 

estimated speed. This scheme is one of the most common rotor 

speed estimators and many attempts to improve its 

performance can be found in the literature. 

The reference model represents the stator voltage equation 

in the stator reference frame which can be written as: 
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where vsα, vsβ are the stator voltage components, isα, isβ are the 

stator current components, ψsα, ψsβ are the reference rotor flux 

linkage components all expressed in the stationary reference 

frame. Lm is the machine mutual inductance, Rs is the stator 

resistance, Ls is the stator self-inductance, Lr is the rotor self-

inductance and σ is the leakage coefficient given by:

)LL/(L1 rs
2
m . 

The adaptive model represents the rotor voltage equation of 

the IM in the stator reference frame which can be written as: 
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where Tr is the rotor time constant, r̂  is the estimated rotor 

speed,  rˆ  and  rˆ  the adaptive rotor flux linkage 

components in stationary reference frame. 
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Fig.1 Rotor Flux MRAS structure 
The cross coupling presence of the speed dependent 

components in the adaptive model (2) can lead to an instability 

issue [32]. Therefore it is common for the rotor flux equation 

represented in the rotor reference frame to be used: 
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where sdsd i,i are the stator current components, rqrd
ˆ,ˆ  are 

the rotor flux components all expressed in the rotor reference 

frame. The implementation of the rotor frame based flux 

model is shown in Fig.2. 

The adaption mechanism design is based mainly on the 

hyperstability theory [2], and as a result of applying this 

theory, the speed tuning error signal  can be written as: 

  rrrr
ˆˆ                                  (4) 

A PI controller is used to minimize this error, which in turn 

generates the estimated speed at its output.  

 )
s

K
K(ˆ i

pr                                           (5) 
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Fig.2 The adaptive model expressed in the rotor reference frame 

III. THE PROPOSED PREDICTIVE MRAS ESTIMATOR  

The principle of the proposed predictive MRAS estimator is 

derived from the Finite Control Set-Model Predictive 

Controllers (FCS-MPC) concept. In contrast to the 

conventional model predictive controllers, FCS considers the 

discrete nature of the inverter in solving the control 

optimization problem. The cost function is evaluated at each 

single switching state of the inverter, and the state with the 

minimum cost function is chosen to be applied in the next 

sampling instant [33]. This method therefore has the 

advantages of both simplicity and design flexibility making it 

attractive to electric drives applications [23].  
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Fig.3 Block diagram of the proposed MRAS estimator  

 

The FCS-MPC approach is applied in this paper to design 

the adaptation mechanism in MRAS speed estimators. An 

optimization problem is formulated to find the rotor position 

in order to minimize a cost function, which is the speed tuning 

signal ɛ (4) in the case of the MRAS estimator.  

In contrast to the FCS-MPC, the rotor position, which 

varies continuously between 0 and 360º, does not have the 

same discrete nature as the inverter output. Therefore a search 

method is to be applied to discretize the rotor position into a 

finite number of positions to allow evaluating the cost function 

at each of these discrete positions. This search is performed 

within an iteration based process. The block diagram of the 

proposed predictive MRAS estimator is shown in Fig.3. The 

flow chart of the proposed search algorithm is shown in Fig.4. 

The algorithm starts by calculating the reference model 

outputs ψrα, ψrβ from the stator voltages and currents. The 

discretization of the rotor position begins by starting from an 

initial base angle θbase,0 and then displacing this angle by a 

displacement (Δθi) which is calculated as follow:  
io

i 245                                               (6) 

where i is the order of the current iteration. 

The displacement of the base angle θbase within each iteration 

is carried out to get eight discrete rotor positions as follow: 

)4j.(ibasej,i                                 (7) 

where j is the order of the displacement. 

 

 
Fig.4 Flowchart of the proposed rotor position search algorithm 
 

In the initial iteration (i=0), the base angle θbase is chosen to 

be 0
º 
with Δθ=45º according to (6). Applying (7) will produce 

eight discrete positions: 0º, 45º, 90º, 135º, 180º, -45º, -90º, -

135º. Each of these discrete positions (θi,j) is used to calculate 

the adaptive model outputs corresponding to each individual 

position (
j,irˆ  and 

j,irˆ  ). Consequently the cost function, 

ɛi,j  in (4), is calculated for each position as follows: 

 

  rrrrj,i j,ij,i
ˆˆ                                (8) 

 This leads to eight different cost functions corresponding to 

each of these angles. The angle corresponding to the minimum 

cost function of the eight positions is chosen as the base or 

starting point θbase, 1 for the next iteration.  
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At the next iteration (i=1), the angle displacement is 

decreased to Δθ1=45º×2
-1

=22.5º, which increases the search 

accuracy by a factor of 2. The search then starts again from the 

new base angle θbase,1 to find the angle that generates the 

minimum cost function in the second iteration. Fig.5 shows 

the initial and first steps of the search algorithm. 

After each iteration, the search algorithm gets closer to the 

optimal solution, and by the end of the 8
th

 iteration (i=7 and 

Δθ7=0.35º), the optimal rotor position can be found with 0.35º 

accuracy. Therefore, by running this algorithm, it can be 

assured that the optimal rotor position, which produces the 

minimum cost function throughout the search space, is 

selected as the output of the estimator. 

0º 

45º 

90º 

135º 

180º 

-45º 

-90º 

-135º 

90º 

67.5º 

45º 

22.5º 

112.5º 

135º 

157.5º 180º 

θbase, 0

θbase, 1 θbase, 1

θbase, 2

                              (a)                                                             (b) 
Fig.5 Schematic representation of the first two steps of the proposed search 

algorithm. (a) Initial iteration. (b) First iteration. 

 

As described previously, the output of the proposed scheme 

is the rotor position, and to extract the speed signal the 

following procedure is applied: 

The change in rotor position over the last sampling period is 

calculated from: 

 

1)-(k -(k) = rotorrotor                           (9) 

 

where k is the current time sample. 

This change is recorded over 200 samples and the average 

value is obtained by applying: 

 






200
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nave
200

1
                                 (10) 

 

The speed is finally found by dividing the average by the 

sampling period, the conversion to rad/sec is considered here 

also. 

 

s

average

T60

2
N


                                    (11) 

 

where N is the rotor speed in rpm. 

A drawback of the proposed method is the high 

computational effort required to run the search algorithm eight 

times in each sampling period. However, the rotor position, as 

a mechanical variable, changes relatively slowly and hence it 

does not vary significantly between two time samples. 

Therefore, instead of initiating the search algorithm in each 

sampling period with zero angle (θbase,0=0), it can be 

initialized by the output of the algorithm in the last sampling 

instant   θbase,0=θrotor(k-1). As a result, the number of the 

iterations required by the search algorithm to find the optimal 

solution can be significantly reduced as the search is 

performed only around the previous rotor position. This 

simplified scheme is referred to as “modified-predictive”.  

 Experimentally, it was found that only the last iteration 

loop (i=7) is required to find the rotor position using the 

modified-predictive scheme without affecting the estimation 

accuracy. This significantly reduces the execution time of the 

proposed scheme from 103 μs to 39 μs. For comparison 

purpose, Table I shows the execution times for the two 

versions of the proposed predictive scheme in addition to the 

PI-based classical MRAS observer. It should be mentioned 

here that these times are specific for the TMS320F28335 

floating point microcontroller used in the experiments and it 

can be further reduced if a faster microcontroller is applied. 

From now on the term “predictive estimator” will be used to 

refer to the modified scheme with the reduced execution time. 

  

 
 

The proposed predictive scheme applies an iterative search 

method to find the rotor position. This is fundamentally 

different from other MRAS estimators available in the 

literature, such as those using PI, sliding mode and fuzzy logic 

adaptation mechanisms. The proposed method does not 

require any gain tuning like the aforementioned schemes 

which make the design of the estimator much simpler and 

ensure the optimum operation of the estimator at all operating 

speeds. Application of the proposed scheme always ensures 

that the speed tuning signal is driven to almost zero in each 

sampling period. The scheme is capable of achieving 

minimum error in one sampling time following any 

disturbance. This results in the proposed scheme having a 

significant advantage over other approaches.    

IV. THE EXPERIMENTAL SYSTEM 

The experimental platform used to validate the proposed 

estimator consists of a 2.2kW, 380V, star-connected, 4-pole, 

three-phase squirrel cage, IM. The motor is loaded by a 

4.19kW, 380V, 8-pole, 2000RPM permanent magnet 

synchronous machine driven by a Unidrive SP controller 

manufactured by Control Techniques. The load machine 

allows independent control of the load torque. 

The AC drive consists of a three-phase diode bridge 

rectifier, and an IGBT-based, three-phase bridge inverter. 

To control the AC drive, a TMS320F28335 floating-point 

microcontroller is used. The control algorithm, based on FOC 

scheme, is written in C-code and is developed using Code 

Composer Studio CCS5.5 software. The inverter switching 

frequency is 10 kHz with a deadtime period of 1 μs and the 

FOC algorithm is executed with the same sampling frequency. 

 

TABLE I 
EXECUTION TIME OF THE DIFFERENT ESTIMATORS 

Symbol EXECUTION TIME 

PI 14 μs 

Predictive 103 μs 

Modified Predictive 39 μs 
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Fig.6 The experimental platform 

   

A 16384 pulses/revolution R1120 Gurley incremental 

optical encoder is used to measure the actual motor speed, and 

three CAS-15NP hall-effect current sensors are used to 

measure the motor phase currents. In addition, an LV25-P 

voltage sensor is applied to monitor the DC-link voltage. 

In order to practically implement both MRAS schemes, the 

integrator in the reference model was replaced by a low-pass 

filter with a cut-off frequency of 2Hz to minimise drift and 

initial condition problems associated with pure integration. As 

the reference voltage signals available in the controller unit are 

used in the reference model (1), a compensation for the 

inverter nonlinearity [34]  and a dead band compensator,[35], 

are implemented. 

V. EXPERIMENTAL RESULTS 

To evaluate the comparative performance of the proposed 

predictive MRAS estimator and the classical rotor flux-based 

MRAS scheme, extensive tests, in both open-loop estimation 

and sensorless operation modes, are carried out using FOC 

scheme as the IM control strategy.  

 

A. Open-loop Estimator Operation 

During open-loop estimator operation, the FOC scheme 

obtains its speed signal from the shaft encoder. The PI 

controller gains of the classical rotor flux-based MRAS are set 

to Kp=300 and Ki=8000 which are tuned using trial-error 

method to obtain the optimal dynamic performance. 

Figs.7-9 show the classical and predictive MRAS estimator 

performance for 75% load rejection at 1.33% of the rated 

speed (20rpm). The predictive MRAS shows superiority in 

comparison with the classical MRAS. The oscillation in the 

estimated speed is reduced significantly and the speed tuning 

signal is kept below 0.02 even during the transient operation 

whereas it reaches 0.1 in the classical MRAS, which is 5 times 

greater. This means that the predictive estimator provides 

better tracking between the reference and the adaptive models 

at all the different operation conditions. The frequency 

spectrum of the estimated rotor speed signal shows that the 

harmonic content has been reduced significantly in the 

predictive estimator. For example, the 17Hz component has 

been reduced from 0.028 per unit to 0.009 per unit, which is a 

reduction of 67.8%.  

Figs.10-11 show the classical and predictive MRAS 

performance when 63% of the rated load is applied and the 

speed reference is changed from 6.6% (100rpm) to -6.6% (-

100 rpm) of the rated speed in 8 steps, including zero speed 

and regeneration operation. During the first half of the 

experiment, the load is applied to oppose the rotation which 

means that the machine is operating in the motoring mode 

(positive speed and positive torque), whereas the torque is 

supporting the speed over the second half and the motor is 

operating in the regenerating mode (negative speed and 

positive torque). From the results it can be seen that the 

predictive estimator can produce speed estimation with a 

better quality in terms of reduced oscillations at all the 

different speeds including zero speed. The speed tuning signal 

remains less than 0.011 during all transient and steady state 

conditions, while it reaches 0.055 in the classical MRAS. 

During the regeneration region the predictive controller 

provides a better performance with less steady state error and 

oscillations. 

To test the proposed scheme’s robustness against motor 

parameter variations, two experimental tests have been carried 

out. Within the first test, Fig.12.a, a 50% step change has been 

applied to the rotor resistance Rr in the estimator model while 

the machine was running at 300rpm and full load. It can be 

noticed from the figure that the predictive MRAS estimator is 

less affected by the rotor resistance change with 14 rpm initial 

undershoot and 0.15s recovery time compared to 19 rpm 

initial undershoot and 0.45s recovery time for the classical 

MRAS. In the second test, Fig.12.b, a step change of 20% has 

been applied to the mutual inductance Lm in the estimator 

model. It can be observed that the predictive MRAS scheme 

shows better performance with less oscillation during 

transients compared to the classical MRAS. In the two tests, 

the proposed scheme shows better steady-state rotor speed 

estimation with less noise level. This improvement in 

robustness against motor parameter variations is mainly due to 

the replacement of the PI controller in the adaptation 

mechanism by a search-based optimization algorithm. It is 

well reported in the literature that fixed-gain PI controllers are 

generally not robust to changes in system parameters [36].      
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                                                                (a)                                                                                                                      (b) 
Fig.7 Open loop estimation, 20 rpm and 75% load, rotor speed (a) Classical MRAS (b) Predictive MRAS 

 
                                                              (a)                                                                                                                     (b) 

Fig.8 Open loop estimation 20 rpm and 75% load, speed tuning signal (a) Classical MRAS (b) Predictive MRAS 

 
                                                              (a)                                                                                                                     (b) 

Fig.9 Open loop estimation, 20 rpm and 75% load, estimated speed frequency spectrum (a) Classical MRAS (b) Predictive MRAS  

  
                                                              (a)                                                                                                                     (b) 

Fig.10 Open loop estimation 63% load, low speed motoring and regenerating operation, rotor speed (a) Classical MRAS (b) Predictive MRAS 
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                                                              (a)                                                                                                                     (b) 
Fig.11 Open loop estimation, 63% load, low speed motoring and regenerating operation, speed tuning signal (a) Classical MRAS (b) Predictive MRAS 

  
                                                              (a)                                                                                                                     (b) 

Fig.12 Open loop estimation, 300 rpm and full load, effect of motor parameters variation. (a) 50% Change in Rr  (b) 20% Change in Lm 

 
                                                              (a)                                                                                                                     (b) 

Fig.13 Sensorless performance, 75 rpm and 75% Load, rotor speed (a) Classical MRAS (b) Predictive MRAS 

 
                                                              (a)                                                                                                                     (b) 

Fig.14 Sensorless performance, 75 rpm and 75% Load, speed tuning signal. (a) Classical MRAS (b) Predictive MRAS  
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                                                              (a)                                                                                                                     (b) 
Fig.15 Sensorless performance,75 rpm and 75% Load, estimated speed frequency spectrum. (a) Classical MRAS (b) Predictive MRAS 

 
                                                              (a)                                                                                                                     (b) 

Fig.16 Sensorless performance, reference speed change from 40 to 100 rpm at full load, rotor speed (a) Classical MRAS (b) Predictive MRAS  

  
                                                              (a)                                                                                                                     (b) 

Fig.17 Sensorless performance, reference speed change from 40 to 100 rpm at full load, speed tuning signal (a) Classical MRAS (b) Predictive MRAS  

 
                                                              (a)                                                                                                                     (b) 

Fig.18 Sensorless performance, the effect of rotor resistance change (a) Classical MRAS (b) Predictive MRAS  
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(a)                                                                                                                     (b) 

Fig.19 Sensorless performance, the effect of stator resistance change (a) Classical MRAS (b) Predictive MRAS 

  
(a)                                                                                                                     (b) 

Fig.20 Sensorless performance, the effect of mutual inductance change (a) Classical MRAS (b) Predictive MRAS 

 
(a)                                                                                                                     (b) 

Fig.21 Sensorless performance at minimum stable speed, Predictive MRAS estimator, (a) No-load (b) Full-load 
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In this operation mode, the FOC scheme is driven by the 

estimated speed. The performance of both estimators is tested 

at different speeds and load conditions.  

Figs.13-15, show the sensorless operation of both schemes 

when the drive is subjected to 75% of the rated load at 5% of 

the rated speed (75 rpm). Once again the predictive MRAS 

estimator shows a better performance by reducing the 

oscillation in the estimated speed before and after applying the 

load, and this improvement appears more clearly in the 

frequency spectrum of Fig.15. From Fig.14 it can be also 

noticed that the predictive estimator can produce better 

tracking between the adaptive and the reference model by 
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operation points whereas it reaches to 0.08 in the classical 

estimator when the load is applied. 
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resistance Rr in the estimator model. It is evident from Fig. 18 

that the predictive MRAS estimator is far less affected by the 

rotor resistance change, while the drive system loses stability 

in the case of the classical MRAS for the same level of Rr 

change. In the second test, Fig. 19, a step change of 50% has 

been applied to the stator resistance Rs in the estimator model. 

It can be observed that the predictive MRAS scheme shows 

better performance with less oscillation in both the estimated 

and measured speeds. In the third test, Fig. 20, a step change 

of 20% has been applied to the mutual inductance Lm in the 

estimator model. Fig. 20 shows that the classical MRAS 

scheme has completely lost its stability after applying the 

change while the proposed predictive MRAS has shown much 

better performance. 

To determine the minimum operating speed of the 

predictive MRAS estimator, the reference speed is gradually 

reduced until the motor loses satisfactory operation. It was 

found that the minimum speed that can be achieved in the case 

of the predictive MRAS is 8 rpm compared to 25 rpm for the 

classical MRAS, a 68% improvement in low speed capability. 

Fig.21 shows the sensorless operation of the proposed scheme 

at its minimum speed at both no-load and full-load conditions.  

The effect of using the predictive estimator on the speed 

controller bandwidth has been also tested. As the estimated 

speed of the proposed scheme is less noisy than the classical 

MRAS, this allows a further increase the PI gains of the speed 

control loop which will in-turn increase the maximum 

bandwidth that can be achieved. Experimentally, it has been 

found that the maximum bandwidth of the predictive MRAS 

estimator is 156.68 rad/s compared to 85.63 rad/s for the 

classical MRAS.  

 

VI. CONCLUSION 

In this paper, a novel predictive MRAS rotor speed 

estimator is proposed for sensorless IM drives. The new 

estimator is based on the finite control set-model predictive 

control principle and applies an optimization approach to 

minimize the speed tuning error signal of the MRAS scheme. 

This eliminates the need for a PI controller in the adaptation 

mechanism. A search algorithm is employed to ensure that 

optimal rotor position is achieved in each sampling period that 

minimizes the error signal. A modification has been 

introduced to the proposed algorithm to reduce its 

computational complexity compared to conventional PI 

controller. Detailed experimental tests were carried out to 

compare the performance of the proposed and the classical 

rotor flux based MRAS schemes. Results show a better 

estimation quality of the rotor speed with a significant 

reduction in steady state oscillations without affecting the 

dynamic response as a minimum speed tuning signal is 

ensured in both transient and steady state conditions. Hence a 

higher maximum bandwidth of the speed control loop was 

achieved when the proposed estimator is employed. Improved 

robustness against motor parameter variations was also 

demonstrated for the proposed scheme. 

 

 

 

    

APPENDIX 

TABLE II: MOTOR PARAMETERS 

Symbol QUANTITY Value 

Rs Stator resistance 2.35 Ω 

Rr Rotor resistance 1.05 Ω 

Ls Stator inductance 0.344209 H 
Lr Rotor Inductance 0.348197 H 

Lm Mutual inductance 0.33209 H 

J Motor inertia 0.22Kg.m2 
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