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Abstract
Precision, robustness, dexterity, and intelligence are the design indices for current gener-

ation surgical robotics. To augment the required precision and dexterity into normal micro-
surgical work-flow, hand-held robotic instruments are developed to compensate physiological
tremor in real-time. The hardware (sensors and actuators) and software (causal linear filters)
employed for tremor identification and filtering introduces time-varying unknown phase-delay
that adversely affects the device performance. The current techniques that focus on three-
dimensions (3D) tip position control involves modeling and canceling the tremor in three
axes (x, y, and z axes) separately. Our analysis with the tremor recorded from surgeons and
novice subjects shows that there exists significant correlation in tremor across the dimen-
sions. Based on this, a new multi-dimensional modeling approach based on extreme learning
machines (ELM) is proposed in this paper to correct the phase delay and to accurately mod-
el 3D tremor simultaneously. Proposed method is evaluated through both simulations and
experiments. Comparison with the state-of-the art techniques highlight the suitability and
better performance of the proposed approach for tremor compensation in hand-held surgical
robotics.

∗This research was supported by the Basic Science Research Program through the National Research Foun-
dation of Korea (NRF) funded by the Ministry of Education, Science and Technology under the Grant NRF-
2014R1A1A2A10056145.
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1 Introduction

Physiological tremor is a major impediment to perform delicate and fine motor tasks, such as
microsurgery [1,2]. In microsurgical procedures, the surgeons hand motion must be precise at the
magnitude smaller than few micrometers (10 µm) [1]. Even under normal conditions, physiological
tremor exists in normal human motions to some degree with amplitude of approximately 100
µm [2, 3], and it adversely affects the outcome of the microsurgery. Consequently, surgical robots
are being developed to provide surgeons with the required precision and dexterity to execute the
microsurgical procedures successfully. Over the past two decades, the surgical robotics have evolved
from autonomous robots to tele-operating robots and now to hand-held robotic instruments [4,5].
For these surgical robotic instruments precision, dexterity, and intelligence form the design indices.
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Figure 1: Active physiological tremor compensation and effect of phase delay

The advent of hand-held instruments has created an opportunity to augment the required preci-
sion and dexterity into the normal surgical work-flow by compensating the tremulous motion [6,7].
The working principle of a typical hand-held instruments is simple as shown in Fig. 1 and it
involves subsequent execution of three steps 1) sensing its own motion, 2) filtering the involuntary
motion from the sensed motion, and 3) actuate the surgical end-effectors (instrument tip) based
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on the filtered involuntary motions to compensate the erroneous motions. To possesses the advan-
tages of being compact, multi-dimensional freedom as conventional surgical instrument, and less
obstructive to manipulate, the hand-held instruments are embodied with miniature MEMS based
inertial sensors to sense its own motion in three-dimensions (sensing unit) and piezo-electric actua-
tors to manipulate the instrument end-effector (compensation unit), as shown in Fig. 1 [6,7]. The
intelligence to identify, filter and accurately model the involuntary motions from the whole sensed
motion is provided by the adaptive signal modeling unit (modeling unit) [7, 8]. Furthermore, this
unit generates the control signal for the three-dimensional (3D) tip motion to compensate tremor
(compensating unit) based on the modeled tremor motion. For effective tremor compensation, all
the above three stages have to be executed in one cycle (sample period) [7].

The voluntary hand motions during microsurgery are often superimposed with the involuntary
motions such as physiological tremor, drift, noise and chorea etc. The meticulous nature of the
microsurgical procedures restricts the voluntary movements to low frequency components i.e. less
than 2 Hz [9]. Consequently, frequency selective linear filters have been employed to filter tremulous
motion [10]. These linear filters serves also in removing the notorious numerical-integration drift
due to double-integration and other unwanted noise/drift that comes from the sensing unit while
converting the sensed motion in acceleration domain to position domain, as shown in Fig. 1. As
physiological tremor lies in band of 6 Hz to 14Hz, the inherent phase-lag as small as 10◦ (20ms)
can generate an out-of-phase control signal for compensation unit and this exacerbates the tip
motion at instrument end-effector rather than compensating it. To illustrate the effect of phase
delay on the instrument’s tip position control, comparison between the corrected tip obtained with
actual tremulous motion and delayed tremulous motion (obtained as described in Section II) for a
typical trial is shown in Fig. 1(c). The experiments conducted with hand-held instrument (Micro)
showed that the phase delay of liner filtering stage limited the compensation accuracy to only 20%
and also destabilized the eye-had feedback loop [11].

Various factors such as causality, resolution and response-time of sensors, phase delay, and drift
also effect the real-time performance [7, 10]. It is now evident that phase-lag is the single major
factor that adversely effects the end compensation accuracy [8]. In the sensing unit shown in Fig.
1, the presence of on-board low-pass filter in accelerometers introduces a phase delay of 3 ms.
An additional delay of 1 ms is identified as the response time for piezo-electric actuators. As the
band pass filter employed in the modeling unit introduces frequency dependent (unknown) delay
of 12-16 ms, a total delay in the range of 16 - 20 ms is unavoidable from sensing to compensation
in these hand-held instruments.

Adaptive filtering techniques [8] that rely on truncated Fourier series (band-limited multiple
Fourier linear combiner (BMFLC) [12–15]) have been popular to model the tremulous motion
without any phase delay. Recently, in [15], a quaternion version of WFLC (QWFLC) has been
developed to model the tremulous motion in quaternion domain and empirically proven to be
more effective than the real domain WFLC. Further, the method QWFLC also demonstrated
the effectiveness of multi-dimensional coupling in accurate modeling of tremor compared to uni-
dimensional WFLC. Although, these methods accurately model the tremulous motion, the study
in [10] demonstrated that the unknown phase-delay introduced by the pre-filtering stage adversely
effects the final outcome. Consequently, the design indices for the adaptive tremor modeling
algorithms can be given as:

i) unknown phase-delay correction
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ii) accurate tremor modeling

iii) less computational complexity.

To this end, Autoregressive (AR) methods [16], BMFLC and least squares-support vector ma-
chines (MWLS-SVM) [17] methods are customized to perform multi-step prediction of physio-
logical tremor to counter the known and unknown phase delays. Among the existing methods,
MWLS-SVM manages to meet all the indices, there is however much scope for improvement in
terms of accurate modeling of unknown phase-delay and reducing the computational complexi-
ty. To date, all these existing methods consider the sensed motion in three-dimensions as three
independent signals. To achieve 3D tremor estimation and compensation, the adaptive filtering
method must be applied to all three axes separately. Hence a multi-dimensional approach that
can better utilize the information from cross-channels to counter the unknown phase delay and
provide more accurate 3D tremor is required.

Several popular signal processing methods like support vector machines (SVM) have been ex-
tended to multi-dimensional framework from the original single-dimensional framework [18]. The
improved multi-dimensional framework however might suffer from either loss of generality or signif-
icant increase in computational complexity due to the lack of multi-dimensional modeling scheme
in its cost function [19, 20]. It has been empirically proved that innate structure of single hidden
layer feed-forward networks (SLFN) can provide multi-dimensional modeling simultaneously where
each output node can serve as the modeled output for each dimension [21]. Extreme learning ma-
chines (ELMs) is one of the effective learning procedure to learn the SLFN parameters and has
been successfully applied in solving regression, function estimation, and multi-class classification
problems [19,21,22]. Further it is established that ELM has better generalization performance and
less computational complexity [19–21].

Motivated by this, in this paper, we developed a unified multi-dimensional modeling approach
with ELM which is capable of integrating the cross-dimension couplings, and simultaneously solve
the phase delay correction and thereby provide more accurate 3D tremor modeling with less com-
putational complexity. The cost function of conventional ELM does not have the multi-dimensional
form. Consequently, it provides unequal penalty for all dimensions and it might effect the multi-
dimensional modeling performance. To address this issues, a robust multi-dimensional ELM (md-
RELM) that provides equal penalty for all dimensions is developed in this paper. Further, to adapt
to the non-stationary characteristics of tremor, we also propose an online sequential update for the
robust multi-dimensional ELM (OS-mdRELM). To quantify the suitability of the proposed multi-
dimensional technique for tremor modeling, analysis was conducted on the tremor data collected
from microsurgeons and novice subjects. The proposed technique is also validated experimentally
with hand-held robotic instrument (iTrem). Results showed that the proposed multi-dimensional
paradigm significantly improves the tremor modeling accuracy compared to the state-of-the-art
modeling techniques.

In Section II, the proposed multi-dimensional tremor modeling approach with several ELM
variants are discussed. Section III presents the performance evaluation of the proposed methods
with tremor data. Discussions, future work, and conclusions are provided in Section IV and Section
V respectively.
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Figure 2: Proposed unified approach for 3D tremor modeling

2 Methods and Materials

The main objective of this work is to develop a unified-framework that can effectively solve the
phase-delay correction and provide more accurate 3D tremor estimation. In what follows, we shall
discuss on how these challenges are addressed in this paper:

i) Phase delay correction: Unknown and time-varying- frequency dependent delay in the range
of 16 to 20 ms is inevitable due to the presence of various linear filters at different stages in
the signal processing chain. This delay correction problem is considered as a classical learning
problem of estimating an unknown relation between the elements of an input space (S ∈ Rm) and
elements of an outer space (T ∈ Rn), as shown in Fig. 2(b). The elements of input space are the
phase-distorted tremulous motion components obtained after conventional band-pass filter and the
elements of output space are the actual tremulous motion components obtained with a zero-phase
band-pass filter. In this work, we adopt extreme learning machines (ELM) to identify a generalized
and accurate inverse−mapping nonlinear function (β(·)) such that β(s ∈ S) ≈ t ∈ T .

ii) 3D tremor modeling: By the very nature, the single-dimensional modeling techniques lack the
structure to utilize the cross-dimensional coupling information. By its inherent structure, the learn-
ing method ELM is capable of integrating the cross-dimension couplings. To simultaneously also
solve the phase delay correction with the inverse−mapping function, a robust multi-dimensional
modeling based on ELM is developed.

iii) Computational complexity: The innate structure of ELM facilitates modeling of tremor
in three dimensions simultaneously. Therefore, the computational power required to achieve 3D
tremor modeling can be significantly reduced with the proposed multi-dimensional approach com-
pared to that of conventional single-dimensional approach. Furthermore, it has been rigorously
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proved that the computational requirement of ELM is very small compared to other popular ma-
chine learning techniques such as SVM [19,21].

In the following, we first discuss the proposed multi-dimensional learning techniques based on
ELM for 3D tremor modeling. Conventional ELM can be trained to perform multi-dimensional
modeling of tremulous motion. However, the output layer weights of the trained network lacks the
technique to uniformly penalize the cross-dimension couplings of all dimensions [19]. Further, the
cross-dimension coupling might contain outliers or irrelevant information for modeling [20]. To
address these issues, we customized ELM and its cost function to suit to our 3D tremor estimation
problem and named as robust multi-dimensional ELM (md-RELM). As the physiological tremor
is non-stationary in nature, to adapt the regularized ELM output weights over the time, we also
developed the online sequential learning technique for md-RELM, named as OS-mdRELM. In what
follows, both these techniques are discussed.

2.1 Robust Multi-dimensional ELM (md-RELM)

For a set of Ñ independently and identically distributed samples S = {(si, ti)|si ∈ Rm, ti ∈
Rn; i = 1, · · · , Ñ} with S = [s1, · · · , sÑ ] as input vector, T = [t1, · · · , tÑ ] as its corresponding
target vector. With the randomly initialized input weights w, hidden layer bias b and the com-
puted output layer weights β̂, and sigmoid activation function, the multi-dimensional output with
conventional ELM can be given as:

ok = f(sk) =
L∑
i=1

β̂gi(wisk + bi) (1)

The ouput weight matix (β̂) can be obtained with:

β̂ = G†T (2)

where G† is Moore-Penrose generalized matrix inversion of G. For more detailed description about
ELM, refer to [21].

The robust multi-dimensional ELM (md-RELM) is structurally similar to the conventional
ELM except the cost function. The regularized cost function of ELM which provides equal penalty
for all dimensions can be formulated as:

min
β, ε

n∑
j=1

1

2
||βj||2 +

n∑
j=1

1

2
cj

N∑
i=1

λij||εij||2

subject to tij − βjg(si) = εij, i = 1, . . . , N.

(3)

where λj = diag{λi1, . . . , λin} represents the robust weight parameters and obtained as

λij =


1 |εij/ŝ| ≤ c̃1;
c̃2−|εij/ŝ|
c̃2−c̃1 c̃1 ≤ |εij/ŝ| ≤ c̃2;

10−4 |εij/ŝ| > c̃2.

with ŝ = IQR(si)
2×0.6745 , IQR defines the interquartile range, c̃1 = 2.5, and c̃2 = 3 and c = [c1, . . . , cn]

represents the regularization parameter.
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Based on the Karush-Kuhn-Tuker (KKT) theorem, to train ELM is equivalent of solving the
following dual optimization problem, can be given as:

LD =
n∑
j=1

1

2
||βj||2 +

n∑
j=1

1

2
cj

N∑
i=1

λij||εij||2 −

n∑
j=1

N∑
i=1

αij(εij − tij + βjg(si)) (4)

where αij; i = 1, . . . , N and j = 1, . . . , n represents the Lagrangian parameters. By solving
the KKT optimality conditions, we can get an estimate of output weights:

β̂j = (
I

cj
+ GTλjG)−1GTλjtj (5)

The output of the mdRELM with the estimated output weights from the regularized cost function
can be given as:

ok = f(sk) =
n∑
j=1

L∑
i=1

β̂jgi(wisk + bi) (6)

2.2 Online Sequential md-RELM (OS-mdRELM)

For an initial training dataset S0 = {si, ti}Ni=1, the initial output weights of robust multi-dimensional
ELM can be given as:

β̃(0) = K(0)G
T
(0)λ̃T(0) (7)

by considering β̃(0) = [β1, . . . ,βn], c̃(0) = [c1, . . . , cn], λ̃(0) = [λ1, . . . ,λn], and K(0) = ( I
c̃

+

GT
(0)λ̃(0)G(0))

−1. Assume now that there are n0 new observations S1 = {si, ti}N+n0
i=N+1. Then the

output weights can be computed as:

β̃(1) = K−1(1)

(
G(0)

G(1)

)T (
λ̃(0) 0

0 λ̃(1)

)(
T(0)

T(1)

)
(8)

where K(1) =

(
I
c

+

(
G(0)

G(1)

)T (
λ̃(0) 0

0 λ̃(1)

)(
G(0)

G(1)

))
.

By considering K−1(k) = P(k), we can generalize the relationship between β̃(k+1) and β̃(k) as [23]:

β̃(k+1) = β̃(k) −P(k+1)G
T
(k+1)λ̃(k+1)(β̃(k)G(k+1) −T(k+1)) (9)

where

P(k+1) = P(k) −P(k)G
T
(k+1)(λ̃

−1
(k+1) +

G(k+1)P(k)G
T
(k+1))

−1G(k+1)P(k) (10)

The output of the online sequential robust multi-dimensional ELM can be given as:

ok = f(sk) =
n∑
j=1

L∑
k=1

β̃(k+1),jg(sk) (11)
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2.3 Implementation of Multi-dimensional Tremor Modeling Approach

Functional block diagram representation for the proposed multi-dimensional approach (OS-mdRELM)
is depicted in Fig. 3. In what follows, the step by step procedure for 3D estimation is itemized:

β(k), P(k)
~

New sample
{sk, tk}

(k = p+N+n)

     Discard the oldest sample

    and update the training 

    data with recent 

  N samples

Sn = {si, ti}i = p+n

p+N+n

Update the parameters 

β(k), P(k) with the new 

data and Eqn. (9) and 

Eqn. (10) to get β(k+n), P(k+n) 

~

~

Tremor estimation and

phase correction with 

ok = ΣΣ β(k+n),j g(sk) 
jk

Multi-dimensional 

 mapping

Update

S0 = {si, ti} i = p

p+N

Initial training data

Figure 3: Functional block diagram representation for OS-mdRELM implementation

a) Identification of non-linear inverse-mapping function (β̃(k)): To identify accurate yet gen-
eralized mapping, the first N samples of both delayed tremor motion and actual tremor motion
in 3D are considered for the offline training, as shown in Fig. 2(b). In this training procedure,
first the input vector is formulated in the embedded space constructed based on Taken’s embedded
theory [24,25]. For three-dimensional modeling of tremor, the embedded space is formulated with
the delayed x, y, and z axes. If two-dimensional modeling is considered, then the embedded space
can be formulated with two delayed axes i.e, x, and z axes or y, and z axes. From this embedded
space, md-RELM learns the non-linear inverse-mapping function (β̂) by utilizing the existence of
cross-dimension coupling and with (5), as shown in Fig. 2(b).

b) Updating the non-linear inverse-mapping function (β̃(k+n)): The non-linear mapping ob-
tained with md-RELM can be updated in real-time with the arrival of every new sample by its
online sequential learning approach (OS-mdRELM). First, upon arrival of the new sample for whole
motion, the training database will be updated with the recent N samples by simply discarding the
oldest sample in the data, as shown in Fig. 3. For example, assume that the training database has
N samples i.e., from p to p+N and the arrived new sample is p+N+n, then the training database
will update to the recent N sample i.e., from p+ n to p+N + n. With the updated database and
from Equations (10) and (9), the multi-dimensional nonlinear mapping will be updated to β̃(k+n).
The phase delay correction will be carried out with (11). For OS-mdRLEM, this procedure will
be repeated for every arrived new sample and accordingly the multi-dimensional mapping will be
updated.

Finally, the tremor compensation framework with hand-held instruments is modified by in-
corporating the ‘multi-dimensional modeling block’ (comprises of the non-linear inverse-mapping
function (β̃(k))) after the band-pass filtering, as shown in Fig. 2(a). As a result, the phase delay
induced by the filtering stage will be corrected and accurate 3D tremor estimation can be obtained.
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3 Results

In this section, we first provide the details of physiological tremor data collected from microsurgeons
and novice subjects. Later, the multi-dimensional correlation analysis and the comparison analysis
are discussed, followed by the experimental validation of the proposed method.

3.1 Physiological Tremor Data Collection

Physiological tremor recordings were performed through the Micro Motion Sensing System (M2S2)
and a sensorized stylus with reflector ball at its tip [26]. M2S2 provides a measurement in a
10× 10× 10 mm3 workspace, with a resolution of 0.7 µm and minimum accuracy of 98% [7]. The
3D displacement of the reflector ball is calculated by using reflected Infrared rays from the ball
and the photo sensitive diodes (PSDs). For more details about the design and data acquisition
with M2S2, please refer [7, 26]. Two typical microsurigcal tasks are performed by 5 surgeons and
5 novice subjects [26]:

i) Pointing task: In this task, two dots were displayed on the monitor screen. One dot is white
in color and fixed while the another dot is orange in color and will move according to the user’s
tool tip movement. The subjects were instructed to keep the orange dot overlapping the white dot
for 30s.

ii) Tracing task: At the beginning of this task, a circle with 4 mm diameter was displayed
on the monitor screen. The subjects were instructed to trace the circumference of the circle in
clockwise direction as accurately as possible for 30s with the speed that is realistic for surgical
manipulation tasks.

Each task was performed with three magnifications: 1x, 10x and 20x, and with grip force of 1
to 2 N. Sampling frequency of 250 Hz was employed. For more information about magnification
and force conditions, see [26].

3.2 Performance Indices

Let sx = [sx(1), · · · , sx(k)], sy = [sy(1), · · · , sy(k)], and sz = [sz(1), · · · , sz(k)] represent the tremor
signal of length k in x, y, and z axes respectively. In this work, the coupling between the tremor
signal characteristics measured in multi-dimensions simultaneously is identified with correlation
coefficients [24] and mutual information [25].

i) Correlation coefficient: The correlation coefficient (ρ) between any two axes can be defined
as:

ρxy =

∑N
i=1(sx(i)− µsx)(sy(i)− µsy)√∑N

i=1(sx(i)− µsx)2
∑N

i=1(sy(i)− µsy)2
(12)

where µsx = 1
N

∑N
i=1 sx(i) and µsy = 1

N

∑N
i=1 sy(i) represent the mean values of sx and sy.

ii) Mutual Information: The mutual information between any two axes can be defined as:

I(sx; sy) = H(sx) +H(sy)−H(sx; sy) (13)

where H(sx) and H(sy) are the entropies of sx and sy respectively and H(sx; sy) represents the
joint differential of sx and sy. If sx and sy are Gaussian random variables with variances σ2

x and
σ2
y then H(sx) = 1

2
[1 + log(2πσ2

x)] and H(sx; sy) = 1 + log(2π) + 1
2
log(σ2

xσ
2
y(1− ρ2)).
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iii) Accuracy: The tremor modeling performance of all methods is quantified by using %Accuracy,
defined as:

%Accuracy =
RMS(s)−RMS(e)

RMS(s)
× 100; (14)

where RMS(s) =
√

(
∑k=m

k=1 (sk)2/m) with m is the number of samples, sk is the input signal at

instant k and e is the obtained estimation error with a method.

3.3 Cross-dimensional coupling analysis

The tremor data is pre-processed to analyze the cross-dimensions coupling. This pre-processing is
an offline procedure and its main objective is to accurately separate the tremulous motion from
the voluntary motions and other low-frequency components in the whole sensed motion. To this
end, we employed a zero-phase third-order Butterworth band-pass filter with pass-band of 6 to 20
Hz. The processed tremor data was shortened to 29s to remove the transient effect due to the
pre-filtering stage.

1 1 1
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Figure 4: Correlation coefficients obtained for Subject #1

The correlation coefficients readily evaluates the linear relationship between across the channels.
With the correlation coefficients (defined in (12)), we found that the tremor measurements in x,
y, and z axes are not independent time series and there exists cross-dimensional correlation. For
illustration, the correlation obtained between x-y axes, x-z axes, and y-z axes for subject #1 are
shown in Fig. 4. For this subject, correlation coefficients 0.9, 0.65, and 0.86 are obtained for
x-y axes, x-z axes, and y-z axes respectively for tracing task, whereas for the pointing task the
correlation coefficients are 0.5, 0.43, and 0.36 for x-y axes, x-z axes, and y-z axes respectively. For
all subjects and trials, statistical results shown in Fig. 5(a) reveal that there exists a significant
level of cross-dimensions correlation.

As tracing task involves more control, larger correlation in tremor amplitude can be observed
as compared to pointing task. To further evaluate the arbitrary coupling in cross-dimensions, we
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analyzed the mutual information. This measure takes the nonlinear dependencies into considera-
tion and then evaluates the arbitrary coupling across the dimensions. Furthermore, this measure
is also independent to the transformations acting on the dimensions. The mutual information
obtained across the dimensions on the whole data set is shown in Fig. 5(b). Results show that a
normalized coupling of 0.35 and 0.29 exists between x - y axes and x - z axes respectively. These
results are in line with the results obtained with the correlation coefficients.

3.4 Optimal Parameter Selection

The hyper-parameters of md-RELM that require optimal initialization are: 1) number of hidden
neurons (L) in the hidden layer, 2) the embedded dimensions (m), and 3) regularization constant
(c). To identify the optimal initialization, we randomly chose ten trials per task. In each trial,
first four seconds data (1000 samples) is considered as training dataset and the rest 25 seconds as
the testing data set. We conducted a grid search on the chosen twenty trials with wide range of
values for number of hidden neurons as 1 ≤ L ≤ 1000, the embedded dimensions as 1 ≤ m ≤ 100,
and regularization constant as 100 ≤ c ≤ 1010.

The md-RELM was trained (as shown in Fig. 2) with all possible combinations of L, m, and c
on the training data set of each trial. The obtained non-linear mapping with each combination
was later employed for modeling the testing data. For each combination, RMS of estimation error
obtained according to (14) is computed. The triplet (L, m, c) that provides the least RMS of
estimation error was considered as the optimal parameter set for initialization. For illustration,
the grid search conducted on a single trial with c = [103 , 103 , 103] for the complete of(L, m) is
shown in Fig. 6(a). The RMS of error obtained for various selections of c in the chosen range also
shown in Fig. 6(b). For this particular trial, the identified optimal initialization was L = 171,
m = 69, and c = [103 , 103 , 103]. Similar analysis for all trials does not show significant variations
in the identified parameter set. Thus, for all subjects, we choose parameters as L = 171, m = 69,
and c = [103 , 103 , 103]. Same parameters were selected for conventional ELM. For the case of
MWLS-SVM, we employed the parameter set reported in [17].
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Figure 6: Optimal parameter selection for md-RELM a) grid search for L and m and b) optimal
parameter for c

3.5 Comparison analysis

In this section, comparisons analysis was conducted on tremor data set among 1) ELM (1D), 2)
md-ELM, 3) md-RELM, 4) OS-mdRELM and 5) MWLSSVM (1D).
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Figure 7: Phase delay correction

The procedure employed to validate each method is shown in Fig. 7. In this procedure, the 3D
motion acquired with M2S2 system was provided to third-order Butterworth band-pass filter with
pass-band of 6 to 20 Hz. As discussed earlier, this filtering stage introduces frequency dependent
unknown phase delay into the procedure. The phase-distorted tremulous motion is provided to
the devised phase-delay correction block to obtain in-phase tremulous motion. A zero-phase band
pass filter with same specifications as above employed band-pass filter was employed to obtain the
motion without any phase delay. This motion was employed as the ground truth to compare the
performance of the phase-delay corrections, as shown in Fig. 7.

The multi-dimensional based phase-delay correction model with md-RELM was obtained with
the training data set (first four seconds), as shown in Fig. 2. The parameters of md-RELM model
were initialized as detailed in Section IIIC. The output weights obtained with the training dataset
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for md-RELM were maintained throughout the testing data set. For the case of OS-mdELM, the
phase-delay correction model updates at every available new sample to adapt to the time-varying
phase-delay characteristics, as detailed in Section IIB.

The actual tremor motion in z-axis and estimation errors obtained with all methods on Surgeon
#1 (pointing task) are provided in Fig. 8 for illustration. The estimation error obtained with single-
dimensional ELM in Fig. 8(c) and multi-dimensional ELM in Fig. 8(d), highlights the influence of
cross-dimension coupling in improving the performance. Further, the proposed md-RELM and OS-
mdRELM demonstrates better performance compared to md-ELM and single-dimensional ELM.

To further quantify the performance of multi-dimensional approach, task-wise analysis was
conducted on the whole database. As subjects require more control, they displayed huge variations
in tremor amplitude while performing tracing task compared to the pointing task. Hence, the
analysis was conducted separately for the two tasks. As pointing task is less complex compared
to tracing task, %accuracy obtained for pointing task is higher than the %accuracy obtained with
tracing task, as shown in Fig. 9. Over all subjects, multi-dimensional approach improved the
tremulous motion filtering accuracy significantly. Among the methods, OS-mdRELM showed least
estimation error. For pointing task, OS-mdRELM provided an average %accuracy of 83.87 ±
1.93% compared to 72.17 ± 6.07% and 69.74 ± 11.32% obtained with md-RELM and md-ELM
respectively. On average of 9% improvement was obtained with the proposed multi-dimensional
approach compared to the best existing single-dimensional approach MWLS-SVM.

To further highlight the improvement in modeling accuracy due to the incorporation of cross-
dimensional coupling, a comparison analysis with OS-mdRELM is conducted for single-dimensional
(1D), two-dimensional (2D), and 3D. For analysis, estimation of z axis is chosen as the output,
whereas the input spaces are sz(i), sx,z(i) or sy,z(i) and sx,y,z(i) for 1D, 2D and 3D respectively.
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Results obtained for all subjects are shown in Fig. 10. An improvement of 3% accuracy can be seen
in 3D compared to 2D for both the tasks. This also supports our hypothesis that cross-dimensional
coupling improves the modeling accuracy.

3.6 Computation Complexity

Computational complexity plays a vital role in minimizing the delay in real-time implementa-
tion. The number of operations required for various existing methods and proposed methods are
compared in Table. 1. Analysis shows that proposed methods computational complexity is sim-
ilar compared to adaptive signal processing methods such as BMFLC-KF and significantly less
compared to existing methods.

3.7 Experimental Validation

The experimental setup devised to validate the proposed multi-dimensional approach is shown
in Fig. 11. In this setup, the surgical instrument was fixed on an anti-vibration table with an
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Table 1: Computational complexity
Method Parameters Operations(O(·))
MWLSSVM [17] N = 1000 3×O(N3)
MS-BMFLC-KF [10] n = 140 3×O(n3)
md-ELM [21] L = 171 O(L3)
md-RELM L = 171, n = 3 O(L3)
OS-mdRELM L = 171, n = 3 O(L3) +O(3L)

angle of 45◦. The subjects were asked to sit on a chair in a comfortable position and then rest
their hand until wrist on the table, as shown in Fig. 11. The subjects were provided with the
hand-held instrument (iTrem) and informed to hold the tip of hand-held instrument at the tip
of the clamped surgical instrument for 50s. While performing the task, subjects were provided
with a visual feedback through a table top optical surgical microscope (Leica M651 MSD, Leica
Microsystem GmbH, Germany) with a built-in coaxial illuminator, as shown in Fig. 11. The
magnification of the achromatic objective lens of the microscope is 25 and its focal length is 200
mm. For better view of the task performed, a zoom portion to the instrument tips is also shown in
Fig. 11. The performed task was similar to the pointing task and a typical task in microsurgical
procedures.

Figure 11: Experimental setup

The hand-held instrument (iTrem2) is housed with four dual-axis digital miniature MEMS ac-
celerometers (ADIS 16003, Analog Devices, USA). The accelerometer measurements are acquired
by the embedded micro-controller (AT89 C51CC03, Atmel, USA) on board iTrem2 at the sam-
pling frequency of 333Hz. Real-time communication between iTrem2 and the real-time Labview
environment was achieved by using the controller-area network (CAN) interface with a bandwidth
of 500kbps. With a quadratic function, the acquired voltage readings from accelerometer were
converted to acceleration and then converted into position domain with numerical integration in
LabView environment [7]. The iTrem2 comprises of visual servo control integrated with inertial
sensing to fulfill the need for hard real-timeliness in microsurgery (accurate sensing) [27]. The
vision subsystem has a mono-vision camera mounted on the microscope which is located at a fixed
position in the workspace. The camera gives the tool tip position information in X and Y axis;
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it lacks the depth information (Z-axis). Thus, the setup is limited to 2-DOF in-plane movement
with the instrument aligned with the microscope reference frame. For more details refer to [7,27].

The procedure employed to evaluate the suitability of proposed multi-dimensional approach
for tremor compensation is shown in Fig. 12. This approach is implemented as detailed in Fig. 3.
The whole motion converted to position domain is provided to a band-pass filtering stage and then
the proposed phase delay correction block, as shown in Fig. 12. The phase delay correction block
is formulated according to the procedure detailed in Section. II. To evaluate the performance of
the phase delay correction block, a zero-phase band pass filter was employed to provide the actual
tremulous motion in offline (considered as ground truth). Further to account for the on-board first
order low-pass filter in accelerometers (RC circuit with C = 10 µF and R = 40 kΩ) and actuator
delays, 4 ms delay block is also added to the signal as shown in Fig. 12. With the actual tremulous
motion obtained in offline, estimation error was computed, as shown in Fig. 12.

Experiments were conducted with three subjects and three trials per each subject. Parameters
and initial conditions for real-time experiments are similar to the simulation experiments. In [17],
MWLS-SVM provided better performance compared to existing methods for multi-step prediction.
Further based on our study in earlier section, we infer that md-RELM provides better performance
compared to conventional ELM. Hence for experimental validation, we only choose OS-mdRELM,
md-RELM and MWLS-SVM methods. For illustration, the estimation error obtained with OS-
mdRELM and the estimation error due to the phase-delay for subject #1 are shown in Fig. 13. An
%accuracy of 81%, 78%, and 74% were obtained with OS-mdRELM, md-RELM, and MWLS-SVM
respectively. Overall for three subjects data, an average %accuracy of 79 ± 1.23% was obtained
with OS-mdRELM, whereas 75±1.56% and 71±1.89% were obtained with md-RELM and MWLS-
SVM respectively. Furthermore, OS-mdRELM provided better performance compared to all other
method for all subjects and all trials.
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4 Discussions

The three-dimensional (3D) tremor estimation methods have been developed as a part of our
continuing research to improve the performance of hand-held instruments. Correlation (linear
relationship) and mutual information (nonlinear) are employed to analyze the existence of cross
dimensional coupling in tremor measurements. To utilize this cross dimensional coupling infor-
mation, embedded space with appropriate embedding dimensions (m = 69) and proper delay
(τ = 1) has been constructed with the data obtained from all three dimensions. The developed
multi-dimensional modeling methods are trained in this embedded space to learn the nonlinear
mapping that best represents the phase delay characteristics of a band pass filter, as shown in Fig.
2(b). It has been already established that if two time-series are correlated, then the information
of one time series is included in the dynamics of other time-series. Consequently, the embedded
space constructed with both time series better represents the geometry of time series rather than
one time series alone [24, 25]. The reduction in prediction error with multi-dimensional methods
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highlight that that there exists correlation across the dimensions and ELM has been successful in
learning that. Furthermore, the proposed multi-dimensional modeling approaches are less compu-
tationally complex than other existing single-dimensional methods and are more suitable for active
compensation in robotic systems.

Existing works on hand-held tremor compensation suggests that a final compensation of 70%
is desirable for microsurgery to improve the surgeon’s performance [7,8]. Analysis showed that the
loss in end compensation accuracy was more due to phase delay, integration drift and other sensor
noises. The proposed multi-dimensional approach improved the accuracy by nearly 10% compared
to the existing methods. With this improvement, we foresee that the final compensation accuracy
will be also improved during instrument trials will that are planned with micro surgeons in the
future.

The hand-held instrument (iTrem2) employed in this work has a specially designed all-accelerometer
inertial measurement unit to provide the instrument tool tip position in 3-DOF according to
the fixed microscope reference frame [27]. Based on these measurements, the proposed multi-
dimensional method has been customized to perform 3D tremor prediction. However, other vari-
ants of hand-held instruments, for example Micron [11] and steady hand [28], have incorporated
6-DOF (position and orientation) sensing units. Compared to 6-DOF sensing unit, the 3-DOF
sensing based modeling lacks the information about the orientation. In recent work [29], it has
been claimed that joint angle of wrist affects the physiological tremor. Thus, with 6-DOF model-
ing, the tremor modeling accuracy will be further improved. With the innate parallel processing
structure of ELMs, the proposed multi-dimensional modeling (3-DOF) can be extended to 6-DOF
modeling for other variants of hand-held instruments. However, the success of this extension to
6-DOF depends on accurate identification of the dependency across the six dimensions and the
formulated of embedded space for learning.

Furthermore, to date, 3D tool tip control performance is applied to all three axes in parallel
according to the generated control signal for each dimension separately. In other variants of hand-
held instruments developed in [11] and [28], 6-DOF motion compensation have been developed. The
combination of developed multi-dimensional modeling approaches with the 6-DOF compensation
unit requires further work to be implemented in real-time. As a part of our continuing research
in developing hand-held surgical instruments, we considered this exciting combination as our next
step to work on.

Although the approach is mainly developed for 3D tremor modeling, the proposed approach
is also suitable for 2D modeling as demonstrated in experiments. The significant improvement in
modeling accuracy with 2D and 3D approaches further suggest that information available from
other dimensions can significantly improve the modeling accuracy. The proposed multi-dimensional
modeling can be successfully applied to 2D and 3D motion control problems [30, 31], bedsides
the tremor modeling, with potential applications being precise 2D positioning with microscopes,
mobility of robots, and cell manipulations and digital modeling of human motions.

5 Conclusions

As a solution to counter the unknown phase delay and perform simultaneous three-dimensional
modeling of tremulous motion, multi-dimensional modeling with OS-mdRELM was developed in
this paper. The analysis conducted on tremor data demonstrated that multi-dimensional methods
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provide better tremor estimation compared to other methods. To evaluate the suitability of multi-
dimensional approach for real-time applications, the approach was evaluated experimentally in
comparison with existing methods. Results show that an average %Accuracy of 79 ± 1.23% is
obtained with the OS-mdRELM in comparison to 71± 1.89% obtained with the existing method
MWLS-SVM (1D).
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