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Improved Realtime Sta te -of-Charge Es timation
of LiFePO4 Batte ry Based on a Novel

Thermoelectric Model
Cheng Zhang, Kang Li, Senior Member, IEEE, J ing Deng, and Shiji Song

Abs tract—Li-ion batteries have been widely us ed in e lec- 
tric vehicles , and battery internal s tate es timation plays an 
important role in the battery management s ys tem. How- 
ever, it is technically challenging , in particular, for the 
es timation of the battery internal temperature and s tate-of- 
charge (SOC), which are two key s tate variables affecting 
the battery performance . In this paper, a novel method is 
propos ed for realtime s imultaneous es timation of thes e two 
internal s tates , thus leading to a s ignificantly improved 
battery model for realtime SOC es timation. To achieve this , 
a s implified battery thermoelectric model is firs tly built, 
which couples a thermal s ubmodel and an e lectrical s ub- 
model. The interactions between the battery thermal and 
e lectrical behaviours are captured, thus offering a compre- 
hens ive des cription of the battery thermal and e lectrical 
behaviour. To achieve more accurate internal s tate es tima- 
tions , the model is trained by the s imulation error mini- 
mization method, and model parameters are optimized by 
a hybrid optimization method combining a meta-heuris tic 
algorithm and the leas t s quare approach. Further, time- 
varying model parameters under different heat dis s ipation 
conditions are cons idered, and a jo int extended Kalman 
filter is us ed to s imultaneous ly es timate both the battery 
internal s tates and time-varying model parameters in re- 
altime . Experimental res ults bas ed on the tes ting data of
LiFePO4 batteries confirm the e fficacy of the propos ed
method.

Index Terms —Internal temperature es timation, SOC es ti- 
mation, thermoelectric model, jo int extended Kalman Filter

I. INTRODUCTION

LECTRIC vehicles (EVs) and hybrid electric vehiclesE (HEVs) have gained rapid development worldwide in
recent years as a means to tackle the pollutions and low
efficiency problems of internal combustion engine based ve- 
hicles in the transportation sector. The EV and HEV batteries 
usually consist of hundreds or even thousands of battery cells
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connecting in series/parallel configuration. Therefore, a battery 
management system (BMS) is essential to ensure safe and 
efficient battery operations [1]. One key functionality of the 
BMS is to estimate battery internal states that are not directly 
measurable, such as the battery internal temperature and state 
of charge (SOC) which are two major factors affecting the 
battery performance.

In practice, only the surface temperature is directly mea-
surable for commercially used EV batteries. Yet, it is the 
battery internal temperature that directly affects the battery 
performance, and a large temperature difference may occur 
between battery internal and surface temperatures (e.g., some- 
times greater than 10�C [2]), especially in high power demand 
applications. Realtime estimation of the battery internal tem- 
perature is thus of great importance for BMS. Firstly, high 
internal temperature is a real threat to battery safe operation 
[1]. Excessive temperature can greatly accelerate the battery 
ageing process, and even cause fire or explosion of the battery 
pack in severe cases [3]. The battery internal temperature can 
reach to a critical temperature a lot quicker than the surface 
temperature, thus the surface temperature measurement alone 
is not sufficient to ensure safe battery operation. Secondly, the 
battery electrical properties, such as usable capacity, internal 
resistance and power delivery ability all depend on the battery 
internal temperature. Therefore, it can help develop a more 
accurate battery electrical model by estimating the battery 
internal temperature. Finally, the estimation of the battery 
internal temperature can serve as an indicator in designing 
proper battery thermal management strategies.

Over the years, various battery thermal models of different 
accuracy and complexity levels have been proposed, such 
as complex distributed electrochemical thermal models for 
thermal simulation [4], [5] and simplified lump-parameter 
thermal models for realtime applications [6], [7]. Based on the 
developed models, different model-based estimation methods, 
such as Kalman filter method, have been proposed for realtime 
estimation of the battery internal temperature [8], [9].

Battery SOC is another key indicator for EV and HEV
batteries. Battery SOC indicates the charge left in the battery 
available for further service, and it is like the fuel gauge in 
an ICE car, thus inaccurate SOC estimation may cause the car 
to strand halfway. Besides, battery SOC can also be used to 
prevent over-charging and over-discharging operations. There 
are various SOC estimation methods available in the literature 
[10]–[14].



electric circuit model coupled with the hysteresis effect as
shown in Fig 1,
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Despite extensive researches have been carried out, to our 
knowledge, few papers have dealt with the simultaneous 
realtime estimation of both the battery internal temperature 
and SOC, though these two states are closely coupled. Further, 
for model based battery internal state estimation methods, 
a battery model needs to be built first. Yet, few papers 
have considered the interactions between the battery internal 
thermal and electrical behaviours, except for those complex 
three dimensional electrochemical models [15], [16]. However, 
these first-principle electrochemical models are not suitable for 
realtime EV applications. On the other hand, many papers on 
battery SOC estimation did consider the effect of the ambient 
temperature on battery electrical performance [17]–[19], but 
only the battery surface temperature is used.

In our previous work [20], the estimation of the battery
internal temperature is addressed based on a novel simplified 
battery thermoelectric model, based on which SOC is then 
estimated. While the proposed model in [20] has a good model 
accuracy, but when it is used for the SOC estimation, the 
results are still poor in some cases. Further, in [20], only heat 
generation from the series internal resistance is considered, 
and the model is only applicable for natural heat convection 
condition at room temperature. The effect of forced heat 
dissipation methods, which are commonly used in the battery 
thermal management system, on the battery thermal behaviour 
is not studied.

The main contributions of this paper are summarized as
follows. Firstly, methods for estimating the heat generation rate 
inside the battery, a key element for building a suitable bat- 
tery thermal model are investigated and compared. Secondly, 
time-varying parameters in the thermal model under different 
heat dissipation conditions are taken into consideration to 
achieve higher modelling accuracy. Thirdly, a more realistic 
and detailed battery electrical model that considers both the 
battery relaxation effect and hysteresis effect is adopted. The 
battery electrical model is identified under different SOC and 
temperature levels. With the above introduced techniques, the 
effect of battery internal temperature and SOC on the battery 
electrical behaviours is thus captured in detail, offering a 
comprehensive and better description of the battery thermal 
and electrical behaviours. Fourthly, to improve the model 
accuracy, the simulation error minimization method is adopted 
for training the battery model, and a hybrid optimization 
method that combines a meta-heuristic algorithm (i.e., the 
teaching learning based optimization (TLBO) method) and 
the least square approach is adopted for model parameter 
optimization. Finally, a joint extended Kalman filter method is 
applied to estimate the internal model states and time-varying 
model parameters simultaneously.

The rest of this paper is organized as follows. Section II
presents a simplified battery thermoelectric model, including 
an electrical submodel and a thermal submodel. The test 
data collected under different heat dissipation scenarios are 
discussed in Section III. The simulation error minimization 
model training method and the hybrid parameter optimization 
method are given in section IV, along with the identified 
model parameters and modelling results. Considering the time- 
varying nature of the model parameters, joint EKF method

is applied to estimate the battery internal states and the
time-varying model parameters simultaneously in Section V. 
The experimental results are presented and analysed. Finally, 
Section VI concludes this paper.

II. BATTERY THERMOELECTRIC MODEL

A. Batte ry e lectric circuit model
Different kinds of battery models have been developed so far 

[21]. For the LiFePO4 battery used in this paper, to achieve 
accurate modelling and state estimation, two key challenges 
must be addressed, i.e., the hysteresis effect and the long 
relaxation process. In this paper, we adopt a second-order

Fig. 1. Ba tte ry e lectric circuit model

where OCV is the battery open circuit voltage (OCV), 
v; i are the battery terminal voltage and current, respectively. 
R i represents the battery internal resistance. R1C1 is used 
to capture the battery short-term relaxation dynamics, while 
R2C2 for capturing the long-term relaxation process. The
over-potentials across these two RC networks are v1 ; v2 ,
respectively. Battery OCV is the battery terminal voltage when
the battery internal equilibrium is reached in the absence of 
load. Battery OCV depends on the battery SOC, temperature 
and previous charging/discharging history, which is referred 
to as the hysteresis effect and is captured by Vh . However, 
according to [22], battery OCV changes slowly with temper- 
ature, e.g., less than 10mV as temperature changes from -10 
to 50�C. Therefore, the temperature effect on battery OCV is 
not considered here, and

OCV = f (soc) (1)

Battery SOC can be calculated as follows,

soc(k) = soc(k 1) + i(k 1) �Ts =3600=Cn (2)

where Ts is the sampling time in seconds, and Cn is the battery 
nominal capacity in Ampere hour (Ah).

Following the dynamics of a RC network, we have

vl (k) = a l �vl (k 1) + bl �i(k 1) (3)

where a l = exp( Ts =R l =Cl ); bl = R l �(1 a l ); l = 1; 2.
The same battery hysteresis dynamic model proposed in

[13] is adopted here, as follows,

Vh (k) = e �ji (k 1) j �Vh (k 1)+
(1 e �ji (k 1) j) �sign(i(k 1)) �Mh (4)

= ck 1 �Vh (k 1) + dk 1 �Mh
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where Mh is the maximum hysteresis value, and adjusts the
changing rate of Vh .

Combing Eq (1 - 4), the battery electrical submodel can be
described as

xe (k) = Ae (k 1) �xe (k 1) + Be (k 1) (5)

C. Coupled thermoelectric model
By combining Eq (5) and (9), the simplified thermoelectric 

model is given as follows,

x(k) = A(k 1) �x(k 1) + B (k 1)
v(k) = f (soc(k)) + Vh (k) + v1(k) + v2(k) + R i �i(k)

where
xe (k) = [soc(k); v1(k); v2(k); Vh (k)]T

where

(10)

and Ae = diag([1; a1 ; a2 ; ck 1]), Be (k 1) = [i(k 1) � x(k) = [xe (k); x t (k)]

According to Fig 1, battery terminal voltage, v(k) can be 
calculated as,

v = OCV + Vh + R i �i + v1 + v2 (6)

B. Batte ry thermal submodel
A battery thermal model consists of two parts: thermal 

generation and thermal transfer within and outside the battery. 
Althought the heat generation inside the battery is a complex 
electrochemical process, to build a simplified battery thermal 
model, three different heat generation calculation methods are 
widely adopted [6]–[9], [23], i.e.,

Q1 = R i �i2

while Q1 only considers the heat generation over the battery 
internal resistance R i ; Q2 considers the heat generation caused 
by the over-potentials such as v1 ; v2 ; Vh ; Q3 further takes into 
consideration of the heat generation due to entropy change 
within the battery [9].

Assume that the battery shell temperature and internal
temperature are both uniform, and heat generation is uniformly 
distributed within the battery. Heat conduction is assumed to 
be the only heat transfer form between the battery internal and 
shell, and between the battery shell and the ambience.

The resulting simplified battery thermal submodel is given
as follows,

Cq1 �
dTi n = Q j k1 �(Ti n Ts h ); j 2 f 1; 2; 3g

Cq2 �
dTs h = k1 �(Ti n Ts h ) k2 �(Ts h Ta m b)

where Tin and Ts h are battery internal and shell temperature, 
respectively; Ta m b is the ambient temperature; Cq1 , Cq2 are 
the battery internal and shell thermal capacity, respectively; Q j 
is the heat generation rate; k1 and k2 are the heat conduction 
coefficients between the battery internal and the shell, and 
between the battery shell and the ambience, respectively.

Eq (8) can be discretized and reformulated as

x t (k) = At (k 1) �x t (k 1) + B t (k 1) (9)

x t (k) = [Ti n (k); Ts h (k)]T

1 Ts �k1=Cq1 Ts �k1=Cq1
Ts �k1=Cq2 1 Ts �(k1 + k2)=Cq2

B t (k 1) = [Ts =Cq1 �Q j (k 1); Ts =Cq2 �k2 �Ta m b]T

A(k 1) = blkdiag(Ae (k 1); At (k 1))

B (k 1) = [Be (k 1); B t (k 1)]

Note that Ts h is a model state as well as a model output, 
since it is directly measurable.

III. TES T DATA

The test system includes a charger, an electric load and the 
temperature is controlled by a thermal cabinet, as shown in 
Fig 2. The Li-ion battery used in this paper is a prismatic 
LiFePO4-Graphite battery purchased from the open market. 
The battery structure includes the outside shell, i.e., the battery 
can made of Aluminium, and the internal layers which can 
be further divided into three identical sub-cells connected in 
parallel. Two thermocouples are attached to the battery shell 
surface, and another thermocouple is inserted into the center 
area between sub-cell 1 and sub-cell 2.

Fig. 2. The ba tte ry tes t sys tem configura tion

The battery usable capacity and internal temperature are 
firstly characterized experimentally at room temperature before 
and after inserting the thermocouple in order to study whether 
the inserted thermocouple affects battery performance. The 
results are shown in Table I, where TC stands for the inserted 
thermocouple, and 1C and 2C capacity stand for battery usable 
capacity at 10A and 20A discharging currents. As it can be 
seen, the effect of the inserted thermocouple on the battery 
usable capacity (i.e., energy density) and internal resistance 
(i.e., power density) is negligible. Note that R i stands for 
the series internal resistance which does not vary with SOC. 
Battery usable capacity usually drops when the load current 
increases. However, according to Table I, the battery usable

Ts =3600=Cn ; b1 �i(k 1); b2 �i(k 1); dk 1 �Mh ]T

dT

Q2 = i �(v OCV)

Q3 = i �(v OCV) + i �Ti n �
dOCV

i n

(7)

dt

dt

(8)

where

� �
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capacity increases slightly when the load current varies from 
10A to 20A, which is caused by the higher heat generation 
rate and thus higher battery temperature when the 20A current 
is applied.

TABLE I
BATTERY CAPACITY AND INTERNAL RES IS TANCE TES T

1C Capacity (Ah) 2C Capacity (Ah) R i (m )
Before TC 10.460 10.511 13.5
After TC 10.425 10.433 13.5

1
5
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the standard hybrid pulse power characterization (HPPC) test 
as shown in Fig 3 under five different ambient temperatures

500 1000 1500 2000 2500
time /s

(i.e., [0, 10, 23, 39, 52]�C).
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Fig. 6. Ba tte ry fas t discharging tes t da ta with forced wind convection

The same method to determine the battery OCV and hys- 
teresis proposed in [24] is used here. We take the battery 
voltage after one hour relaxation as the battery charging and
discharging OCV, as shown in Fig 7. Their mean value is

0 0.5 1 1.5 2 2.5 3 3.5 4
time /s

x 104

Fig. 3. HPPC discharging tes t under 23 �C : te rmina l current and voltage
the charging OCV and the discharging OCV is taken as the 
hysteresis.

50
current

4 3.4

0
voltage

3
3.3

3.2 discharging OCV
9100 9200 9300 9400 9500 9600 9700 9800 9900 10000
9100 9200 9300 9400 95time /s600 9700 9800 9900 10000 3.1

Fig. 4. HPPC discharging tes t under 23 �C : one zoomed segment

Besides, two fast discharging tests are run on the battery 
under 27�C ambient temperature, as shown in Fig 5 without 
forced wind convection and in Fig 6 with forced wind con- 
vection, respectively, as a comparison.

a

2000 4000 6000 8000 10000 12000
time /s

Fig. 5. Battery fas t discharging tes t da ta without forced wind convection

IV. MODEL IDENTIFICATION

A. Electric submodel identifica tion

Under laboratory test conditions, battery terminal current 
and voltage can be accurately measured. Then battery SOC 
can be calculated by current integration method as in Eq (2).

Then the battery electrical properties are characterized using
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The other parameters of the electric circuit model are iden- 
tified by fitting the test data. Note that each test data segment 
(as shown in Fig 4) is used to identify one set of model 
parameters at that specific SOC and temperature level. The 
simulation error minimization method is used in this paper for 
training the battery electric submodel [25]. To obtain a better 
model accuracy and stronger consistency, simulation error 
minimization based model parameter identification methods 
are preferred over conventional identification methods which 
minimize the one-step-ahead prediction error in application 
contexts (e.g., predictive control) where model accuracy is 
required over a wide horizon [26].

According to Eq (3), the over-potentials across the two RC
networks can be calculated as,

k 1

and Vh (k) can be calculated using Eq (4) as follows,

X

Y

ak
l

1 j
l

X Y

vl (k) = ak 1vl (1) + bl �
j = 1

�i(j ); l = 1; 2

Vh (k) =
k 1

cj �Vh (1) + Mh �
k 1

dm

k 1

cj
j = 1 m = 1 j = m + 1
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Then according to Eq (6), the simulation error is formulated 
as follows,

e(k) = v(k) f (soc(k)) Vh (k) v1(k) v2(k) R i �i(k)

and the cost function is

0.0
4

0.0
3

0.0
2

0.0
1

0.01

0.005

0
0.78 0.8 0.820.840.86

0 Deg
10 Deg
23 Deg
32 Deg
52 Deg

M SE =
1
N

XN

k= 1

e2(k) (11)
0

0 0.2 0.4 0.6 0.8 1
soc

where N is the length of the test data.
Note that the parameters in the above model include nonlin-

ear ones, e.g., a l ; and linear ones, e.g., bl ; Mh ; R i , and the
gradient or Hessian information that are needed for parameter
optimization are difficult to calculate. Therefore the hybrid 
parameter optimization method proposed in [24] is adopted 
in this paper. The nonlinear parameters are optimized by 
the TLBO method and linear parameters by the least square 
method. The least square method is nested in the TLBO 
procedure to reduce the parameter dimension and improve the 
convergence speed. The details about the hybrid optimization 
method can be found in [24].

The identified model parameters are shown in Fig 8 to 
Fig 10. The results reveal that 1) R i mainly depends on 
the battery internal temperature (only slight increases at low 
SOC); 2) R1 ; R2 depend on both the battery SOC and internal 
temperature; 3) at low SOC level, R1 ; R2 show a noticeable 
increase in value; 4) the time constant of the R1C1 network,
�1 = R1 �C1 , depends on the battery SOC. It is clear that,
as the temperature increases, the battery internal resistances
R i and R1 ; R2 decrease. The noticeable increase of R1 ; R2 at 
very low SOC levels (as shown in Fig 9) can be verified by
the noticeable voltage drop at low SOC levels (as shown in 
Fig 3). We can also infer that these varying battery electric 
parameters will in turn affect the heat generation rate inside 
the battery based on Eq (7). In summary, the temperature has 
significant effects on parameters in the battery electric model, 
which has to be considered in order to improve the modelling 
and state estimation accuracy.

Mh ; and �2 = R2 �C2 are kept constant. Mh = 0:02; =

Fig. 9. The e lectric circuit model parameter identifica tion a t diffe rent 
SOC and tempera ture leve ls : R 2 .
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Fig. 10. The e lectric circuit model parameter identifica tion a t diffe rent 
SOC and tempera ture leve ls : R i and �1 .
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Fig. 8. The e lectric circuit model parameter identifica tion a t diffe rent 
SOC and tempera ture leve ls : R 1

Then, part of the electric circuit model identification results 
are shown in Fig 11. The root mean square error (RMSE) 

at 80% SOC and 10% SOC are about 3 mV and 10 mV,
respectively. At a lower SOC level, the battery shows stronger
non-linearity, thus higher modelling error occurs.
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B. Thermal submodel identifica tion

The test data shown in Fig 5 (without forced wind con- 
vection) is used for thermal model identification. The heat
generation results using the three different calculation methods
in Eq (7) are compared in Fig 12. The dOCV=dTi n values 
given in [9] is used here. As can be seen, while Q1 is
noticeably smaller than Q2 and Q3 , the difference between
Q2 and Q3 is not big (mostly less than 10%). Since the
temperature effect on the battery OCV is not considered in
this paper, Q2 is adopted as the heat generation inside the

constant k2 1.51 0.695 2.31 0.714
varying k2 0.90 0.469 1.02 0.467

here: 1) constant k2 ; 2) time-varying k2 , i.e., k2 = k2;1 + k2;2 �
(Ts h Ta m b).
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parameters : Ti n ; Ts h

Fig. 13. Thermal modelling results with constant k2 .
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Fig. 14. Thermal modelling results with time-varying k2 .

Based on the measured Ti n , Ts h , and the calculated Q2 , Eq
(9) can be identified using the least square method.

Note that while we assume that battery thermal properties 
Cq1 ; k1 ; Cq2 are kept constant (according to [27], battery 
specific heat capacity is independent of SOC and increases 
slightly with temperature; battery cross-plane thermal conduc- 

tivity is independent of temperature but depends on SOC.), 
k2 certainly depends on the heat dissipation condition, such 
as cooling wind speed and temperature. According to [23],
k2 also increases with this temperature gradient Ts h Ta m b.
To take this effect into consideration, two cases are compared

TABLE II
BATTERY THERMAL S UBMODEL IDENTIFICATION RES ULTS

Modelling
Results

Ti n max
error

Ti n RMSE Ts h max
error

Ts h
RMSE
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Fig. 16. Kalman filte r results assuming constant e lectrica l 
submodel
parameters : SOC

The thermal modelling results are shown in Fig 13 for 
constant k2 and Fig 14 for time-varying k2 , respectively. The 
modelling results are summarized in Table II. As shown, when 
the time-varying nature of k2 is taken into consideration, the 
model accuracy is improved noticeably.

Finally, the identified battery thermal model parameters 
are

Cq1 = 288:77; Cq2 = 30:8;
k1 = 1:7312; k2;1 = 0:3205; k2;2 = 0:0028

V. KALMAN F ILTER

After the battery model is identified, it can be used for 
battery internal states estimation. Note that in Eq (10), battery 
behaviour is described using a state-space equation. Therefore, 
the popular EKF method can be used for the states estimation. 

As discussed above, k2 depends on the heat dissipation 
condition. To deal with this, one approach would be to 
characterize k2 off-line under different operation conditions 

and tabulate the results. The tabular can then be used 
for

(12)

http://www.bestgopower.com/technology/documents/temperature-test.html
http://www.bestgopower.com/technology/documents/temperature-test.html
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realtime applications. However, to build such a table requires 
many running tests which is time consuming. In this paper, 
an joint EKF is adopted to simultaneously estimate both the 
model states (x in Eq (10)) and time-varying model parameter 
(k2) in realtime [13], [24].

Take k2 as another model state, and the augmented model 
state equations become,

xa (k) = Aa (k 1) �x(k 1) + Ba (k 1) (13)

where
xa (k) = [x(k); k2(k)]

Aa (k 1) = blkdiag(A(k 1); 1)

Ba (k 1) = [B (k 1); 0]

Then k2 can be estimated along with other model states.
A detailed implementation procedure of the joint EKF 

method can be found in [13], [24].
The battery fast discharging test data with forced wind con- 

vection shown in Fig 6 are used for validation of the proposed 
internal states estimation method. In order to demonstrate 
that it is important to consider the couplings between battery 
thermal and electrical behaviours, two different scenarios 
are considered and compared, one assuming constant battery 
model parameters and the other considering the interactions. 
The system states, i.e., xa in Eq (13) which includes both 
electrical states (i.e., battery SOC, over-potentials across RC 
networks, and hysteresis voltage), and thermal states (i.e., in- 
ternal temperature and surface temperature), and time-varying 
model parameter (i.e., heat dissipation level k2), are estimated 
in both cases.

A. KF results based on the e lectrica l submodel with con- 
s tant parameters

The values of the constant parameters in the model are given 
as follows

�1 = 15s; R1 = 8m ; R2 = 6m (14)

which are approximated with the corresponding mean values. 
The Kalman filter estimation results are shown in Fig 15

and Fig 16. It is clear that the estimated battery internal
temperature matches well with the measurements during the 
whole testing period. The maximum error and RMSE of Ti n 
estimation are only about 1.48�C and 0.44�C, respectively. 
The SOC estimation RMSE is 2.88%.

Since the battery shell temperature is directly measurable, 
the estimated Ts h results match the measurements perfectly.

The model voltage output is shown in Fig 17, where
two short segments with slight bias error can be observed 
at both the starting and ending stages (around 100s and 
900s, respectively). We believe the bias errors are caused 
by the discrepancy between the adopted constant battery 
model parameters in Eq (14) and the time-varying true model 
parameters shown in Fig 8 to Fig 10.

Fig. 17. Kalman filte r results assuming constant e lectrica l submodel 
parameters : ba tte ry te rmina l voltage

B. KF results cons idering the Ti n and SOC effect on
model parameters

The Kalman filter results considering Ti n and SOC effects 
are shown in Fig 18 to Fig 20. As it is shown, the internal 
temperature estimation results in Fig 18 are quite similar 
to Fig 15. The reason is that in these two scenarios the 
thermal submodels used are the same. The maximum error and 
RMSE of Ti n estimation are only about 1.2�C and 0.47�C, 
respectively. These estimation results are comparable with 
existing results [8], [23], [28], where the RMSE errors lie 
between 0.5 and 2�C.

The battery SOC estimation results are shown in Fig 19. 
As can be seen, the estimated battery SOC converges to the 
correct value quickly. The SOC estimation RMSE value is
2.31%, about 20% improvement compared with that in Fig
16. It is evident that the SOC estimation accuracy in Fig 19 
is higher than Fig 16 during the whole test period.

0 500 1000 1500 2000 2500 3000
time /s

Fig. 18. Kalman filte r cons idering Ti n and SOC effect on the model 
parameters : Ti n ; Ts h .

The estimation results of the time-varying model parameter 
k2 are shown in Fig 20. The initial value of k2 is set to be 0.3. 
As can be seen, the estimated k2 quickly increased to a much 
higher value (i.e., 1.3). After the discharging test ended, k2 
converged to a stable value (i.e., 1.2). Comparing this result 
with Eq (12), we can conclude that the forced wind convection 
increased k2 noticeably from less than 0.4 to 1.2.

During this test, the electrical submodel parameters change 
with the battery Ti n and SOC, and the results are shown in Fig
21. As can be seen, the value of R1 started from about 4m
and increased to over 15m , while the value of R2 increased
from 4m to about 7m . Consequently, the over-potentials
v1 and v2 changed dramatically as the discharging test went
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on. If this effect is not captured, the modelling accuracy will 
be significantly reduced.
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Fig. 19. Kalman filte r cons idering Ti n and SOC effect on the model 
parameters : SOC.

Fig. 20. Kalman filte r cons idering Ti n and SOC effect on the model 
parameters : k2 .

Note that the battery internal resistance R1 ; R2 normally 
will drop as the battery internal temperature increases. How- 
ever, in this fast discharging test, the battery SOC dropped too 
fast and became the dominant factor to increase the internal
resistance. If the battery is heated up at the same SOC, the
decrease of R1 ; R2 becomes more noticeable.

Fig. 21. Kalman filte r results cons idering Ti n and SOC effect on the 
model parameters : e lectrica l submodel parameters R 1 ; R 2 and over- 
potentia ls v1 ; v2 ; Vh .

The battery terminal voltage fitting results are shown in Fig
22. As can be seen, the model outputs match very well with 
the measurements, except for a few error spikes.

Generally speaking, the state estimation performance of 
EKF depends not only on the model accuracy, but also on the 
choice of EKF parameters. According to the above analysis 
and experimental results, we conclude that a better model can 
significantly improve the state estimation accuracy. This has 
been achieved through capturing the effect of SOC and Ti n on 
the battery behaviours using the coupled thermoelectric model. 
It should be noted that some other remedies to improve the 
internal state estimation accuracy have also been proposed, 

such as Dual-Kalman Filter method, RLS + EKF, etc. These 
approaches however can only be more effective with a more
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Fig. 22. Kalman filte r results cons idering Ti n and SOC effect on the 
model parameters : ba tte ry te rmina l voltage.

accurate model as we have proposed in this paper. It is 
also worth noting that due to the higher model accuracy by 
considering the interactions between the battery thermal and 
electrical behaviours, the EKF parameter tuning used in this 
study is much easier. To compare these different approaches 
is beyond the scope of this paper, and it can be a future work.

VI. CONCLUS IONS

A novel method is proposed in this paper to estimate battery 
internal temperature and SOC simultaneously. A simplified 
thermoelectric model is built, including an electrical submodel 
and a thermal submodel. For the thermal submodel, different 
methods for calculating the heat generation inside the battery 
are compared; for the electrical submodel, the effect of bat- 
tery internal temperature and SOC on the battery electrical 
behaviours is characterized and captured. The time-varying 
thermal submodel parameter is also taken into consideration, 
and a joint EKF is applied to estimate the model states and 
time-varying model parameter simultaneously. The proposed 
estimation method is based only on the online measurable 
signals, e.g., battery voltage, current and shell temperature, 
and thus can be implemented in realtime. Test data are 
collected using a LiFePO4 battery. The modelling and internal 
temperature and SOC estimation results has confirmed the 
efficacy of the proposed method.

Future work to further improve the model accuracy may 
consider the following three aspects: 1) variations of thermal 
and electric behaviours between cells within a battery pack;
2) battery ageing and usable capacity reduction with cycling
usage; 3) the temperature effect on battery OCV.
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