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Abstract—This paper introduces Diffusive Representation as a
novel approach to characterize the dynamics of charge trapped
in dielectric layers of microelectromechanical systems (MEMS).
Diffusive Representation provides a computationally efficient
method to achieve an arbitrary order state-space model of the
charging dynamics. This approach is particularly well suited
to analyze the dynamics of the dielectric charge under non-
trivial controls, as in the case of sliding mode controllers. The
diffusive symbol of the experimental structure has been obtained
from open-loop measurements, in which Pseudo Random Binary
Sequences (PRBS) are applied to the device. The obtained model
exhibits good agreement with experimental data and also allows
to model the behaviour of the charge dynamics under excitation
with arbitrary binary signals.

Index Terms—Diffusive Representation, MEMS, dielectric
charging

I. INTRODUCTION

LECTROSTATICALLY actuated MEMS devices have

been used as varactors, resonators and switches in a large
set of applications. Nevertheless, the parasitic charge trapped
in the dielectric layers of these devices produces undesired
effects such as pull-in voltage drift, capacitance-voltage C(V')
curve shifts or even stiction of moveable parts. This serious
reliability problem still hinders the massive commercial use of
these devices [1]. Accordingly, characterization of the charging
dynamics is an important issue that has been studied using
different methods. For instance, in [2] iterative measurements
of pull-in voltage have been used to monitor the charge
evolution with time. However, this strategy alters the amount
of trapped charge and is not compatible with normal operation
of the devices. In [3], the application of bipolar voltages
allowed to monitor C(V') shifts through quasi differential
capacitance measurements. This method allows knowing the
state of the charge without distorting the measurement nor
affecting the normal operation of the device.

This paper improves the work introduced in [3], where the
dynamics of the dielectric charge for the contactless case was
described using a multi-exponential model. The parameters of
this model were obtained with the unconstrained non-linear
minimization Nelder—Mead algorithm. In this paper, however,
the characterization method uses the Diffusive Representation
technique, which is a suitable framework for any diffusive
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physical phenomenon [4], being even able to accurately des-
cribe fractional order models. The use of this type of models is
appropiate since diffusion processes have been associated with
dielectric charging in MEMS [5]. Furthermore, there is a link
in [6] between fractional systems and the typically observed
multiexponential or stretched-time exponential type responses
[2], [7] usually found in dielectric charging.

These behavioural models are particularly useful in the
analysis of dielectric charging control using the tools of sliding
mode controllers [8]. Diffusive Representation has been widely
used in thermal characterization [9] and dielectric polarization
[4], [10], among others. Another key advantage of using Diffu-
sive Representation is the reduction of the computational load
respect other methods, as the model parameters are obtained
with the linear least-squares method. This in particular allows
to increase the model order if necessary, due to the fact that
the identification problem is computationally tolerable.

II. CHARGE CHARACTERIZATION METHOD

This paper uses the voltage waveforms, or symbols BITO
and BIT1, designed for charge characterization and control
in [3], [8], [11], shown in Fig. 1. In BITO, a negative voltage
V'~ is applied to the MEMS for a ’long’ time (1 — §)7}, then
positive voltage VT is applied for a ’short’ time 67, being
0 < 1 and Ty the symbol duration. In BIT1, the same timing
scheme but with opposite voltages is applied. During each
symbol, the capacitance of the device is measured at times
(1—6)Ts and Ty. This allows obtaining a sample of the quasi-
differential capacitance AC' = C(VY)—-C(V")=Ct-C~
at the end of each symbol. AC is related to the voltage shift of
the C(V'), commonly defined as Vyj, = Q4/Cq4, where Q4 and
C, are the total amount of charge trapped in the dielectric and
the dielectric capacitance respectively. For devices working
below pull-in a parabolic C(V') shape can be considered. In
this case the relationship between AC' and Vyy, is [11]:

AC(t) = (VT2 = (V7)) = 2aV, () (VT = V7)) (1)
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Fig. 1. Voltage waveforms, or symbols, for MEMS actuation and sensing.

Capacitance measurements are performed at symbol times (1 — §)7s and 7.
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Fig. 2. Root Mean Square Error evolution of the fittings as a function of the
model order K.

where « is the second order coefficient of the parabolic
function.

In the MEMS used in the experiments of this work, applying
BITO increases the amount of net dielectric charge 4, and
thus the voltage shift V;, whereas applying BIT1 decreases
both Q4 and V.

III. DIFFUSIVE REPRESENTATION

Diffusive Representation theory allows obtaining exact and
approximate state realizations of a wide class of integral
operators of rational or non-rational nature. This representation
method, is an useful mathematical tool for any physical
phenomena based on diffusion [4].

Given a non-rational transfer function, H(p), associated
with a convolution causal operator denoted by H(0:), the
diffusive realization of this operator is expressed by the
following input (u) — output (y) state space realization of
ur— y = H(;)u = h *u of the form [10]:

WD = g€, ) +ult), Y(E0)=0 2
y(®) I3 n(©)w (€, t)de

where £ € R, n(§) is the diffusive symbol of H(9;) and ¢ (&, )
is called the diffusive representation of u(t) € {V,V~}. The
state-variable (¢, t) is a time-frequency representation of the
input only and is the solution to the differential equation of
Eq. (2) [10]. The diffusive symbol 7() is a solution of Eq.
(3) directly obtained from Laplace transform (with respect to
t) [10].

, = n&)
H(jw :/ - d¢ weR 3)
Ge) 0o Jw+¢
The impulse response h := L~ 1H can also be expressed
from 7: [10]
h(t) = / e~*n(€)ds @)
0

and the diffusive symbol can be given also as the inverse
Laplace transform of the impulse response: [10]

n=L"th 5)

In this paper we will consider that the charging dynamics
associated with the application of two voltages, V' and V.
This is described by the following equation that is equivalent
to Eq. (2):

Pt = —eun) +n(e)
b @), HE0)=0  ©
y(®) = Jy (& 0)dE
where 4(t) = 1{,@:“//,— € {1, 0} is the normalized input signal.

n(€)T is the diffusive symbol associated with the actuation of
the device with V' (when @ = 1), while n(£)~ is the diffusive
symbol associated to V= (u = 0).

A discrete approximation of H(0;) can be built discretizing
the continuous variable ¢ into {&x}1<k<x, where K is the
order of the discretized model. This leads to an input — output
approximation u — § ~ y = H(%)u of the form:

dt
Wuld) — —51121/}1@@) + e + Anga(t), Pr(0) =0
gty = Xy ve(t)
where ¢, () = ¢(&x, 1), ny = n(&)* and Ay, = () —1;))
fork=1,--- K.
If the first expression of Eq. (7) is splitted in two state
variables, Eq. (8) is reached:

Ay (t)

)

5 = —&pbp(t) + 1, P9(0) =0
W)~ _gpl(t) +alt),  $E0)=0 ®)
Gt) = St + S8 Amak()

¥Y(t) and i (t) are obtained after resolving the first and
second differential equations from Eq. (8).

Given that the MEMS device can be charged at t = ¢y, some
coefficients, ax, are added to the output §(¢) of the system
which allow to ’forget’ the initial conditions of the device.
The third expression of Eq. (8) is then rewritten as:

K K K
) = Ym0 + 3 Anh () + 3 ape 1) ()
k k 3

This step is necessary, since the device can be charged prior
to starting the measurements and this may result in errors in the
fitting procedure. The values of the coefficients are obtained
together with the values of 1, and Any in the fitting of the
experimental measurements.

The goodness of the approximation will depend on the cho-
sen frequency mesh {&; }1<k<x, usually geometrically spaced
in the band of interest and in concordance with the dynamic
characteristics of the system [9]. The chosen bandwidth for
¢ goes from &5, = 27/T 10 &paw = /2T, where T is
the total duration of the measurements (long enough for the
stabilization of the system), and 7 is the sampling period.
Therefore, the experiment duration and the sampling period set
a limit on the minimum and maximum frequency respectively.
It must be noted that, with a sufficiently dense frequency mesh
it is possible to describe with arbitrary accuracy the response
of any fractional system, therefore other types of response



can be very well approximated with DR [4], for example,
stretched-time exponentials. The same also applies to the effect
of an initial charging in the device, as in Eq. (9).

In particular, the objective of the identification problem is to
infer the finite order diffusive symbols 7, and 7, from experi-
mental data. Let us assume a temporal mesh [t,,]1<p<n € RT,
the matrix A = [[F,, k] [Gnk] [Hnxll, where F, = 92(t,,),
Gur = Yi(tn) and Hyp = e~ér(tn—t0) " and the vector
A" = [[ng]" [Am]T [ax]”]. Note that F, G, H € RV*X and
n,An,a € RX. The solution to the identification problem
is found solving the finite dimensional least-square problem
formulated by [9]:

min [|A% - Y||? (10)
neRK
where Y is the output vector of the measurements, Y' =
[y(to) y(tn)], being y(t,) = AC(t,,) in our case. The
solution to Eq. (10) is classically given by 7§ = [A*A]"1A*Y.
When resolving numerically the integral of Eq. (2), a
logarithmic change of variable is necessary due to the fact
that £ variable is spaced geometrically. Specifically, £ = 10*
and d¢ = (In10)107dz. Taking this into account, the second
expression of the equation becomes:

x1 K
tn) = [ 0(107) 0107, On(10)10%dz % 3 muin(ta)

o k=1
1D
The term \; divides the inferred diffusive symbols, 1, =
Q—:, where A\, = In(10)log(r)&; and r is the ratio of the
geometric sequence of the mesh of £ (€x+1 = 7&k).

IV. EXPERIMENTAL RESULTS

The MEMS, fabricated with standard PolyMUMPS technol-
ogy, is a two-parallel plate structure. The upper plate-electrode
is a polysilicon layer, suspended over 2.75 um of air gap,
followed below by a 0.6 um thick silicon nitride layer and the
doped silicon substrate, which is the bottom electrode. The
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Fig. 3. 6-order diffusive symbols corresponding to the bipolar voltages

V'~ and V7 resulting from pseudo-inversion of experimental measurements
(model M1).
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Fig. 4. Top: time evolution of the quasi differential capacitance from part
II of the experiment (in blue) and the corresponding results obtained from
model M1 from Fig. 3 (in red). Bottom: section between hours 102 and 108
of the time evolution of the experimental and the obtained data with the
corresponding bit symbols applied to the MEMS in that period of time.

plate dimensions are 515x515 um? and the pull-in voltage is
around 14V.
The device is actuated with BITO and BIT1 symbols fol-
lowing a specific pattern. The parameters of the symbols are
T, =15s,6=1/3, a=14fF/V?and VT = -V~ =5V,
The actuation pattern is a Pseudo Random Binary Sequence
(PRBS), chosen because it has a wide spectrum and allows to
improve the quality of the fittings in presence of noise [12].
A six-day experiment has been carried out. It is divided in
two consecutive three-day parts as follows:
o Part 1. For each PRBS symbol, ’0’s or ’1’s, either 40
BITO or 40 BIT1 waveforms are applied to the device.
The total length of the PRBS sequence is 4320 symbols.

e Part II. For each PRBS symbol, 400 BITO or 400 BIT1
waveforms are applied to the device. Now, the length of
the PRBS sequence, different to that of part I, is 432
symbols.

The data from each experiment has been processed sepa-
rately and then compared to see if making an inference from
the data of part I or part II results in different charging models.
In the fitting process, some parameters are set. As both parts
of the experiment have identical duration 7" = 4320 min and
sampling period T; = 1.5s, then the set of frequencies, &,
range from f,,;, = 53% ~AuHz t0 frar = 572”% ~0.1Hz,
and are geometrically spaced. It must be noted that the
experiment should be adapted to the time scale desired in the
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Fig. 5. Time evolution of the absolute error between measured quasi
differential capacitance from part II of the experiment and the corresponding
results obtained with model M1.

prediction capability of the model. This applies to the sampling
frequency and the duration of the experiment.

The results of part I have been treated first. To deter-
mine which is the minimum model order that provides good
adjustment to this experimental data, the evolution of the
root mean square error (RMSE) of the fittings as a function
of the model order has been analyzed. Figure 2 shows the
evolution of the RMSE. As no substantial gain is achieved
in terms of error beyond K = 6, this is the model order
chosen (model M1). It has been observed that there is a good
agreement between fittings and measurements. Figure 3 shows
the diffusive symbols corresponding to the bipolar voltages
applied to the device.

Secondly, the data of part II has been fitted using the same
procedure as with data of part I to obtain model M2 and
no noticeable difference is appreciated. The diffusive symbols
obtained from the pseudo-inversion of the experimental data
allow to model the dynamics of the charge trapped in the
dielectric of the MEMS.

Finally, the input signal applied in part II has been fed into
the model obtained from the measurements of part I (model
M1). The objective is to compare the part I measurements
with the results obtained with model M1. This is made in
order to analyze the real capability of the DR models to
describe the charging dynamics in real measurements. Figure
(4) shows the quasi-differential measurements obtained during
the experiment and the modeled data. The relationship between
AC(t) and the total charge trapped in the dielectric of the
MEMS, Qg, is given in Eq. (1) [3], [8], [11]. To demonstrate
the good matching between experimental and inferred data,
Fig. (5) shows the time evolution of the absolute error,
|AC eas(t) — ACh04e1(t)], along part II of the experiment.
As it can be observed, the error is approximately constant over
time.

V. CONCLUSION

A new method based on Diffusive Representation to char-
acterize the dynamics of the parasitic charge trapped in the

dielectric layer of MEMS devices has been presented. A
dynamical finite-order model has been extracted from open-
loop measurements using pseudo random binary sequences,
which are useful in frequency domain system identification.
The Diffusive Representation model agrees with the experi-
mental data and has been successfully applied to model the
behaviour of the charge dynamics of a real device. These state
space models are very well suited to describe the behaviour
of diffusive systems under non-trivial controls.
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