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Identification and Robust Control of the
Nonlinear Photoelectrothermal Dynamics of LED

Systems
Jianfei Dong and Guoqi Zhang, Fellow Member, IEEE

Abstract—In lighting systems consisting light emitting
diodes (LEDs), excessive temperature is a main cause
of degraded luminous efficacy, which leads to reduced
average illuminance and distorted illumination rendering.
Modeling the thermal dynamics of LEDs is hence essential
in designing thermal dissipators and controllers for main-
taining constant illuminance or chromaticity. In the existing
literature, both physical modeling and system identification
have been proposed, which all find the dependence of the
temperature on the input power. When the power fluctu-
ates, e.g. due to dimming control, the thermal dynamics
becomes nonlinear. Moreover, when a photoelectrothermal
(PET) model is used in control synthesis, the nonlinearity
due to the product of the temperature dependent efficacy
and the input power must be considered. These nonlin-
earities are either ignored or linearized in most existing
methods. The main contribution of this work is treating the
aforementioned nonlinearities in a linear parameter varying
(LPV) framework. First, the nonlinear thermal dynamics is
identified by LPV system identification techniques. Then, a
controller to track reference illuminance is designed by H∞

control techniques to be robust to both the temperature and
the disturbance from ambient light. The identification data
and the designed controller are collected from and verified
on real experimental setup.

Index Terms—Light emitting diodes (LEDs), photoelec-
trothermal (PET) dynamics, nonlinear systems, linear pa-
rameter varying (LPV), system identification, H∞ control.

I. INTRODUCTION

L IGHTING systems based on light emitting diodes (LEDs)
have several advantages over conventional light sources

like higher efficiency and controllable emission properties
[1], and hence hold the promise of providing energy-efficient
dynamic and interactive artificial illumination.

The controllable emission properties of LEDs can be at-
tributed to their high switching frequency in the order of mega
Hertz. By switching the LEDs on and off with a controlled
duty cycle, the luminous flux can be regulated. To enable
accurate dimming control, many literatures have been devoted
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to driver design methods, e.g. [2]–[6]. On the other hand,
assuming perfect dimming control, light distribution models
have been studied, e.g. in terms of spatial distribution [7]
and color rendering [8]. The methods to control the light
distribution are developed in [9]–[12] to generate desired
spatial illumination patterns and at the same time, improving
the energy efficiency. Besides, control methods have also been
developed in [13] to maintain the color stability of LED lamps.

Another property of LEDs is that their luminous efficacy
gradually decreases as the temperature at their p-n junc-
tions rises [14]. Besides, thermal cycling may cause solder
interconnection fatigue damage in LED light sources [15].
Therefore, the recent research has been directed to model
the thermal dynamics of LEDs, and to analyse their changed
optical properties due to temperature changes. For instance,
LED thermal models have been used in analysing the thermal
resistance and optical power loss in [16], in predicting the
correlated color temperature (CCT) and color rendering index
of phosphor-coated white LEDs in [17], and in reducing color
variation of white LEDs in [18].

In practice, thermal compensation is usually based on a
lookup table of the relationship between the junction temper-
ature and the luminous efficacy. However, this lookup table
is usually calibrated at some thermal equilibrium states, and
cannot capture the transient dynamic response of the LEDs.

Modeling the thermal dynamics by system identification
techniques has been proposed in [19]–[21]. The thermal model
is parameterized as a first-order transfer function, and identi-
fied at a set of different input power levels. The zeros, poles
and gains of the transfer functions are all different among the
different conditions. This indicates that the transfer function is
not time invariant, but instead depends on the input power. The
identified zeros, poles and gains at different input power levels
are averaged in [20], resulting in a linear time invariant (LTI)
model. The averaged LTI model cannot describe the power
dependence of the LED thermal dynamics, especially when the
parameters largely vary in the operating range of the power.
Therefore, in [21], the possible variation of the parameters
from the averaged LTI model is taken into account in the
controller design in terms of model uncertainties by means
of robust control techniques.

Instead of averaging, the parameters under different op-
erating conditions can be interpolated, and described by a
polynomial function of the operating conditions. This is known
as interpolation based system identification of linear parameter
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varying (LPV) systems [22]–[26]. In lighting applications,
the input power usually do not change abruptly, but instead
in a stepwise fashion. Besides, the LED temperature also
changes smoothly when the input power changes. Therefore,
the interpolation based LPV identification approach is suitable
for identifying the thermal dynamics of LEDs.

In terms of controlling LED lighting systems, one track of
research is by feed forward control, e.g. in [9]–[11]. Another
track is by feedback control, e.g. PID type of control laws
in [19], [27], using loop shaping techniques based on linear
LED models. Optimal control methods have also been applied
to control LEDs. In [21], the robust control methods are devel-
oped to deal with the uncertainties in the PET model. In [28],
LQG control method is applied with an observer to estimate
the disturbance due to temperature. However, these work has
not addressed two issues in controlling the PET dynamics of
LEDs. First, the product of the temperature dependent efficacy
with the input power results in another form of nonlinearity.
This nonlinearity is either ignored or linearized in the methods
aforementioned. It is considered in [29], where a nonlinear
model predictive control scheme is developed. This method,
however, requires solving a nonlinear programming problem
online, which is demanding for the microcontrollers (MCUs)
commonly used in LED lamps. Second, the disturbance of the
ambient light, i.e. the light from other artificial or natural light
sources that is not controllable, to the illumination distribution
is not considered. This work aims at solving the nonlinearity
and robustness issues in the control problem, and deriving a
controller that is easy to implement on a low-end MCU.

In this paper, we will investigate the system identification
and robust control methods in a unified LPV framework for the
nonlinear PET dynamics of LED systems. The rest of the paper
is organized as follows. In Sec. II, we describe the nonlinear
PET dynamics, and formulate the identification and control
problem to be investigated. The nonlinear thermal dynamics is
identified by interpolation based LPV identification techniques
in Sec. III. The robust control design method is proposed and
tested in Sec. IV. Sec. V concludes the paper.

II. NONLINEAR PHOTOELECTROTHERMAL DYNAMICS

A. Description of the nonlinear dynamics

The temperature of LEDs is determined by the input power
to the LED devices. In [20], [21], [30], the dynamic tempera-
ture model of LEDs is parameterized as a first order transfer
function. In [20], [21], this transfer function is identified at
a set of different input power levels. Its zero, pole and gain
are all different among the different conditions, indicating the
dynamics is not time invariant, but depends on the input power.

In industrial applications, LED lamps are powered by either
constant voltage or constant current drivers. The input power is
usually not directly controlled. In dimming control, the power
is regulated by controlling the duty cycles of pulse width mod-
ulated (PWM) current signals, with constant amplitude. Since
the natural frequency of LEDs is usually in the magnitude of
mega Hz and much higher than the fundamental frequency
of the PWM dimming signals (usually a few kilo Hz), the
transient response of the luminous flux to the PWM signals

can be ignored [31]. The flux emitted by an LED in one
period of the PWM signal is hence proportional to the average
current flowing through it [9], [32], which equals the product
of the duty cycle and the current amplitude. For control and
identification purpose, it is hence more convenient to take the
duty cycle of the PWM signals as the input to the LED model.

In this work, both the temperature model and illuminance
model of LEDs are described by state space models, where the
duty cycle plays the role of not only the input variable, but
also a key factor that determines the model parameters. In what
follows, the temperature is denoted byt. Time is represented
by τ . Luminous flux and illuminance are respectively denoted
asΦ andy. The duty cycle of the dimming control signal is
represented byu. Then, the first order state space temperature
model of LEDs can be written in the following form.

ẋ(τ) = Au · x(τ) +Bu · u(τ), (1a)

t(τ) = Cu · x(τ) +Du · u(τ). (1b)

Here, x(τ) is the state variable; andAu, Bu, Cu, Du are
parameters that depend on the input duty cycle, hence with
the subscript “u”. The duty cycle0 ≤ u(τ) ≤ 1. Note that
since the duty cycle does not instantaneously influence the
temperature of the LEDs, the direct feed through term will
not be considered in what follows for brevity, i.e.Du = 0.

The total luminous flux emitted from an LED light source
at a certain duty cycle decays approximately linearly (with
negligible error) with increasing temperature [16], [18], [20],
[30]. Let Φ denote the luminous flux, andΦ0 denote the flux
whenu(τ) = 1 at the temperaturet = 0oC. The luminous flux
with an arbitrary duty cycleu and at an arbitrary temperature
t can be written as

Φ(u, t) = (Φ0 + ρ · t) · u, (2)

whereρ < 0 is the constant decaying rate of the luminous
flux, ast increases.

However, luminous flux is usually measured by an integrat-
ing sphere. For real time control of practical lighting systems,
it is the illuminance, i.e. the luminous flux per unit area, that
is measured by a photosensor. In lighting systems, when the
relative positions of a lamp and a photosensor are fixed, the
illuminance is proportional to the total luminous flux of the
lamp [32]. Hence, the decaying illuminance with increasing
temperaturet can also be expressed by a linear equation, i.e.

y(u, t) = (y0 + η · t) · u, (3)

wherey0 is the illuminance withu(τ) = 1 at the temperature
t = 0oC; andη is the constant decaying rate.

Substituting the temperaturet defined by the dynamic model
(1b) into Eq. (3), the dynamic response of the illuminance to
the input duty cycle and the temperature can be written as

y(τ) = [y0 + ηCu · x(τ)] · u(τ). (4)

On the other hand, ambient light also has to be taken
into account. We shall refer to the ambient light as the
disturbance to the system, and denote it byw in what follows.
Incorporating the disturbancew into (4), the state-space model
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describing the response of the illuminance to the duty cycle
and ambient light shall take the following form.

ẋ(τ) = Au · x(τ) +Bu · u(τ), (5a)

y(τ) = [y0 + ηCu · x(τ)] · u(τ) + w(τ). (5b)

The dynamics is obviously nonlinear.

B. Formulation of the Problems

With the nonlinear dynamics described, we are now ready
to state the two main problems to be solved in this work.

Problem 1:Given a set of measured temperature data and
their corresponding input duty cycles, identify a dynamic
thermal model in the state-space form of (1).

Problem 2: Given a dynamic model in the state-space
form of (5), design a controller which tracks the reference
illuminance, and is robust to the ambient light disturbancew.

The block diagram of the control loop is shown in Fig. 1.

Fig. 1. The feedback control loop for tracking the reference illuminance.

III. SYSTEM IDENTIFICATION OF THE NONLINEAR

PHOTOELECTROTHERMAL DYNAMICS

This section will solve Problem 1, and identify the nonlinear
thermal dynamic model of (1).

A. LPV model description

The state space model (1) contains the parameters that
depends on the input duty cycles, i.e.Au, Bu andCu; and
is hence nonlinear. In this section, the nonlinearity will be
described by the following linear parameter varying (LPV)
model, whose parameters depend on scheduling parameters.

ẋ(τ) =

nµ
∑

i=1

µi(τ)Ai · x(τ) +

nµ
∑

i=1

µi(τ)Bi · u(τ), (6a)

t(τ) =

nµ
∑

i=1

µi(τ)Ci · x(τ). (6b)

Here, the weightsµi(τ), i = 1, · · · , nµ, are real numbers,
and depend on the scheduling parameters to be defined later.
{Ai, Bi, Ci}, i = 1, · · · , nµ, are a set of model parameters to
be identified from experimental data.nµ is the number of these
parameters. For instance, the input dependent state matrixAu

can be written as,Au =
∑nµ

i=1 µi(τ)Ai.
The scheduling parameters that determine the weights may

be the states, the inputs, and/or the outputs, and are measur-
able. These parameters may have multiple dimensions, and are
denoted byθj , j = 1, · · · , nθ. In [22], [23], the weightsµi(τ),

i = 1, · · · , nµ are defined as the monomials of the scheduling
parameters, i.e.

µi(τ) = θ
κi,1

1 (τ) · θ
κi,2

2 (τ) · · · θ
κi,nθ
nθ (τ),

whereκi,j is a natural number; and0 ≤
∑nθ

j=1
κi,j ≤ N with

N representing the polynomial degree.
For a set of fixed scheduling parameters at an arbitrary

time instant, at a fixed working condition, the model (6)
is linear time invariant (LTI), and can be identified by any
classical system identification techniques [33]. This LTI model
is called a local model. When a number of different sets of
scheduling parameters and their corresponding local models
are available, the unknown parametric matrices,{Ai, Bi, Ci},
can be estimated by fitting an interpolation function.

Specifically in the LED thermal dynamics, since the para-
metric matrices of the model (1) depend on the input duty
cycles, it is natural to takeu as a scheduling parameter.
Besides, in lighting applications, the dimming commands are
manually input via a control terminal. The changes in dimming
level hence cause the duty cycle to change in a stepwise
fashion. This motivates to use the change between the two
adjacent different duty cycles as another scheduling parameter.
In summary, we consider two scheduling parameters that are
related to the duty cycles, i.e.

{

θ1(τ) = up(τ),
θ2(τ) = u(τ) − up(τ).

(7)

Here,up(τ) represents the duty cycle in the nearest past time
when the duty cycle is different from the current one. In other
words, up(τ) = u(τp) for the largestτp, satisfyingτp < τ
and u(τp) 6= u(τ). For brevity, we shall refer toθ1(τ) as
the previous duty cycle, andθ2(τ) as the changed duty cycle.
Obviously,0 ≤ θ1 ≤ 1, −1 ≤ θ2 ≤ 1 and0 ≤ θ1 + θ2 ≤ 1.

The benefit of using two scheduling parameters, instead of
just the duty cycle, is that the step size of each dimming
action is also taken into account, and can hence better track
the transient response, when the duty cycle changes.

The key in LPV identification techniques is to properly find
a set of fixed local conditions, which cover the full working
range [26]. The local conditions are usually found on a grid of
the scheduling parameters [22], [26]. For the two scheduling
parameters of the LED thermal dynamics defined in Eq. (7),
a step size of0.2 is taken for bothθ1 andθ2. There are hence
totally 15 local models, corresponding to the following local
conditions, i.e. LM1:{θ1 = 0, θ2 = 0.2}, LM2: {θ1 = 0, θ2 =
0.4}, LM3: {θ1 = 0, θ2 = 0.6}, LM4: {θ1 = 0, θ2 = 0.8},
LM5: {θ1 = 0, θ2 = 1}, LM6: {θ1 = 0.2, θ2 = 0.2}, LM7:
{θ1 = 0.2, θ2 = 0.4}, LM8: {θ1 = 0.2, θ2 = 0.6}, LM9:
{θ1 = 0.2, θ2 = 0.8}, LM10: {θ1 = 0.4, θ2 = 0.2}, LM11:
{θ1 = 0.4, θ2 = 0.4}, LM12: {θ1 = 0.4, θ2 = 0.6}, LM13:
{θ1 = 0.6, θ2 = 0.2}, LM14: {θ1 = 0.6, θ2 = 0.4}, LM15:
{θ1 = 0.8, θ2 = 0.2}.

For the weights defined in Eq. (7), up to the fifth
order monomials are tried. The following monomials are
found to be the best bases to form the polynomial in-
terpolation function in terms of the fitting accuracy, i.e.
1, θ1, θ2, θ1θ2, θ

2
1, θ

2
2 , θ

2
1θ2, θ

3
1 , θ

3
2. So nµ = 9; and there are

15 local models with15 different pairs of poles and gains.
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B. Identifying a set of LTI local models

To identify an LTI system, a wide range of classical methods
can be used. We choose to use the ARX (autoregressive with
exogenous inputs) method [33], because it turns out to be
superior to the other classical methods in this specific problem
of identifying local LED thermal models.

The excitation signals are chosen to be a pseudo-random
binary sequence (PRBS), shifting values betweenθ1 and
θ1 + θ2. Therefore, both dimming up and dimming down are
described by the same local model. The rising temperature as
dimming up can be followed by the increase in the input duty
cycle u; while the descending temperature as dimming down
can be tracked by the decrease in it.

The identified first order local models can be realized in the
following state-space form.

ẋ(τ) = Aj · x(τ) + u(τ), (8a)

t(τ) = Kj · x(τ). (8b)

Here, Aj ,Kj are respectively the pole and gain of the j-th
local model. This model is equivalent to the transfer function,
Kj

s−Aj
.

C. Interpolation of the local models

Based on the local models (8), the LPV model (6) of the
LED thermal dynamics shall take the following form.

ẋ(τ) =

nµ
∑

i=1

µi(τ)Ai · x(τ) + u(τ), (9a)

t(τ) =

nµ
∑

i=1

µi(τ)Ki · x(τ). (9b)

For brevity, we shall still denoteAu =
∑nµ

i=1 µi(τ)Ai and
Cu =

∑nµ

i=1 µi(τ)Ki, in what follows.
Denote the identified pole and gain of the j-th local model

respectively byÂj andK̂j , j = 1, · · · ,M , whereM denotes
the number of different local models. The unknown parame-
ters,Ai,Ki, i = 1, · · · , nµ, can be estimated by solving the
following least squares problem [22].

minAi,Ki,i=1,··· ,nµ

∑M
j=1

[

(

Âj −
∑nµ

i=1 µi,jAi

)2

+

(

K̂j −
∑nµ

i=1 µi,jKi

)2
]

,
(10)

Here, µi,j is the i-th weight evaluated at the j-th local
condition. Specifically in the LED thermal dynamics,M =
15, nµ = 9; andµi,j are calculated by

µ1,j = 1, µ2,j = θ1,j , µ3,j = θ2,j , µ4,j = θ1,jθ2,j , µ5,j = θ21,j ,
µ6,j = θ22,j , µ7,j = θ21,jθ2,j , µ8,j = θ31,j , µ9,j = θ32,j ,

with θ1,j , θ2,j representing the two scheduling parameters
measured at the j-th local condition.

As a summary, the system identification algorithm of the
LPV model (6) take the steps as shown in Fig. 2.

D. Experimental setup

The junction temperature of LEDs is difficult to measure. In
[18], an infrared thermal imaging system is used to measure
the surface temperature of the LEDs, which is however slightly
lower than the junction temperature. In [21], the junction
temperature is not directly measured either, but instead es-
timated by pulse forward voltage method [34]. To avoid the
difficulty in measuring the junction temperature, we measure
the temperature on the LED board instead. Another benefit of
measuring the board temperature is that the heat dissipation
of the board is also incorporated in the thermal dynamics, and
hence does not have to be modelled alone. Note that the board
temperature model depends on several parameters, including
the thermal resistance respectively between the junction and
the soldering point, between the soldering point and the board,
and from the board to the ambient environment. The influence
of these parameters is manifested in the measured data, and
can in turn be included in the identified model.

The experimental setup is shown in Fig. 3, whose compo-
nents are listed in Table I. The LEDs are low power with a
CCT of 3000K, and are soldered on a MCPCB board. The
picture of the LED board and its electrical diagram are shown
in Fig. 4. Five strings of three serially connected LEDs are
connected in parallel. The LED board is powered by a constant
current driver, supplying a380mA current to the entire board.
The voltage dropped across each string of serially connected
LEDs is 8.9V . In average, the amplitude of the PWM current
signal input to each LED is76mA. The fundamental frequency
of the PWM signal is set at 1000Hz to avoid flicking. The
voltage dropped across each LED is about2.97V . Both the
current and voltage are within the rated operating range of
this type of LED.

The dim port of the driver is connected to an MCU, which

Fig. 2. LPV system identification algorithm for LED systems.
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converts the duty cycles to PWM signals. The temperature is
measured by a thermal couple glued at the center of the LED
board. Another thermal couple is attached in its neighborhood,
measuring the ambient temperature. The illuminance from the
LEDs is measured by a photodiode. The LED board and the
photodiode are mounted in an opaque chamber. The distance
between them is0.8 meters.

In the identification experiments, 15 different PRBS signals,
corresponding to the 15 different local conditions, are used
to excite the LED thermal dynamics. Each PRBS sequence
contains 3600 duty cycles, running for 3600 seconds. The ex-
periment is repeated at each local condition, in order to collect
the data to identify each local LTI model. At the beginning
of each experiment, the temperature of both the LED board
and the chamber is restored to the indoor temperature. The PC
stores the PRBS signals in its memory. The sampling interval
is set at one second. At each second, the PC reads a duty cycle,
and sends it via a USB port to the MCU. In the meantime,
the PC sends a reading request via another USB port to the
multimeter to read the output from the two thermal couples.
The two temperature values are sent back via the same USB
port. These steps are completed in one second within one
sampling interval. The measured ambient temperature is only
used to track the temperature changes in the environment, and
is not used in the system identification.

Fig. 3. Experimental setup to measure the temperature response and
the illuminance.

E. Identification results

Based on the 15 sets of data measured from the setup,
15 pairs of poles and gains respectively corresponding to the
15 local LTI models are identified. Then, the least squares
problem (10) is solved using the identified poles, gains and
the corresponding weights. The fitted poles and gains of the
15 local models by the interpolation function are respectively
shown in Figs. 5 and 6. The root mean square (RMS) error of
the interpolated poles and gains are respectively1.41× 10−4

and8.05× 10−3, both less than5% of their average values.

(a) (b)

Fig. 4. The LED board used in the experiments. (a) Photo. (b) Electrical
diagram.
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Fig. 5. Fitted poles by the interpolated polynomial function. Dots: poles
of the identified local models. Circles: interpolated poles.

The interpolated poles and gains as the functions of the
two scheduling parameters, i.e. the previous duty cycle and
changed duty cycle, are further illustrated in Figs. 7 and 8.
Clearly, both the poles and gains are nonlinear functions of
the two scheduling parameters. Moreover, it can be seen from
Fig. 7 that the fastest pole appears whenθ1 = 0 andθ2 = 0.8;
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Fig. 6. Fitted gains by the interpolated polynomial function. Dots: poles
of the identified local models. Circles: interpolated poles.
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TABLE I
COMPONENTS OF THE EXPERIMENTAL SETUP

Type Name Parameters
LED Everlight 67-21S/KK2C-H3030M31N42936Z6/2T CCT: 3000K, forward current:75 ∼ 100mA, forward voltage:2.9 ∼ 3.6V

Multimeter Keithley 2700 and Keithley 7700 multiplexer temperature range:−200 ∼ 1820
oC

Thermal couple OMEGA K-SM-TT-36-36 range:−200 ∼ 1372
oC, precision:0.001oC

MCU STM32F030C8T6 48MHz frequency, 64KB flash memory
Photodiode Hamamatsu S7686 response time: 0.5 microseconds

while the slowest appears whenθ1 = 0 andθ2 = 0.2. Besides,
larger step changes in the duty cycle generally yield faster
poles. On the other hand, it can be seen from Fig. 8 that the
largest gain appears whenθ1, θ2 < 0.1; while the smallest
appears whenθ1 + θ2 ≈ 1.
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Fig. 7. Interpolated poles as the function of the previous duty cycles and
the changed duty cycles.
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Fig. 8. Interpolated gains as the function of the previous duty cycles and
the changed duty cycles.

The identified LPV model is verified in an experiment with
the duty cycles continuously changing from 0 to 0.1, from
0.1 to 0.3, from 0.3 to 0.5, from 0.5 to 0.7, from 0.7 to
0.9, from 0.9 to 0.7, from 0.7 to 0.5, and finally from 0.5
to 1. The total time spent in the experiment is 2700 seconds.
The board temperature is recorded every one second. Three
different models are compared in terms of the fitting errors, i.e.
the identified LPV model, the average of the 15 local models

and the identified local LTI model at the local condition
θ1 = 0, θ2 = 1, i.e. LM5. The fitting errors are respectively
1.83oC by the identified LPV model,3.16oC by the average
LTI model, and4.38oC by the identified local LTI model.
Clearly, the identified LPV model outperforms the other two
LTI models in terms of the fitting accuracy.
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Fig. 9. Simulated board temperature by the identified LPV model,
compared with the measured and the simulated board temperatures by
the average model and the local model at θ1 = 0, θ2 = 1.

IV. H∞ CONTROL ROBUST TO THERMAL EFFICACY

DEGRADATION AND AMBIENT LIGHT

Based on the identified thermal model (1), Problem 2 will
be solved in this section.

A. The illuminance model

As described in Sec. II, the illuminance measured by a
photosensor can be calculated by Eq. (3). When the relative
position of the photosensor and the LED light source is fixed,
the two parameters,y0 and η in (3) are constant, and can
be estimated from the experimental data. The experiment is
conducted as follows. First, an integrating sphere is used to
measure the total luminous flux as the temperature rises. The
duty cycle is fixed at 1. The temperature is controlled by
the heater mounted beneath the LED board, and measured
by the thermal couple glued on it. The two parameters
in (2) are respectively found to beΦ0 = 590.16lm and
ρ = −0.9614lm/oC, which accurately fit the measured data
in a linear fashion. Then, the linear relation between the
total luminous flux and the measured illuminance is estimated
using the data collected from the setup shown in Fig. 3. In
this experiment, the duty cycle is gradually increased from
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0 to 1 with a step size of0.1. The board temperature and
the illuminance are recorded at each duty cycle. The flux at
each duty cycle is calculated by (2). Fitting by least squares
results in y = 10.1891 + 0.3226 · Φ. Combining the two
linear equations, the fitted equation of (3) can be written as
y(u, t) = (200.5795− 0.3101 · t) · u.

Recall that the illuminance equation in (5b) is in a nonlinear
form. But it can be further developed into a linear parameter
varying form by absorbing the input duty cycle into the
parametric matrices, i.e.

y(τ) = [ηCuu(τ)] · x(τ) + y0 · u(τ) + w(τ). (11)

Here, Cu =
∑nµ

i=1 µi(τ)Ki. Note that in this way, the
nonlinear state-space model (5) is changed to the LPV model
of (5a,11).

On the other hand, we consider trajectory tracking problem,
instead of stabilizing control. Therefore, we need to derive the
tracking error dynamics. Denote the reference illuminance by
r(τ). The tracking error ise(τ) = r(τ) − y(τ). Substituting
the illuminancey(τ) in (11) into this expression,e(τ) then
takes the following form.

e(τ) = (−ηCuu) · x(τ) + (−y0) · u(τ) + r(τ) −w(τ). (12)

The goal of the trajectory tracking control is to guarantee
that the error dynamics defined by the system (5a,12) is
asymptotically stable, i.e.limτ→∞ e(τ) = 0. To this end, we
include an integral action into the system (5a,12), because the
integral control is able to yield zero tracking error at steady
state. The integrator can be realized as follows.

ẋ2(τ) = (−ηCuu)x(τ) + (−y0)u(τ) + r(τ) − w(τ), (13a)

e2(τ) = x2(τ). (13b)

Now, combing (5a), (12) and (13), and taking the reference
and the illuminance from the ambient light into a new distur-
bance vector, the error dynamics can be written as

[

ẋ1

ẋ2

]

=

[

Au 0

−ηCuu 0

] [

x1

x2

]

+

[

1

−y0

]

u +

[

0 0

1 −1

] [

r
w

]

,

(14a)
[

e1
e2

]

=

[

−ηCuu 0

0 1

] [

x1

x2

]

+

[

−y0

0

]

u +

[

1 −1

0 0

] [

r
w

]

,

(14b)

z =
[

0 1
]

[

x1

x2

]

+ 0 · u +
[

0 0
]

[

r
w

]

. (14c)

Here,e1 is the instant tracking error; whilee2 is the integrated
tracking error over time.z = e2 is the controlled output to be
used in theH∞ control method to be introduced next.

B. LPV H∞ control method

Since the system (9) is first order and stable at each
individual local condition, a PID controller suffices to yield
an acceptable tracking performance. Moreover, since both the
ambient light and the reference illuminance appear as the
disturbance to the LPV system (14), another objective of the
control is to ensure the robust tracking performance subject to
these disturbances. The robust PID control synthesis methods
proposed in [35] can realize these objectives.

Denote the parametric matrices in (14) as follows.

Aµ =

[

Au 0
−ηCuu 0

]

, Bµ =

[

1
−y0

]

, Eµ =

[

0 0
1 −1

]

,

Cy
µ =

[

−ηCuu 0
0 1

]

, Dy
µ =

[

−y0
0

]

, Ey
µ =

[

1 −1
0 0

]

,

Cz
µ =

[

0 1
]

, Dz
µ = 0, Ez

µ =
[

0 0
]

.

Denotex = [x1 x2]
T , e = [e1 e2]

T and the disturbance vector
by d = [r w]

T , where the superscript “T ” denotes matrix
transpose. Then, the LPV model (14) can be simplified to

ẋ = Aµx+Bµu+ Eµd, (15a)

e = Cy
µx+Dy

µu+ F y
µd, (15b)

z = Cz
µx+Dz

µu+ F z
µd. (15c)

The parametric matrices are continuous matrix valued func-
tions of the weightsµ ∈ Ω ⊂ R

nµ ,1 with Ω being a compact
hyper rectangle. The robust control problem is to design a
controller for the system (15) to guarantee the closed loop
stability and that theH∞ norm, defined bymaxd 6=0

‖z‖2

‖d‖2

, is
bounded.

SinceDz
µ is null ∀µ ∈ Ω; andBµ is a parameter indepen-

dent full column rank matrix, a numerically tractable solution
of this problem is to design a PI controller by solving linear
matrix inequalities (LMIs) [35].

On the other hand, since integral action is included in the
system (14), one only needs to design a proportional controller
using the two error signals,e1, e2. We shall rewrite Corollary 6
in [35] specifically for the system (14) in the following lemma.

Lemma 1:System (14) is quadratically stabilizable with a
given rate of convergenceβ > 0 and anH∞ norm bound less
than a positive numberγ, if there exist two positive numbers
P1 andP2 and a given matrixWy ∈ R

1×2, such that the LMIs

defined in (16) holds.2 In (16), P =

[

P1

P2

]

; Ãµ =

V −1[Aµ + βI]V, Ẽµ = V −1Eµ, C̃
y
µ = Cy

µV, C̃
z
µ = Cz

µV ,
with V denoting a nonsingular transformation matrix such that
V −1Bµ = [1 0]T . In this case, a possible value for the output
feedback matrix gain isG = P−1

1 Wy ∈ R
1×2. �

Note that the LMIs (16) only need to be evaluated at all
the vertices of the hyper rectangleΩ. The feedback gain
G ∈ R

1×2 only contains the proportional part. Denote the
proportional gain byKp ∈ R

1×2, which can be derived
as Kp = G

(

I +Dy
µG

)−1
. Then, the control input can be

calculated by

u(τ) = KT
p ·

[

e1(τ)
e2(τ)

]

.

The first element inKp hence corresponds to the proportional
gain, and the second element corresponds to the integral gain.

It is also straightforward to derive a pure integral controller
by only considering the integral error in (14b), i.e.

e =
[

0 1
]

·

[

x1

x2

]

+ 0 · u+
[

0 0
]

·

[

r
w

]

.

1The set of real n-dimensional vectors and the set of real matrices
with n rows and m columns are respectively denoted by R

n and R
n×m.

2A matrix M is negative definite, if M ≺ 0. The symbol “I” denotes
an identity matrix with proper dimensions.
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≺ 0, ∀µ ∈ Ω. (16)

C. Robust tracking controller design

In (14), Au andCu can be interpolated by the LPV model
(6). However, the dependence ofCuu on the two scheduling
parameters is more complicated. To see this, note thatCuu =
∑nµ

i=1 µi(τ)Ci · (θ1 + θ2), wherenµ = 9.
The new monomials includeθ1, θ2, θ1θ2, θ21 , θ

2
2, θ

2
1θ2, θ1θ

2
2,

θ31 , θ
3
2, θ

3
1θ2, θ1θ

3
2, θ

2
1θ

2
2, θ

4
1 , θ

4
2. The number of weights isn′

µ =
14. The LMIs (16) need to be evaluated at all the214 vertices
of the hyper rectangleΩ. The vertices contain all the possible
combinations of the min or max value of each monomial
evaluated on0 ≤ θ1, θ2 ≤ 1. Though the number of the
vertices is large, these LMIs can be solved within one minute
by the LMI solver of MATLAB on a PC with a 2.6GHz CPU.

Both the PI and pure integral controllers are designed and
tested in the experiments. It is found that the PI controller
results in severe oscillations in the closed loop response of
the illuminance; while the pure integral controller leads to very
fast convergence to the reference illuminance and no flickering
at all. The integral gain is found to beKI = 0.165387.

Note that the designed controller is in continuous time.
It needs to be discretized to be implemented on an MCU.
To ensure a fast convergence, the sampling interval for the
controller is set as 0.01 seconds. The integral controller,
u(τ) = KI ·

∫ τ

0
[r(ϕ) − y(ϕ)]dϕ, is hence changed to

u(k) = 0.01 ·KI ·
k

∑

i=1

[r(i) − y(i)]. (17)

D. Closed-loop experiments

In the closed-loop experiments, the integral controller (17) is
implemented on the MCU. The MCU samples the photodiode
at a rate of 100Hz. The calculated duty cycles and the
measured illuminance are streamed to the memory of the PC
via a serial port of the MCU and a USB port of the PC.
The board temperature is also measured simultaneously, but
at a rate of 1Hz, to record the temperature variation. Four
experiments have been performed as follows.

The first experiment is to track a constant illuminance of
200lux with the illuminance from the ambient light set at
50lux. The ambient light is generated by another LED board
of the same type as the one shown in Fig. 4. This light source
is mounted beside the controlled LED board in the opaque
chamber. The experiment lasts for 1200 seconds. The closed
loop response is shown in Fig. 10. Clearly, the illuminance
reaches the target within the beginning 0.2 seconds. Besides,
the controller can keep the illuminance at the target value as
the temperature rises and in the presence of the ambient light.

The board and the ambient temperature are respectively
69oC and 24.6oC at the end of this experiment. From the
datasheet of the LED, the thermal resistance between the

junction and the soldering point is50oC/W . The thermal
resistance respectively between the soldering point and the
board and from the board to the ambient environment are
estimated to be2oC/W and12oC/W . Based on the steady-
state temperature equation in [30], the junction temperature of
the LEDs is estimated to be75.1oC, much lower than its rated
max value,125oC. On the other hand, the duty cycle increases
from 0.6 to 0.65. But since the LEDs are driven by a constant
current source, the amplitude of the PWM current waveform
to each LED is maintained around76mA. Therefore, both the
temperature and the current are controlled within the rated
operating range of this type of LEDs.

The second experiment is to track a constant illuminance of
180lux, but with varying illuminance levels from the ambient
light. At the beginning, the ambient illuminance is 0. Around
the 200th second, it is increased to 30lux; and then changed
to 25lux at the 400th second and to 40lux at the 600th second.
The ambient illuminance becomes 60lux around the 800th
second, and holds unchanged until the end of the experiment.
This experiment also lasts for 1200 seconds. The closed
loop response is shown in Fig. 11. Clearly, the measured
illuminance jumps at each time when the ambient illuminance
changes, but quickly gets back to the target value again within
0.1 seconds. The slight fluctuations in the duty cycle is due to
the fact that the ambient illumination is not controlled in closed
loop, but only driven by a constant current source. Therefore,
the ambient illumination may fluctuate as the temperature
changes and due to the small ripples in the driving current. The
descending trend of the temperature is due to the increases in
the ambient illuminance, and hence the decreases of the duty
cycles to the controlled LED board.

The third experiment is to track varying illuminance refer-
ences without ambient light. The reference trajectory and the
measured illuminance in the closed loop are shown in Fig. 12.
Clearly, both the step changes and the continuous changes in
the reference illuminance can be tracked by the controller.

In the last experiment, a new LED board with 12 LEDs
of the same type is tested in closed loop. Unlike the LED
board used in the first three tests, this new board contains
four parallel connected LED strings. Each string also contains
three serially connected LEDs. The amplitude of the forward
current to the entire board is304mA, and the voltage drop
across it is8.9V . The amplitude of the current to each LED
is also76mA. The same control law as in the first three tests
is used to track the varying illuminance references as in the
third test, without ambient light. The reference trajectory and
the measured illuminance in the closed loop are shown in Fig.
13. Clearly, the control law is also effective in controlling the
light source with different number of LEDs of the same type.
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Fig. 10. Closed loop response when tracking the constant illuminance of 200lux with constant ambient illuminance of 50lux. (a) Measured
illuminance. (b) Duty cycles. (c) Measured temperature.
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Fig. 11. Closed loop response when tracking the constant illuminance of 150lux with changing ambient illuminance. (a) Measured illuminance. (b)
Duty cycles. (c) Measured temperature.
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Fig. 12. Closed loop response when tracking the varying illuminance without ambient light. (a) Measured illuminance. (b) Duty cycles. (c) Measured
temperature.
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Fig. 13. Closed loop response of a new LED board with 12 LEDs of the same type to varying reference illuminance without ambient light. (a)
Measured illuminance. (b) Duty cycles. (c) Measured temperature.
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V. CONCLUSIONS

In this paper, we have investigated the methods of iden-
tifying the nonlinear thermal dynamics of LED systems by
interpolation based LPV identification techniques. The iden-
tified LPV model is verified in experiments to have higher
fitting accuracy than the identified LTI models at either a single
working condition or by averaging different local models.
The nonlinear thermal dynamics is then incorporated with the
illuminance model, leading to a nonlinear photoelectrothermal
model. To design a controller to track the reference illumi-
nance, while attenuating the disturbance from ambient light,
we have applied anH∞ LPV controller synthesis method. The
closed loop control experiments have confirmed the robust
performance of the designed controller to both the ambient
light disturbance and the fluctuating temperature.

The novelty of this work is treating the nonlinear PET
dynamics of LED systems in the LPV framework. The model
identification and the robust control design are both origi-
nated from the real life data collected from the experimental
setup, and are practical to implement. In fact, theoretical
modeling also needs parameters, e.g. thermal resistance and
lumen efficacy, which may be available in the LED datasheet.
However, since the data from the datasheet are not always
complete and accurate, experiments are still needed to fit the
parameters. In this work, the dynamic temperature model is
identified from measured data, which carry the information
of both the dynamics and its parameters. By using this “data
driven” method, the two steps of theoretical modelling and
finding the model parameters are reduced into only one step.
On the other hand, the controller designed by theH∞ LPV
control technique only contains constant gains, and can be
easily implemented on a low-end MCU in an LED lamp.

The potential extensions of the current work include control-
ling the light chromaticity of polychromatic LED systems with
the robustness to temperature changes and ambient light distur-
bance, and developing fault diagnosis methods to monitor the
health of LED systems, with the aforementioned robustness.
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