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No-Load Magnetic Field and Cogging Force
Calculation in LPMSMs with Semi-Closed
Slots

H. Z. Hu, J. Zhao, X. D. Liu, Y. G. Guo, and J. G.
Zhu

Abstract—This paper presents an improved analytical
subdomain model for predicting the magnetic field in linear
permanent magnet synchronous machines (LPMSMs) with
semi-closed slots accounting for the finite length of
primary iron core and secondary back-iron. The whole field
domain is divided into eight subdomains and the magnetic
field in each subdomain is solved by applying the variable
separation method, adequate boundary conditions and
interface conditions. In this model, both the slot and end
effects are considered. The thrust and normal forces are
calculated by the Maxwell stress theory. The finite element
analysis is carried out to validate the analytical model.
Finally, an LPMSM prototype is manufactured and tested.
The experimental results show that the developed
analytical model has high accuracy for predicting the
magnetic field and forces.

Index Terms—Linear PM machines, improved analytical
model, slot effect, end effect.

. INTRODUCTION

INEAR permanent magnet (PM) synchronous machines

(LPMSMs) can provide direct thrust force without the need
of conversion from rotational torque to linear force, and thus
are increasingly employed in various industrial and military
applications, such as railway transportation, robotic systems
and electromagnetic launchers [1-5]. Among various types of
LPMSMs, the slotted topologies suffer from the slot and end
effects which increase the thrust fluctuation and decrease the
machine controllability. In the design and optimization of an
LPMSM, accurate prediction of the magnetic field is critical for
the performance analysis and evaluation. Owing to various
advantages, the analytical method is still preferred for the initial
design and optimization, although the widely used numerical
methods can easily take into account the complicated geometry
and iron saturation. The analytical method has been widely
applied in the field analysis of LPMSMs, such as LPMSMs
with the slot and end effects neglected [6-9], and coreless
LPMSMs [10], [11]. However, when the slot and end effects
must be considered, the analytical modeling becomes rather
complicated.

The slot and end effects of LPMSMs can be accounted for by
the magnetic equivalent circuit (MEC) which is widely used
due to its simplicity and fast computation [12-17]. In [13], a
relatively simple and accurate MEC model is proposed for
LPMSMs and the air gap flux density distribution is obtained

by linear interpolation of flux densities at specific mover
positions. In [15], an MEC model corrected by the
axisymmetric 2D finite element method (FEM) and
experimental characterization is presented to completely
characterize a small linear PM oscillatory motor. The precision
of the magnetic circuit parameters is improved through
numerical iterations. However, for the MEC method, the
reluctances for different flux paths should be preliminarily
known and the field distribution is only calculated at a few
discrete points, resulting in inaccurate force calculation.

The Schwarz-Christoffel (SC) conformal mapping can
consider the slot and end effects by transforming a complex
structure into a relatively simple one, in which the analytical
field solution can be readily obtained [1], [18-20]. In [1] and
[18], the magnetic field distribution of LPMSMs is predicted by
the subdomain (SD) method, i.e. the whole field domain is
firstly divided into a few subdomains with adequate boundary
and interface conditions, and then the field in each subdomain
is solved analytically. The slot effects are accounted for by
introducing a relative permeance function obtained by the SC
mapping. However, the end effects are neglected by assuming
that the machine is infinitely long. In [19], to reduce the
computing time, a model of one pole-pair with slots while
neglecting the end effects is analyzed by the SC mapping
method. The slotted model with n vertices in the #-domain is
directly transformed to a rectangle with n vertices in the
Z-domain in which the magnetic field is calculated. In [20], the
method of [19] is applied to an LPMSM accounting for both the
slot and end effects. The complicated conformal mapping is
completed by the MATLAB SC Toolbox.

The SD method is an elegant way for analytical
determination of magnetic fields in electrical machines [21-24].
In [21], a tubular LPMSM is assumed to be infinitely long and
comprised of an infinite number of finite-length armatures. The
magnetic field is calculated in three regions, viz., the PMs, the
air-gap and the space between adjacent armatures. This model,
however, neglects the slot and the secondary end effects. In
[22] and [23], under the assumption that the length of iron core
is infinite, a general framework is proposed for calculating the
open circuit and armature reaction magnetic field distribution
of slotted tubular LPMSMs. In [24], to consider the end effects,
an enlarged slot is added to the end of iron yoke and then
periodic boundary is imposed. This method, however, can only
consider approximately the end effects of the primary iron yoke,
while the end effects of the secondary back-iron are ignored.

This paper presents an improved SD model with both the slot
and end effects for predicting the magnetic field distribution
and cogging force. The LPMSM in Cartesian coordinates is
firstly transformed into an arc-segment PMSM in polar



coordinates. The analytical field expression of each subdomain
is obtained by the variable separation method and the
coefficients in the field expressions are determined by applying
the boundary and interface conditions. The thrust and normal
forces are then calculated. The magnetic field and forces
calculated by the analytical model are compared with those
obtained by the FEM. A prototype LPMSM is fabricated and
tested. The experimental results agree well with those predicted
by the analytical model.

The structure diagram of an LPMSM is shown in Fig. 1. Fig.
2(a) shows the corresponding 2D model. The parameters in the
figure are: the length of the primary iron, L, the height of the
primary iron, /4, the length of the secondary back-iron, L,, the
end length of the secondary back-iron, L., the height of the
secondary back-iron, %,, pole pitch, L,, the width of PMs, L,,,
the height of the PMs, 4,,, the length of air-gap, g, the depth of
the slots, 4., the width of slots, L,, the height of slot-opening,
hy, the width of slot opening, by, and the slot pitch, .. From the
2D model in the Cartesian coordinates, it can be seen that to
consider the primary and secondary end effects, the magnetic
field should be divided into 12 subdomains: 1, 2-1, 2-2, 3-1, ...,
6, 7j and 8i (i, j=1,2,...,N;), where Nj is the number of slots. The
left subdomains 2-1, 3-1, and 5-1 extend to the left boundary
x=-c0 and the right subdomains 2-2, 3-3, and 5-2 to the right
boundary x=+co. The modeling of PM should be conducted
only in subdomain 3-2. The separation of subdomains 2, 3 and
5 will significantly increase the boundary and interface
conditions, which make the field calculation very complicated.

In order to reduce the complexity, an approximate 2D
analytical model is proposed and shown in Fig. 2(b). To obtain
this model, the LPMSM is firstly deflexed to connect the left
and the right boundaries of x=-c0 and x=+oo, and then
subdomains 2-1 and 2-2, 3-1, 3-2 and 3-3, 5-1 and 5-2 are

MODEL OF LINEAR PMSM

curvature r—-+oo. Theoretically, the two models in the
Cartesian and polar coordinates are equivalent due to r—+oo.
Practically, the model in the polar coordinates becomes
unrealistic when r—+oo. If the radius of curvature r is assumed
to be a finite value, the model will become an approximate
model because of the curvature effect, which can be reduced by
increasing the radius of the model.

In the approximate 2D model, the secondary back-iron and
PMs are converted to the arc secondary, and the primary iron is
converted to the arc primary. The magnetization direction of
PMs is changed from the y-direction in the Cartesian
coordinates to the radial direction in the polar coordinates.
Compared with the 2D model in the Cartesian coordinates, the
number of subdomains in the approximate 2D model is reduced
from 12 to 8. The parameters in the analytical model are: inner
radius of primary iron, R, outer radius of primary iron, R,,
radius of slot top, Ry, radius of slot bottom, R, outer radius of
PM, R,,, outer radius of secondary back-iron, R,, inner radius of
secondary back-iron, R,, span angle of primary iron, 8;, span
angle of Region 5, 6,, span angle of secondary back-iron, 6;,
span angle of Region 2, 8, pole pitch, 6,, span angle of PM, §,,,
slot pitch, 4., span angle of slot, 8,,, span angle of slot-opening,
0y, and length of air-gap, g. To ensure that the magnetic field of
slotted LPMSM can be precisely calculated, the parameters of
the analytical model should be properly chosen.

combined to form subdomains 2, 3, 5, respectively. Finally, the Primary  Secondary Primary  Permanent
LPMSM in the Cartesian coordinates is converted to an iron iron winding magnet
arc-segment PMSM in the polar coordinates with the radius of  Fig. 1 Structure diagram of the LPMSM.
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1: Inner air region
2: Arc air region outside

the secondary back-iron
3: PM region
4: Air-gap region
5: Arc air region outside
the primary iron
6: Exterior air region
7j: Slot-opening regions
8i: Slot regions

(b)
Fig. 2. Models of the LPMSM with semi-closed slots: (a) 2D model; and (b) approximate 2D model.

In the LPMSM, the position relationship between the
primary iron and PMs, and the air-gap length are sensitive
parameters, and they should remain unchanged. Hence, the R,
6, and 6; are firstly determined by:
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where L,. is the circumference of the outer surface of PMs in
the approximate analytical model. Then, the other parameters
can be obtained as
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I1l.  ANALYTICAL SOLUTION OF MAGNETIC FIELD

In this paper, the following assumptions are made to enable
and simplify the analytical solution: (a) The permeability of the
primary iron and the secondary back-iron is infinite; (b) The
axial end effect is negligible; and (c) The permeability of gaps
between magnets is assumed to be equal to that of PMs.

A. Model of the PMs

For the approximate 2D model shown in Fig. 2(b), 6 is the
mechanical angular position in the arc primary reference frame
(60~0 refers to the center of the arc primary) and 6, is the
mechanical angular position in the arc secondary reference
frame (6,=0 is the beginning of the PMs when the pole arc to
pole pitch ratio a,=1). If the translation velocity of LPMSM is
v, and the rotation speed of the approximate 2D model is w,, the

relationship between v, and w, is

v
@, =0,x—
P
The transformation between the arc primary and secondary
reference frames is 6,=6,+6,,, where the angle difference
0,=w,t+0,, and 6, is the initial position.

(14)

In the polar coordinates, the magnetization vector jf of a

PM can be given by
M=Mg + Mz, (15)

where M, is the radial component of the magnetization vector,
M, the tangential component, and €, and €, are the radial and
tangential unit vectors, respectively. For the radial
magnetization, the tangential component of the magnetization
vector is zero. The radial component is shown in Fig. 3. It can
be seen that the span angle of all PMs is N,0, instead of 2,
where N, is the number of PMs. This is mainly due to that the
PM arrangement does not occupy the whole region 3 as shown
in Fig. 2(b).

The radial and tangential components of the magnetization
M can be represented in the arc primary reference frame as

M},(Q):iMm cos(nb,)+M,,sin(nb)) (16)

n=l1

MH (Hv) = Z‘O:Mgcn COS(”HS) + Mg.rn Sin(ngx )
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Fig. 3. Waveforms of the radial components of PM magnetization.

Biluo

B. Governing Partial Differential Equations

As shown in Fig. 2(b), the field domain is divided into eight
subdomains: Region 1 is the inner air region; Region 2 is the arc
air region outside the secondary back-iron; Region 3 is the PM
region; Region 4 is the air-gap region; Region 5 is the arc air
region outside the primary iron; Region 6 is the exterior air
region; Region 77 (j=1,2,...,N;) is the slot-opening region; and
Region 8i (i=1,2,...,N,) is the slot region.



To describe the magnetic flux density B, the magnetic

vector potential 4 is introduced. For the 2D case in polar

coordinates, the magnetic vector potential reduces to its axial
component A4.. According to the Maxwell’s equations, the
magnetic vector potential is governed by the Poisson equation
in the PM region and Laplace equation in other Regions, i.e.,

1 8°4, —&(Mg - 6M,j in Region 3
+r—2 o =4 r o0

0’4, 104,
s 2
or* ror

(18)
0 in Regions {1, 2,4,5,6,7j, 81'}

By using the variable separation method, the general
solutions of the vector potential in different subdomains can be
expressed as the following [25]:

In region 1,

0
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C. Determination of Integration Constants

The field solution of the whole domain can be obtained by
joining these general solutions of subdomains by applying the
boundary conditions and interface conditions between
subdomains, which are defined by the continuity of the radial
flux density B, and the tangential field strength H,.

The magnetic flux density and the magnetic field strength
can be obtained from the vector potential by

1 0A,

) 27
Y] 27
04,
B, = (28)
o
! % iM in Region 3
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Hr — ;LloluzaA Iul (29)
——=inRegions {1,2,4,5,6,7;,8i}
Mt 00
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r
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Hy Or

By applying the interface conditions, the unknown
integration constants can be obtained. The detailed derivation
process is shown in the Appendix.

IV. FORCE CALCULATION

According to the Maxwell stress theory, the force on a rigid
body placed in an electromagnetic field can be calculated. The
force acting on the primary iron is equal to that acting on the
secondary back-iron and PMs except that their directions are
opposite to each other. Hence, in this paper, a cylindrical
enclosed surface which is located in Region 4 is selected as the
integration surface, as shown in Fig. 4.



Fig. 4. The magnetic stress vector and its components in polar
coordinates.

The magnetic stress vector on the enclosed surface is given
by [26-27]
I =i[Bf —lézjé BB, 31D
Hy 2 Hy
There are two components in the magnetic stress vector. One
component is the radial component £, which can be used to
approximate the normal force, that is, the y-direction force in
the actual LPMSM, and the other is the tangential component f;
which can be used to approximate the thrust force, that is, the
x-direction force in the actual LPMSM. If the magnetic field is
assumed uniform in the axial direction, the surface integration
becomes a line integral multiplied by the axial length of iron
core. The radial and tangential forces in the integral form can be
written as

R 1 27
L =—L [[B5(r.0)-B,(r6)]rd0 32)
0 0
2z
L [ B.(r.0)B,,(r.0)rd0 (33)
Ho o

where L, is the axial length, r the radius of the integration
surface, and B,, and By are the radial and tangential
components of the flux density at radius r, respectively.

V. VALIDATION BY FEM AND EXPERIMENT

To verify the analytical model, the linear FEM is applied to
an LPMSM with semi-closed slots with the main parameters as
shown in Table 1. Based on the previous analysis in Section II,
the corresponding parameters in the analytical model with the
circumference of the PM outer surface L,, = 500 mm are shown
in Table II.

Fig. 5 shows the FEM predicted flux density distributions
when the primary iron is located at the middle and the end
positions, respectively. Figs. 6-10 show the comparison
between the analytical and FEM predictions of the normal and
tangential flux density distributions in the air-gap, PM, slot
opening, and slot regions when the primary iron is located at the
middle and the end positions. It can be seen that the subdomain
model accounting for the slot and end effects has an accuracy
comparable to the FEM prediction for the flux density in the
PM, air-gap, and slot opening regions. A small discrepancy in
the slot region may be attributed to the meshing in the FEM
model since the flux density in the slot region is very small.

Fig. 11 compares the thrust and normal forces of the
LPMSM with semi-closed slots predicted by the analytical
model and FEM. The analytical prediction of the thrust force
agrees well with that obtained by the FEM, while the normal

force prediction between the analytical model and FEM shows
some discrepancy. The maximum error is less than 2%. This
may be attributed to the curvature effect of the analytical model,
and the discretization effects of the FEM. It is noted that the
force calculation is relatively sensitive to the accuracy of the
magnetic field solution, and thus, attention must be paid to the
accuracy of the flux density components in both the analytical
and FEM calculations. In this regard, the finite element mesh
must be relatively fine in the air-gap region. While for the
analytical prediction, the virtual length Z,, must be sufficiently
long, that is, the curvature of analytical model must be small
enough to avoid higher harmonic terms. On the other hand,
both finer meshes and higher harmonic terms increase the
computation time.

To validate the analytical and FEM results, a prototype of
LPMSM with semi-closed slots is manufactured and tested. Fig.
12 shows a photo of the experiment platform. The thrust is
measured by a force sensor with the fullscale of 98N and
precision of 0.2%. The relative position between the primary
iron and secondary back-iron is measured by a vernier caliper
with precision of 0.02mm.

Because of the diversity and assembling tolerance, the actual
width of each PM varies from 9.99mm to 10.0lmm, and the
total length of 20 PMs is about 200.62mm, which is 0.6mm
longer than the design. On the other hand, the magnetic
nonlinearity of the iron cores could yield certain discrepancy
between the theoretical and experimental results. To eliminate
the error caused by these factors, the width of PMs in the
analytical model and FEM model is adjusted to the average
value of 10.03mm and the nonlinear FEM is employed to
recalculate the field and thrust force.

TABLE |
PARAMETERS OF LPMSM
Parameter Value Parameter Value
Length of primary iron, L; 64.8mm Po@e arc to pole pitch 1.0
ratio, o,
Height of primary iron, A, 26mm  Number of slots, N, 7
Length of secondary iron, L,  210mm  Width of slot, L,, 4.5mm
Height of secondary iron, 4, I15mm  Depth of slot, 4. 13mm
Length of the end of Width of slot-opening,
. Smm 2mm
secondary iron, L. by
Axial length, L, 50mm hHelght of slot-opening, Imm
0
Length of air-gap, g Imm Slot pitch, L. 8.33mm
Number of PMs, N, 20 PM remanence, B, 1.27T
Pole pitch, L, 10mm Eela“ve permeability, - 45
Width of PM, L,, 10mm Magnetization Parallel
Thickness of PM, £, 4mm
TABLE Il
CORRESPONDING PARAMETERS IN ANALYTICAL MODEL OF LPMSM
Parameter Value Parameter Value
Extended length, L,. 500mm Number of PMs, N, 20
Outer radius of PM, R, 79.58mm  Pole pitch, 6, 7.20deg
isrg in Hangle of primary 46.66deg  Span angle of PM, 6,, 7.20deg
s U1
Span angle of secondary 151.20deg Po!e arc to pole pitch 1.0
iron, 6; ratio, a,
Inner radius of primary 80.58mm  Number of slots, N 7

iron, Ry



Outer radius of primary

. 106.58mm  Width of slot, 0, 3.24deg
iron, Ry,

Outer .radlus of 75.58mm Width of slot-opening, | 44deg
secondary iron, R, Opo

%f::rRr?d‘“s of primary ) sgmm  Slot pitch, 6, 6.00deg
Radius of slot top, R, 81.58mm  PM remanence, B, 1.27T
Radius of slot bottom, R, ~ 94.58mm lljelatlve permeability, 1.043
Axial length, L, 50mm Magnetization Radial

(®)
Fig. 5. FEM predicted flux-lines distribution with different relative
positions of primary iron and PMs: (a) middle position, and (b) end
position.
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Fig. 13 compares the thrust force obtained by the analytical
model, linear and nonlinear FEM models, and experimental
measurement. As shown, the analytical results, linear and
nonlinear FEM results and experimental results agree with each
other very well. It can be seen that the magnetic nonlinearity
has very little impact on the thrust force profile. The error
between the theoretical and experimental results at the lower
amplitudes may be attributed to lower precision of the force
sensor when measuring small forces, and the magnetic
nonlinearity of PMs.

Secondary iron
Permanent magnet

Primary iron ~ Force sensor Force sensor
with semi-slots meter Vernier caliper
Fig. 12. The experimental testing platform for the LPMSM with
semi-closed slots.
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Fig. 13. Comparison of thrust force obtained by the linear and nonlinear

FEM, analytical model and experimental measurement.

VI. CONCLUSION

In the paper, an improved SD model accounting for the slot
and end effects is developed for predicting the magnetic field
distribution and cogging force. Through transforming the
LPMSM into an arc-linear PMSM, the magnetic field is
calculated by the SD analytical model and verified by the FEM.
The thrust and normal forces are further investigated which can
benefit the performance optimization and dynamic modeling of
LPMSMs. The analytical predictions agree well with the finite
element analysis results. The maximum error is less than 2%,
which may be attributed to the discretization effects of the FEM
and the curvature effect of the analytical model. A prototype of
the LPMSM with semi-closed slots is manufactured and tested.
An excellent agreement is obtained between the calculated and
experimental results. Some small errors may be attributed to the
lower precision of the force sensor when measuring small
forces, and the magnetic nonlinearity of PMs.

APPENDIX

1) Interface between Regions 1 and 2

The tangential field strength on the inner surface of the
secondary back-iron is zero since the permeability of back-iron
is infinite, and it is continuous along the rest part, i.e.

=0 0,¢(0,.0,+0,)

o1|r=r 0, e(g.vr+93’9.vr+93+04)

According to (19), (20), and (30), the following equation set
can be obtained:

01| r=R,

02| r=R

lnglan Z[ ngam n + B2mg2bm : ):' o (m,n) (34)
7T m=1
1&
Clnglan (Rri ) = 7Z[A2mg2mn (Rri) + Bangam (Rri ):| mn (m’n) (35)
m=1
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The continuous condition of radial flux density on the
interface between Regions 1 and 2 is:
B =B 0.€(6,+6,,6,+6,+06,)

[cosmcosn(6, +6, +6,) - cosn(6, +6,)] mrn6,

1r 2r

r=R,; r=R,;

According to (19), (20) and (27), the following equation can
be obtained:

AZrmfZam (Rri ) + BZm-/‘me (Rri) =
ZAlnfm (R, )1 (1) + G, fran (R) &0 (m1,1)

4 n=1
2) Interface between Regions 2 and 3
The tangential field strength on the outer surface of the
secondary back-iron is also zero. The continuous condition
along the rest part is

=0 0,¢(0,.0,+0)

sr2

0.€(6,+6,.,6,.0, +6,+6,)

sr?

(36)

30 |r=R

30 |r=R

According to (20), (21), and (30), the following equations
can be obtained:

20| r=R,
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The continuous condition of radial flux density on the
interface between Regions 2 and 3 is
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According to (20), (21), and (27), the following equation can
be obtained:
Ame‘Zam (R ) + Bme‘me (Rl ) =

72{[A3nf3an +anf3bn( ) u1

+ l:C3nf;mn Rr) + D}mf}bn (R/ ) + Z.vt (Rr ):I §mn (m’ }’l)}

3) Interface between Regions 3 and 4
The continuous condition of tangential field strength on the
interface between Regions 3 and 4 is

30 |r=R, = 95 6(0’2”)

According to (21), (22), and (30), the following equations
can be obtained:
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The continuous condition of radial flux density on the
interface between Regions 3 and 4 is

B =B, |, 0, €(0,27)

3r 4r

r=R,

According to (21), (22) and (27), the following equation can
be obtained:

A3nf‘3an (Rm ) + BSnfi?lm ( ) + lcn ( )
42
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4) Interfaces between Regions 4, 5, and 7j
The tangential field strength H,, is equal to Hsy or Hy;9 on the
interfaces between Regions 4 and 5, or Regions 4 and 7/, is zero
on the surface of primary iron, i.e.
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According to (22), (23), (25), and (30), the following
equations can be obtained:
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The continuous condition of radial flux density on the
interface between Regions 4 and 5 is
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According to (22), (23) and (27), the following equation can
be obtained:
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The continuous condition of radial flux density on the
interface between Regions 4 and 7; is
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According to (22), (25) and (27), the following equation can
be obtained:
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5) Interface between Regions 5 and 6

The tangential field strength on the outer surface of the
primary iron core is zero since the permeability of iron core is
infinite, and it is continuous along the rest part, i.e.

0 6 e (ﬂ'+&,2ﬂ'ju(0,ﬂ'—&J
3 2 2

Hyl.. 6 e(ﬁ—%,iﬂ—i]

06
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According to (23), (24), and (30), the following equations
can be obtained:

B6rzg6lm (Rsn) = A51:1 (R.m)
Dﬁngﬁhn (Rso) = BSI; (Rso)

(48)
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where
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The continuous condition of radial flux density on the
interface between Regions 5 and 6 is
v O e(ﬂ—ez,ﬁ-kezj
277 2
According to (23), (24) and (27), the following equation can
be obtained:

Ay S (Rso) + B, fsm (R:o) =
2 B (R ) (k) + Dy f (R, ) (o)

6) Interface between Regions 7j and 8i
The continuous condition of tangential field strength on the
interface between Regions 7/ and 8i is
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According to (25), (26), and (30), the following equation can
be obtained:
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The continuous condition of radial flux density on the
interface between Regions 7/ and &i is
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According to (25), (26), and (27), the following equation can
be obtained:
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Finally, by solving the multivariable equation set of
(34)-(52), the integration constants can be obtained.

(52)
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