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Abstract—This paper presents an improved analytical 
subdomain model for predicting the magnetic field in linear 
permanent magnet synchronous machines (LPMSMs) with 
semi-closed slots accounting for the finite length of 
primary iron core and secondary back-iron. The whole field 
domain is divided into eight subdomains and the magnetic 
field in each subdomain is solved by applying the variable 
separation method, adequate boundary conditions and 
interface conditions. In this model, both the slot and end 
effects are considered. The thrust and normal forces are 
calculated by the Maxwell stress theory. The finite element 
analysis is carried out to validate the analytical model. 
Finally, an LPMSM prototype is manufactured and tested. 
The experimental results show that the developed 
analytical model has high accuracy for predicting the 
magnetic field and forces. 
 

Index Terms—Linear PM machines, improved analytical 
model, slot effect, end effect. 
 

I. INTRODUCTION 

INEAR permanent magnet (PM) synchronous machines 
(LPMSMs) can provide direct thrust force without the need 

of conversion from rotational torque to linear force, and thus 
are increasingly employed in various industrial and military 
applications, such as railway transportation, robotic systems 
and electromagnetic launchers [1-5]. Among various types of 
LPMSMs, the slotted topologies suffer from the slot and end 
effects which increase the thrust fluctuation and decrease the 
machine controllability. In the design and optimization of an 
LPMSM, accurate prediction of the magnetic field is critical for 
the performance analysis and evaluation. Owing to various 
advantages, the analytical method is still preferred for the initial 
design and optimization, although the widely used numerical 
methods can easily take into account the complicated geometry 
and iron saturation. The analytical method has been widely 
applied in the field analysis of LPMSMs, such as LPMSMs 
with the slot and end effects neglected [6-9], and coreless 
LPMSMs [10], [11]. However, when the slot and end effects 
must be considered, the analytical modeling becomes rather 
complicated. 

The slot and end effects of LPMSMs can be accounted for by 
the magnetic equivalent circuit (MEC) which is widely used 
due to its simplicity and fast computation [12-17]. In [13], a 
relatively simple and accurate MEC model is proposed for 
LPMSMs and the air gap flux density distribution is obtained 

by linear interpolation of flux densities at specific mover 
positions. In [15], an MEC model corrected by the 
axisymmetric 2D finite element method (FEM) and 
experimental characterization is presented to completely 
characterize a small linear PM oscillatory motor. The precision 
of the magnetic circuit parameters is improved through 
numerical iterations. However, for the MEC method, the 
reluctances for different flux paths should be preliminarily 
known and the field distribution is only calculated at a few 
discrete points, resulting in inaccurate force calculation.  

The Schwarz-Christoffel (SC) conformal mapping can 
consider the slot and end effects by transforming a complex 
structure into a relatively simple one, in which the analytical 
field solution can be readily obtained [1], [18-20]. In [1] and 
[18], the magnetic field distribution of LPMSMs is predicted by 
the subdomain (SD) method, i.e. the whole field domain is 
firstly divided into a few subdomains with adequate boundary 
and interface conditions, and then the field in each subdomain 
is solved analytically. The slot effects are accounted for by 
introducing a relative permeance function obtained by the SC 
mapping. However, the end effects are neglected by assuming 
that the machine is infinitely long. In [19], to reduce the 
computing time, a model of one pole-pair with slots while 
neglecting the end effects is analyzed by the SC mapping 
method. The slotted model with n vertices in the W-domain is 
directly transformed to a rectangle with n vertices in the 
Z-domain in which the magnetic field is calculated. In [20], the 
method of [19] is applied to an LPMSM accounting for both the 
slot and end effects. The complicated conformal mapping is 
completed by the MATLAB SC Toolbox.  

The SD method is an elegant way for analytical 
determination of magnetic fields in electrical machines [21-24]. 
In [21], a tubular LPMSM is assumed to be infinitely long and 
comprised of an infinite number of finite-length armatures. The 
magnetic field is calculated in three regions, viz., the PMs, the 
air-gap and the space between adjacent armatures. This model, 
however, neglects the slot and the secondary end effects. In 
[22] and [23], under the assumption that the length of iron core 
is infinite, a general framework is proposed for calculating the 
open circuit and armature reaction magnetic field distribution 
of slotted tubular LPMSMs. In [24], to consider the end effects, 
an enlarged slot is added to the end of iron yoke and then 
periodic boundary is imposed. This method, however, can only 
consider approximately the end effects of the primary iron yoke, 
while the end effects of the secondary back-iron are ignored.  

This paper presents an improved SD model with both the slot 
and end effects for predicting the magnetic field distribution 
and cogging force. The LPMSM in Cartesian coordinates is 
firstly transformed into an arc-segment PMSM in polar 
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coordinates. The analytical field expression of each subdomain 
is obtained by the variable separation method and the 
coefficients in the field expressions are determined by applying 
the boundary and interface conditions. The thrust and normal 
forces are then calculated. The magnetic field and forces 
calculated by the analytical model are compared with those 
obtained by the FEM. A prototype LPMSM is fabricated and 
tested. The experimental results agree well with those predicted 
by the analytical model. 

II. MODEL OF LINEAR PMSM 

The structure diagram of an LPMSM is shown in Fig. 1. Fig. 
2(a) shows the corresponding 2D model. The parameters in the 
figure are: the length of the primary iron, Ls, the height of the 
primary iron, hs, the length of the secondary back-iron, Lr, the 
end length of the secondary back-iron, Le, the height of the 
secondary back-iron, hr, pole pitch, Lp, the width of PMs, Lm, 
the height of the PMs, hm, the length of air-gap, g, the depth of 
the slots, hc, the width of slots, Lw, the height of slot-opening, 
h0, the width of slot opening, b0, and the slot pitch, Lc. From the 
2D model in the Cartesian coordinates, it can be seen that to 
consider the primary and secondary end effects, the magnetic 
field should be divided into 12 subdomains: 1, 2-1, 2-2, 3-1, …, 
6, 7j and 8i (i, j=1,2,…,Ns), where Ns is the number of slots. The 
left subdomains 2-1, 3-1, and 5-1 extend to the left boundary 
x=-∞ and the right subdomains 2-2, 3-3, and 5-2 to the right 
boundary x=+∞. The modeling of PM should be conducted 
only in subdomain 3-2. The separation of subdomains 2, 3 and 
5 will significantly increase the boundary and interface 
conditions, which make the field calculation very complicated. 

In order to reduce the complexity, an approximate 2D 
analytical model is proposed and shown in Fig. 2(b). To obtain 
this model, the LPMSM is firstly deflexed to connect the left 
and the right boundaries of x=-∞ and x=+∞, and then 
subdomains 2-1 and 2-2, 3-1, 3-2 and 3-3, 5-1 and 5-2 are 
combined to form subdomains 2, 3, 5, respectively. Finally, the 
LPMSM in the Cartesian coordinates is converted to an 
arc-segment PMSM in the polar coordinates with the radius of 

curvature r→+∞. Theoretically, the two models in the 
Cartesian and polar coordinates are equivalent due to r→+∞. 
Practically, the model in the polar coordinates becomes 
unrealistic when r→+∞. If the radius of curvature r is assumed 
to be a finite value, the model will become an approximate 
model because of the curvature effect, which can be reduced by 
increasing the radius of the model.  

In the approximate 2D model, the secondary back-iron and 
PMs are converted to the arc secondary, and the primary iron is 
converted to the arc primary. The magnetization direction of 
PMs is changed from the y-direction in the Cartesian 
coordinates to the radial direction in the polar coordinates. 
Compared with the 2D model in the Cartesian coordinates, the 
number of subdomains in the approximate 2D model is reduced 
from 12 to 8. The parameters in the analytical model are: inner 
radius of primary iron, Rs, outer radius of primary iron, Rso, 
radius of slot top, Rsa, radius of slot bottom, Rsb, outer radius of 
PM, Rm, outer radius of secondary back-iron, Rr, inner radius of 
secondary back-iron, Rr, span angle of primary iron, θ1, span 
angle of Region 5, θ2, span angle of secondary back-iron, θ3, 
span angle of Region 2, θ4, pole pitch, θp, span angle of PM, θm, 
slot pitch, θc, span angle of slot, θw, span angle of slot-opening, 
θb0, and length of air-gap, g. To ensure that the magnetic field of 
slotted LPMSM can be precisely calculated, the parameters of 
the analytical model should be properly chosen. 
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Fig. 1 Structure diagram of the LPMSM. 
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Fig. 2. Models of the LPMSM with semi-closed slots: (a) 2D model; and (b) approximate 2D model. 
 

In the LPMSM, the position relationship between the 
primary iron and PMs, and the air-gap length are sensitive 
parameters, and they should remain unchanged. Hence, the Rm, 
θ1, and θ3 are firstly determined by: 
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where Lre is the circumference of the outer surface of PMs in 
the approximate analytical model. Then, the other parameters 
can be obtained as 
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III. ANALYTICAL SOLUTION OF MAGNETIC FIELD 

In this paper, the following assumptions are made to enable 
and simplify the analytical solution: (a) The permeability of the 
primary iron and the secondary back-iron is infinite; (b) The 
axial end effect is negligible; and (c) The permeability of gaps 
between magnets is assumed to be equal to that of PMs. 

A. Model of the PMs 

For the approximate 2D model shown in Fig. 2(b), θs is the 
mechanical angular position in the arc primary reference frame 
(θs=0 refers to the center of the arc primary) and θr is the 
mechanical angular position in the arc secondary reference 
frame (θr=0 is the beginning of the PMs when the pole arc to 
pole pitch ratio αp=1). If the translation velocity of LPMSM is 
vs and the rotation speed of the approximate 2D model is ωr, the 

relationship between vs and ωr is 

s
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L
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The transformation between the arc primary and secondary 
reference frames is θs=θr+θsr, where the angle difference 
θsr=ωrt+θ0, and θ0 is the initial position. 

In the polar coordinates, the magnetization vector M


 of a 

PM can be given by 
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                             (15) 

where Mr is the radial component of the magnetization vector, 

Mθ the tangential component, and re


 and e


 are the radial and 

tangential unit vectors, respectively. For the radial 
magnetization, the tangential component of the magnetization 
vector is zero. The radial component is shown in Fig. 3. It can 
be seen that the span angle of all PMs is Npθp instead of 2π, 
where Np is the number of PMs. This is mainly due to that the 
PM arrangement does not occupy the whole region 3 as shown 
in Fig. 2(b). 

The radial and tangential components of the magnetization 

M


 can be represented in the arc primary reference frame as 
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Fig. 3. Waveforms of the radial components of PM magnetization. 

 

B. Governing Partial Differential Equations 

As shown in Fig. 2(b), the field domain is divided into eight 
subdomains: Region 1 is the inner air region; Region 2 is the arc 
air region outside the secondary back-iron; Region 3 is the PM 
region; Region 4 is the air-gap region; Region 5 is the arc air 
region outside the primary iron; Region 6 is the exterior air 
region; Region 7j (j=1,2,…,Ns) is the slot-opening region; and 
Region 8i (i=1,2,…,Ns) is the slot region.  



 

 
To describe the magnetic flux density B


, the magnetic 

vector potential A


 is introduced. For the 2D case in polar 

coordinates, the magnetic vector potential reduces to its axial 
component Az. According to the Maxwell’s equations, the 
magnetic vector potential is governed by the Poisson equation 
in the PM region and Laplace equation in other Regions, i.e., 
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By using the variable separation method, the general 
solutions of the vector potential in different subdomains can be 
expressed as the following [25]: 
In region 1, 
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In region 3, 
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where Ap(r,θs) is a particular solution of Poisson equation, 
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In region 4, 
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In region 5, 
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C. Determination of Integration Constants 

The field solution of the whole domain can be obtained by 
joining these general solutions of subdomains by applying the 
boundary conditions and interface conditions between 
subdomains, which are defined by the continuity of the radial 
flux density Br and the tangential field strength Hθ. 

The magnetic flux density and the magnetic field strength 
can be obtained from the vector potential by 
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By applying the interface conditions, the unknown 
integration constants can be obtained. The detailed derivation 
process is shown in the Appendix.  

IV. FORCE CALCULATION 

According to the Maxwell stress theory, the force on a rigid 
body placed in an electromagnetic field can be calculated. The 
force acting on the primary iron is equal to that acting on the 
secondary back-iron and PMs except that their directions are 
opposite to each other. Hence, in this paper, a cylindrical 
enclosed surface which is located in Region 4 is selected as the 
integration surface, as shown in Fig. 4. 



 

 
 

θs

1
2
3

5

6

θr

4

fr
fm

fθ

 
Fig. 4. The magnetic stress vector and its components in polar 
coordinates. 

 
The magnetic stress vector on the enclosed surface is given 

by [26-27] 
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There are two components in the magnetic stress vector. One 
component is the radial component fr which can be used to 
approximate the normal force, that is, the y-direction force in 
the actual LPMSM, and the other is the tangential component fθ 
which can be used to approximate the thrust force, that is, the 
x-direction force in the actual LPMSM. If the magnetic field is 
assumed uniform in the axial direction, the surface integration 
becomes a line integral multiplied by the axial length of iron 
core. The radial and tangential forces in the integral form can be 
written as 
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where L1 is the axial length, r the radius of the integration 
surface, and Br2 and Bθ2 are the radial and tangential 
components of the flux density at radius r, respectively. 

V. VALIDATION BY FEM AND EXPERIMENT 

To verify the analytical model, the linear FEM is applied to 
an LPMSM with semi-closed slots with the main parameters as 
shown in Table I. Based on the previous analysis in Section II, 
the corresponding parameters in the analytical model with the 
circumference of the PM outer surface Lre = 500 mm are shown 
in Table II.  

Fig. 5 shows the FEM predicted flux density distributions 
when the primary iron is located at the middle and the end 
positions, respectively. Figs. 6-10 show the comparison 
between the analytical and FEM predictions of the normal and 
tangential flux density distributions in the air-gap, PM, slot 
opening, and slot regions when the primary iron is located at the 
middle and the end positions. It can be seen that the subdomain 
model accounting for the slot and end effects has an accuracy 
comparable to the FEM prediction for the flux density in the 
PM, air-gap, and slot opening regions. A small discrepancy in 
the slot region may be attributed to the meshing in the FEM 
model since the flux density in the slot region is very small. 

Fig. 11 compares the thrust and normal forces of the 
LPMSM with semi-closed slots predicted by the analytical 
model and FEM. The analytical prediction of the thrust force 
agrees well with that obtained by the FEM, while the normal 

force prediction between the analytical model and FEM shows 
some discrepancy. The maximum error is less than 2%. This 
may be attributed to the curvature effect of the analytical model, 
and the discretization effects of the FEM. It is noted that the 
force calculation is relatively sensitive to the accuracy of the 
magnetic field solution, and thus, attention must be paid to the 
accuracy of the flux density components in both the analytical 
and FEM calculations. In this regard, the finite element mesh 
must be relatively fine in the air-gap region. While for the 
analytical prediction, the virtual length Lre must be sufficiently 
long, that is, the curvature of analytical model must be small 
enough to avoid higher harmonic terms. On the other hand, 
both finer meshes and higher harmonic terms increase the 
computation time. 

To validate the analytical and FEM results, a prototype of 
LPMSM with semi-closed slots is manufactured and tested. Fig. 
12 shows a photo of the experiment platform. The thrust is 
measured by a force sensor with the fullscale of 98N and 
precision of 0.2%. The relative position between the primary 
iron and secondary back-iron is measured by a vernier caliper 
with precision of 0.02mm.  

Because of the diversity and assembling tolerance, the actual 
width of each PM varies from 9.99mm to 10.01mm, and the 
total length of 20 PMs is about 200.62mm, which is 0.6mm 
longer than the design. On the other hand, the magnetic 
nonlinearity of the iron cores could yield certain discrepancy 
between the theoretical and experimental results. To eliminate 
the error caused by these factors, the width of PMs in the 
analytical model and FEM model is adjusted to the average 
value of 10.03mm and the nonlinear FEM is employed to 
recalculate the field and thrust force.  

 
TABLE I 

PARAMETERS OF LPMSM 

Parameter Value Parameter Value 

Length of primary iron, Ls 64.8mm 
Pole arc to pole pitch 
ratio, αp 

1.0 

Height of primary iron, hs 26mm Number of slots, Ns 7 
Length of secondary iron, Lr 210mm Width of slot, Lw 4.5mm 
Height of  secondary iron, hr 15mm Depth of slot, hc 13mm 
Length of the end of 
secondary iron, Le 

5mm 
Width of slot-opening, 
b0 

2mm 

Axial length, L1 50mm 
Height of slot-opening, 
h0 

1mm 

Length of air-gap, g 1mm Slot pitch, Lc 8.33mm 
Number of PMs, Np 20 PM remanence, Br 1.27T 

Pole pitch, Lp 10mm 
Relative permeability, 
μr 

1.043 

Width of PM, Lm 10mm Magnetization  Parallel 
Thickness of PM, hm 4mm   

 
TABLE II 

CORRESPONDING PARAMETERS IN ANALYTICAL MODEL OF LPMSM 

Parameter Value Parameter Value 

Extended length, Lre 500mm Number of PMs, Np 20 
Outer radius of PM, Rm 79.58mm Pole pitch, θp 7.20deg 
Span angle of primary 
iron, θ1 

46.66deg Span angle of PM, θm 7.20deg 

Span angle of secondary 
iron, θ3 

151.20deg 
Pole arc to pole pitch 
ratio, αp 

1.0 

Inner radius of primary 
iron, Rs 

80.58mm Number of slots, Ns 7 



 

 
Outer radius of primary 
iron, Rso 

106.58mm Width of slot, θw 3.24deg 

Outer radius of 
secondary iron, Rr 

75.58mm 
Width of slot-opening, 
θb0 

1.44deg 

Inner radius of primary 
iron, Rri 

60.58mm Slot pitch, θc 6.00deg 

Radius of slot top, Rsa 81.58mm PM remanence, Br 1.27T 

Radius of slot bottom, Rsb 94.58mm 
Relative permeability, 
μr 

1.043 

Axial length, L1 50mm Magnetization  Radial 
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Fig. 5. FEM predicted flux-lines distribution with different relative 
positions of primary iron and PMs: (a) middle position, and (b) end 
position. 
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(b) 

Fig. 6. Comparison of flux density at middle of the air gap when the 
primary iron is at the middle position: (a) normal flux density; and (b) 
tangential flux density. 
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(b) 

Fig. 7. Comparison of flux density at middle of the air gap when the 
primary iron is at the end position: (a) normal flux density, and (b) 
tangential flux density. 
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(b) 

Fig. 8. Comparison of flux density in PM region when the primary iron is 
at the middle position: (a) normal flux density, and (b) tangential flux 
density. 
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(b) 

Fig. 9. Comparison of flux density in slot-opening region when the 
primary iron is at the middle position: (a) normal flux density, and (b) 
tangential flux density. 
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Fig. 10. Comparison of flux density in slot region when the primary iron is 
at the middle position: (a) normal flux density, and (b) tangential flux 
density. 
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(b) 

Fig. 11. Comparison of forces: (a) thrust force, and (b) normal force. 
 

Fig. 13 compares the thrust force obtained by the analytical 
model, linear and nonlinear FEM models, and experimental 
measurement. As shown, the analytical results, linear and 
nonlinear FEM results and experimental results agree with each 
other very well. It can be seen that the magnetic nonlinearity 
has very little impact on the thrust force profile. The error 
between the theoretical and experimental results at the lower 
amplitudes may be attributed to lower precision of the force 
sensor when measuring small forces, and the magnetic 
nonlinearity of PMs. 
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Fig. 12. The experimental testing platform for the LPMSM with 
semi-closed slots. 
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Fig. 13. Comparison of thrust force obtained by the linear and nonlinear 
FEM, analytical model and experimental measurement.  
 

VI. CONCLUSION 

In the paper, an improved SD model accounting for the slot 
and end effects is developed for predicting the magnetic field 
distribution and cogging force. Through transforming the 
LPMSM into an arc-linear PMSM, the magnetic field is 
calculated by the SD analytical model and verified by the FEM. 
The thrust and normal forces are further investigated which can 
benefit the performance optimization and dynamic modeling of 
LPMSMs. The analytical predictions agree well with the finite 
element analysis results. The maximum error is less than 2%, 
which may be attributed to the discretization effects of the FEM 
and the curvature effect of the analytical model. A prototype of 
the LPMSM with semi-closed slots is manufactured and tested. 
An excellent agreement is obtained between the calculated and 
experimental results. Some small errors may be attributed to the 
lower precision of the force sensor when measuring small 
forces, and the magnetic nonlinearity of PMs. 

APPENDIX 

1) Interface between Regions 1 and 2 
The tangential field strength on the inner surface of the 

secondary back-iron is zero since the permeability of back-iron 
is infinite, and it is continuous along the rest part, i.e. 

 
 

1 3

1 2 3 3 4

0 ,

,

ri

ri ri

r R s sr sr

r R r R s sr sr

H

H H



 

   

     



 

  

    
 

According to (19), (20), and (30), the following equation set 
can be obtained: 
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The continuous condition of radial flux density on the 
interface between Regions 1 and 2 is: 
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According to (19), (20) and (27), the following equation can 
be obtained: 
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2) Interface between Regions 2 and 3 
The tangential field strength on the outer surface of the 

secondary back-iron is also zero. The continuous condition 
along the rest part is 
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According to (20), (21), and (30), the following equations 
can be obtained: 
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The continuous condition of radial flux density on the 
interface between Regions 2 and 3 is 
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According to (20), (21), and (27), the following equation can 
be obtained: 
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3) Interface between Regions 3 and 4 
The continuous condition of tangential field strength on the 

interface between Regions 3 and 4 is 
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The continuous condition of radial flux density on the 
interface between Regions 3 and 4 is 
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According to (21), (22) and (27), the following equation can 
be obtained: 
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4) Interfaces between Regions 4, 5, and 7j 
The tangential field strength H4θ is equal to H5θ or H7jθ on the 

interfaces between Regions 4 and 5, or Regions 4 and 7j, is zero 
on the surface of primary iron, i.e. 
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According to (22), (23), (25), and (30), the following 
equations can be obtained: 
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The continuous condition of radial flux density on the 
interface between Regions 4 and 5 is 
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According to (22), (23) and (27), the following equation can 
be obtained: 

   

     

     

5 5 5 5

4 4 4 4
12

4 4 4 4

2
,

,

k ak s k bk s

n an s n bn s kn
n

n an s n bn s kn

A f R B f R

A f R B f R k n

C f R D f R k n










 

   

    

       (46) 

The continuous condition of radial flux density on the 
interface between Regions 4 and 7j is 
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According to (22), (25) and (27), the following equation can 
be obtained: 
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5) Interface between Regions 5 and 6 

The tangential field strength on the outer surface of the 
primary iron core is zero since the permeability of iron core is 
infinite, and it is continuous along the rest part, i.e. 
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According to (23), (24), and (30), the following equations 
can be obtained: 
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The continuous condition of radial flux density on the 
interface between Regions 5 and 6 is 
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According to (23), (24) and (27), the following equation can 
be obtained: 

   

       

5 5 5 5

6 6 6 6
12

2
, ,

k ak so k bk so

n bn so kn n bn so kn
n

A f R B f R

B f R k n D f R k n 






 


  (50) 

6) Interface between Regions 7j and 8i 
The continuous condition of tangential field strength on the 

interface between Regions 7j and 8i is 
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According to (25), (26), and (30), the following equation can 
be obtained: 
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The continuous condition of radial flux density on the 
interface between Regions 7j and 8i is 
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According to (25), (26), and (27), the following equation can 
be obtained: 
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Finally, by solving the multivariable equation set of 
(34)-(52), the integration constants can be obtained. 
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