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Abstract—NMultilevel cascaded H-bridge converters have
become a mature technology for applications where high-
power medium ac voltages are required. Normal opera-
tion of multilevel cascaded H-bridge converters assumes
that all power cells have the same dc voltage and each
power cell generates the same voltage averaged over a
sampling period using a conventional phase-shifted PWM
modulation technique. However, this modulation method
does not achieve good results under unbalanced operation
per H-bridge in the power converter which may happen in
grid-connected applications such as PV or battery energy
storage systems. In the paper, a simplified mathematical
analysis of the phase-shifted PWM technique is presented.
In addition, a modification of this conventional modulation
method using variable shift angles between the power cells
is introduced. This modification leads to the elimination
of harmonic distortion of low order harmonics due to the
switching (triangular carrier frequency and its multiples)
even under unbalanced operational conditions. The analy-
sis is particularized for a three-cell cascaded H-bridge con-
verter and experimental results are presented to demon-
strate the good performance of the proposed modulation
method.

Index Terms—Pulse width modulation, Power conversion
harmonics.

[. INTRODUCTION

N the last decades, multilevel power converters have be-

come a mature technology and multiple converter topolo-
gies can be found as commercial products [1], [2]. The usual
applications of multilevel converters are motor drives, fans,
pumps, high-voltage dc transmission systems (HVDC) and
flexible ac transmission systems (FACTS), among others [3].
It can be affirmed that multilevel converters have meant an
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Fig. 1. Single-phase multilevel cascaded H-bridge power converter

with three-power cells including the phase-shifted PWM modulation
technique

industrial revolution making possible to operate in high-power
medium-voltage levels. In fact, in the last years, new multilevel
converter topologies are still being developed usually based on
modifications of well-known topologies such as NPC, flying-
capacitor or cascaded converters.

Among conventional multilevel converter topologies, cas-
caded H-bridge (CHB) converter is one of the most popular.
It presents advantages such as high modularity, high quality
output signals, possible series connection of a high number
of power modules to achieve very high voltages and possible
fault tolerant capability. These features make CHB converter
very suitable to be applied as static synchronous compensator
(STATCOM), active filters or other applications where several
dc sources are available [4]. The CHB is extremely popular in
countries with medium voltage grids above 6.6 kV since it can
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Fig. 2. Output voltages of power cells in a multilevel three-cell cascaded H-bridge converter and total output voltage using conventional PS-PWM.

Harmonic Spectrum of the output voltage (% of fundamental)

easily reach those voltage levels. In Fig. 1, a multilevel single-
phase CHB converter with three power cells is represented.

The usual way to operate the CHB converter is applying
the multicarrier phase-shifted pulse-width modulation (PS-
PWM) [5]-[7] introduced in Fig. 1. This modulation technique
applied to CHB provides high effective switching frequency of
the output signals even with low switching frequency of power
devices. In addition, the power losses are equally distributed
leading to a natural equalization of the mean time between
failure (MTBF) factor of all power devices [8].

However, CHB converter also presents some disadvantages.
The main drawback of the topology is that it requires indepen-
dent dc sources for each H-bridge. It is not considered a dis-
advantage for applications where the H-bridge capacitors are
floating (STATCOM or active filters, among others). However,
CHB converter can be used as the inverter for the integration of
independent dc sources with different nature in each H-bridge.
These dc sources can be for instance batteries, supercapacitors
or PV arrays each one operating with different dc voltages
and different power [9]-[18]. In these cases the converter
operates, in general, under unbalanced operational conditions
and the application of conventional modulation methods leads
to distorted output waveforms.

This phenomenon has been the focus of researchers in
the last years and several modulation methods have been
presented. In general, these modulation techniques are based

on the feed-forward concept based on taking into account the
real voltage values to carry out the calculations to determine
the duty cycles of the switching sequence. The feed-forward
compensation has been the base of carrier-based PWM meth-
ods [19], [20] and space-vector based techniques [21]-[25].
It has to be said that these feed-forward modulation methods
achieve the elimination of the voltage distortion created by
the voltage unbalance generating exactly the reference voltage
without error. However, they do not deal with the distortion
created by the modulator at 2f,,,, if a carrier-based PWM
is used (in the space-vector based methods the harmonic
distortion is located at the sampling frequency). which is the
focus of this paper. Under unbalanced conditions the PS-PWM
method (even introducing the feed-forward compensation)
presents high harmonic distortion at low frequency because the
multiplicative effect of switching frequency of output signals
is partially lost.

In this paper, a generalized mathematical analysis of the
well-known PS-PWM is presented. Then, a modification of
the conventional modulation method using variable shift angles
between the triangular carriers for the power cells in a multi-
level CHB converter is introduced. The aim of this modified
modulation method is to cancel the carrier-frequency order
distortion content of the output signals due to the switching.
This allows to fulfil with the grid codes [26], [27]. The
proposed method is applied to a single-phase power converter
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but it can be directly implemented in three-phase converters
applying the method to each phase separately. It has to be
noticed that this paper is an extension of [28] where the
concept was introduced.

In this paper, the complete generalized and simplified har-
monic analysis is addressed, experimental results achieving
the cancellation of low-order harmonics are included, the
limitations of the proposal are explored and the extension
of the method to be applied to CHB converters with larger
number of cells is introduced as well.

[I. CONVENTIONAL PHASE-SHIFTED PWM

Multicarrier PWM technique is the most popular method
to generate the switching signals of the power devices for
multilevel converters [5]-[7]. Among these methods, PS-
PWM is well-suited for multilevel converters formed by serial
connection of power modules (CHB, flying-capacitor, mod-
ular multilevel converter (MMC)). PS-PWM is based on the
application of bipolar or unipolar PWM with the same voltage
reference to each power module (bipolar for conventional
flying-capacitor and half-bridge based MMC and unipolar for
CHB). In PS-PWM, the triangular carriers to implement this
basic unipolar/bipolar modulation are not in phase but shifted
a specific angle depending on the total number of power
modules of the converter per phase. In this way, PS-PWM for
CHB applies a unipolar PWM method to each H-bridge and
a carrier phase displacement between consecutive H-bridges
equal to /M where M is the total number of H-bridges of
each phase of the CHB converter, as can be observed in Fig. 1.
For other converter topologies where bipolar PWM is applied,
the carrier phase displacement is 27/M [8].

Applying the PS-PWM method in the CHB converter, the
output voltages of the H-bridges are equal but displaced in
time due to the applied carrier phase displacement as can
be observed in Fig. 2. In this way, it is clear that PS-PWM
achieves equal power distribution and equalization of power
losses among the power cells. In addition, PS-PWM makes
that the total output voltage v(¢) of the CHB (sum of output
voltages of the power modules vy (t)) presents a multiplica-
tive effect in the switching frequency. This feature makes
very interesting the use of PS-PWM in modular converters
because each power module can be operated at low switching
frequency while the first harmonic due to the switching in
the total output signals is located at high frequency. As an
example, the PS-PWM method applied to a three-cell CHB
is represented in Fig. 2. In the figure, the triangular carrier
frequency fpwm is 1 kHz, the modulation index is 0.9 and the
dc voltage of each H-bridge is 150 volts. The first harmonic
due to the switching in each H-bridge output voltage (v (t))
and in the total output voltage (v(t)) are respectively located
at 2 fpym (unipolar PWM per H-bridge) and 6 fpqrm, (M times
2 fpwm) due to the usage of PS-PWM technique.

[1l. FREQUENCY-DOMAIN ANALYSIS OF PS-PWM

The output voltage of an H-bridge (power cell of the CHB
represented in Fig. 1) is generated by using a unipolar PWM.
It can be modeled as a square pulse train with a variable duty

cycle, where T}, is the period of the triangular carriers, vy,
and Vg, . are the output voltage and the dc voltage of the H-
bridge k respectively. The duty cycle for H-bridge £ can be
determined as:

Dy =

Yk where Dy € [~1,1]. (1)
Ve,k
To study the spectral components of the phase voltage of the
CHB, the output voltage of each H-bridge is firstly analyzed
using the Fourier series. This mathematical tool says that,
under mild assumptions, any periodic signal can be expressed
as a dc component plus a sum of sine and cosine functions as
follows:

o0
= ?O + ; [a7 cos(iwt) + b; sin(iwt) |, 2)
where w = 271/(Tpwm/2) because 2fpum is considered the
fundamental frequency in the analysis for vy (¢).
The coefficients a; and b; are defined by:

2
0 =1 / v (1) cos(iwt) d(wt)
T™Jo
27
b; = l/ v (t) sin(iwt) d(wt). (3)
T Jo

If the time origin is chosen in such a way that vg(¢)
presents even symmetry, the solution is simplified because b;
coefficients are zero. In this case the Fourier coefficients can
be calculated as

2 Dkﬂ
a@ = 2 / vr(t) d(wt) = 2Vie s Dr
™ Jo
2 Dkﬂ'
a; = f/ vg (1) cos(iwt) d(wt)
T Jo
2Wack . .
= . sin(iw Dy,)
i
by = 0. )

So, using the Fourier series, the output voltage of H-bridge
k can be rewritten as:

Vi (t) = Ve x Dy + Z [ sm(ka) cos(zwt)} ®)

The phase voltage of each H-bridge of the CHB has the
same Fourier coefficients but the carriers of each H-bridge
have a phase displacement based on the PS-PWM concept.
Conventionally, for a power converter with M cells operating
with PS-PWM with bipolar PWM per cell, the phase displace-
ment of power cell k£ (k=1,..., M) is defined by

o = (k — 1)%~

Considering this angle displacement, finally the power cell
k output voltage vi(t) can be described by the following
expression:

(6)
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Vk(t) =Vae,x Di
+ Z {

Once the spectral analysis of each power cell has been
developed, the total output voltage spectral analysis can be
directly calculated as the sum of the output voltages of the M
power cells:

F sin (im Dy,) cos(iwt + Z(bk)} (7

M M
U(t) :ka(t) = Z (Vdc,ka
k=1 k=1
n Z [2 dek o (imDy,) cos(iwt + ngk)}) (8)
=1

Remark: Since the spectral study is focused on the PWM
harmonic content, the fundamental harmonic frequency (i=1)
is 2fpwm so the fundamental frequency is not 50-60 Hz as
usual. In this way, w is chosen to consider 2f,,,, as the
fundamental frequency.

The i*" order harmonic content is described by:

M
VM) = hig cos(iwt + i), 9)
k=1

where the coefficients h;;, for power cell k£ and it order

harmonic are:

2Waek .
hik = Zd k sin(imDy,). (10)
T

Using basic trigonometric operations, expression (9) can be
rewritten as:

" (t) = cos(iwt)

[hix-cos(ien)|

= 11=

+sin(iwt) Y [hik Sin(iqbk)] . 11
k=1

The calculation of expressions (9), (10) and (11) is the main
objective of the frequency-domain analysis of the PS-PWM
introduced in this section.

It has to be noticed that similar analyses have been previ-
ously presented [29]. These previous analyses are based on the
use of Bessel Functions and are equivalent to expression (11).
The analysis presented in this section is an analog solution to
determine the harmonic expression of the single-phase CHB
output voltage.

These expressions can be simplified if the conventional
implementation of PS-PWM is considered. In the classical PS-
PWM, each power cell has the same dc voltage and the duty
cycle applied to each power cell is the same.

Dy, =D,

E=1---, M
Ve, = Ve, M

k=1---, (12)

So, in the conventional PS-PWM method, expressions (9),
(10) and (11) can be simplified leading to

w(t) = MVy.D
M oo
+ Z Z [hik cos(iwt + ngk)} , (13)
k=1i=1
hip = 2ch sin(irD) = h;, (14)
i
M
" (t) = h; cos(iwt) Z cos(igy)
k=1
M
+h; sin(iwt) Z sin(igy). (15)
k=1

For the sake of simplicity, a three-cell CHB operated with
conventional PS-PWM is considered to validate the obtained
expressions. In this case, M is equal to three and expression
(15) can be evaluated for harmonic order 1, 2 and 3. It results

hL(#) = hy cos(wt) i cos(og)
k=1
+hy sin(wt) 23: sin(¢y)
k=1
v"2(t) = hy cos(2wt) i cos(2¢r)
k=1
+hg sin(2wt) 23: sin(2¢yx)
k=1
v"3(t) = hj cos(3wt) 23: cos(3¢p)
k=1
+hs3 sin(3wt) 23: sin(3¢x).
k=1

(16)

In case of M =3, expression (6) can be evaluated leading to:

61=0 (17)
2

b=
4

03 = =

These angles have to be divided by two in the physical
implementation of the PS-PWM in the CHB converter due to
the usage of the unipolar PWM. Using these specific phase
displacement angles, the first and second harmonic content in
expression (16) are equal to zero. However, the third harmonic
content is not zero. This conclusion was expected because
using conventional PS-PWM, the first harmonic content due
to the switching is located at 2M times the carrier frequency
which coincides with the third harmonic of the analysis. This
result demonstrates analytically that the best phase displace-
ment angles in conventional PS-PWM with balanced operation
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are those introduced in expression (6) and no others (divided
by two if a unipolar PWM per power cell is applied).

However, this conclusion is not valid in an unbalanced
operation of the CHB. The unbalanced operation appears if
expression (12) is not fulfilled, i. e., all the dc voltages of
the power cells are not identical or the duty cycles applied
to all the power cells are not the same. In these cases, the
first and second harmonic contents have to be necessarily
described using the general expression introduced in (10) and
(11). For instance, in the three-cell CHB case with unbalanced
operation, the first and second harmonic contents are not zero
if conventional phase displacement angles are considered.

In order to solve this problem with unbalanced conditions, a
variable-angle PS-PWM method is proposed for the three-cell
CHB. The basic idea is to calculate the phase displacement
angles to be applied to the PS-PWM depending on the
operational conditions of the converter. In this way, the carriers
do not have fixed phase displacement angles as happened in
the conventional PS-PWM. Each sampling time, the phase dis-
placement of the triangular carriers are analytically determined
in order to improve the harmonic spectrum of the CHB output
voltage.

IV. PROPOSED VARIABLE-ANGLE PS-PWM TECHNIQUE

The objective of the proposed variable-angle PS-PWM for
the three-cell CHB is to calculate the phase displacement an-
gles between the triangular carriers to eliminate the harmonic
content present at frequency 2fp.m. Forcing that ¢; = 0,
in order to eliminate v"!(¢) introduced in (11) it has to be
fulfilled that

hi1 4 hiacos(¢a) + hizcos(édsz) = 0
h12 Sin(¢2) + h13 Sil’l(¢3) = 0

To avoid the use of trigonometric functions, using the
Euler’s Formula, equations (18) can be transformed to

(18)

h11 + h126j¢2 + h13€j¢3 =0. (19)

In order to facilitate the handling of equation (19), a new
variable can be defined as

2y = I% Zp = e7I%, (20)

In addition, to ensure that the module of this number is
equal to the unity, it has to be fulfilled that

w7y = |2 = 1. 1)
So, equation (19) is transformed to
hi1 + hi22z2 + hizz3 = 0. (22)
In addition, an angle # can be introduced by
2=z, (23)

Controller
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v (t)

Y
Normalization of
vy, (t) generating Dy,

)

A 4

hqj, calculation
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Possible valid
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foys (34) Use
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(33) (17)

Applydy,/2 as
shift angles

A

Fig. 3. Flow diagram of the proposed variable-angle PS-PWM method
for the three-cell CHB converter

Fig. 4. Multilevel cascaded H-bridge power converter prototype formed
by three H-bridges

leading to

h11 + (h12 + h136j0)2’2 = 0 (24)

In order to simplify this expression, the parameter h is
introduced as

hll
z9 ’

h = hia + hize? = — (25)

The parameter h fulfills that



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

1 =
- D
g ol — b
— Ds
1k . f | h J
€ wl : : : : =
2 a 2
& 60
<
58 - |
o 1257 ‘ ‘ ‘ ‘ =]
3 b
5 120 2
=)
<
115 ¢ . . . . |
0 10 20 30 40 50
Time (ms)
a)

=

10 : :

S Tek .M. W Trig'd M Pas: 00005

=] -

s

e

=1

=

Gy

°©

X

<

g’

=

8

2

a

.2 1 5.ms

=

g

S )

T 0 2 4 6 8
Frequency (kHz)

b)

Fig. 5. a) Normalized reference voltage for each H-bridge (D) and displacement angles using the proposed variable-angle PS-PWM b) Harmonic
spectrum of the output voltage under balanced conditions applying the proposed variable-angle PS-PWM

(26)

On the other hand,

h = his+ hi3e?? = hys + hiscos(0) + jhigsin(0), (27)

and hh can be also determined as

hh = (hig + hizcos(0))? + hizsin®(0) =
hi, 4 2h3; + 2hiahy3cos(6).
From equations (26) and (28), the angle 6 fulfills that

(28)

hi, — his — his
2h12h13

In order to determine the angle ¢5, it can be affirmed that

cos() = (29)

20+ %5 hith+h
COS(¢2) = 2 ::——75;44547::
h
= f%(hm + hyscos(0)). (30)

Substituting the expressions from (26) and (29),

2 2 2
h13 — h12 — hll

= 31
cos(¢2) 2h11hi2 Gl
An analog expression can be obtained for angle ¢3:
h3, — h3, — h3
cos(p3) = i oS & R 5 § (32)

2hi1hys

Finally, the angles to be applied in the variable-angle PS-
PWM are set by

his — hiy — hi,
$2 = awccos (W)
hiy — his — hi,
= —= = 2. 33
o3 arccos ( Sh1ihis ) 33)

(=7}

EN50160
I Experimental

THDs = 1.12%
THD, = 5.54%
THDsy = 7.51%

e
T

Harmonic Distortion (% of fundamental)

il
n -I Inl_m.n I l-l ull I I- =0l o
0 0.5 1 1.5 2 2.5
Frequency (kHz)

Fig. 6. Voltage waveform and corresponding harmonic spectrum of the
output voltage under unbalanced conditions applying the conventional
PS-PWM

The sign of the angles determined in (33) is derived from
expressions (18).

The bounds in this solution are obtained imposing 2z = 1
in expression (22), which is the limit of sinusoidal trigono-
metric functions. So, the valid regions are mathematically
described by:

hs _h2

hin = hn

h13 h12

> B

hll hll

haig M2y

hll hll

h13 h12

— > — -1 (34)
hll hll

So, as a summary, each sampling time A, factors are eval-
uated using (10) and the displacement angles of the triangular
carriers for the H-bridges are calculated using expression (33).
It has to be noticed that the modification of the displacement
angles does not affect to the power losses of the CHB. The
number of commutations of the power switches remains the
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same compared with classic PS-PWM. Only the exact instants
where the commutations are located are modified depending
on the instantaneous operational conditions of the power
converter. The flow diagram with the required calculations of
the proposed variable angle PS-PWM is represented in Fig. 3.

It has to be affirmed that the idea of achieving a harmonic
cancellation using variable-angle PS-PWM can be found in the
literature. In [30], the possibilities explored in our proposal are
shown but the solution is not determined. In addition in [31],
the authors determine the displacement angle but assuming
that all the H-bridges apply the same modulation index leading
to expressions which are particular cases of expression (11).
This is not the case when independent dc sources with different
nature are connected to each H-bridge of the CHB (super-
capacitors/batteries or PV arrays). This assumption limits the
possible applications of the CHB converter which is overcome
with the generalized solution achieved in this paper.

V. EXPERIMENTAL RESULTS

In order to test the proposed modified variable-angle PS-
PWM technique, a laboratory prototype of a CHB three-cell
converter has been developed. The converter is shown in Fig. 4
and the carrier frequency f,.,m is 1 kHz. The converter is
controlled using a dual core 100 MHz DSP F28M35H52C1
concerto board by Texas Instruments as master controller
[32] and PIC32F795MXS512H 32 bits microcontrollers by
Microchip [33] to operate each H-bridge. Each PIC32 is in
charge of carrying out the modulation process implementing
an unipolar PWM per H-bridge. The DSP carries out every
triangular carrier period (1 millisecond) all the required calcu-
lations summarized in Fig. 3 and sends the normalized voltage
reference Dy and the corresponding obtained instantaneous
displacement angle ¢; of the unipolar PWM [34]. It is
important to notice that the execution time of all the required
calculations shown in Fig. 3 is 20 microseconds, which allows
to operate with high carrier frequencies if it is required for
other applications.

In a first experiment, the converter is operated with balanced
conditions, i. e., with equal dc voltages (48V) and equal
normalized voltage references to the three H-bridges (mod-
ulation index equal to 0.9). Applying the proposed variable-
angle PS-PWM with these balanced conditions, the phase
displacement angles are calculated online. It can be observed
in Fig. 5a that the obtained displacement angles are very close
to those applied in the conventional PS-PWM case (7/3 and
2m/3). The small ripple in the angles are present because of
the measurement noise. The obtained output voltage and the
corresponding harmonic spectrum are represented in Fig. 5b. It
can be observed that the obtained harmonic spectrum presents
the same performance compared with the conventional PS-
PWM shown in Fig. 2. This fact demonstrates that the pro-
posed variable-angle PS-PWM method can be applied under
balanced conditions.

In a second experiment, unbalanced operation is forced
in order to test the performance of both conventional and
variable-angle PS-PWM methods. The unbalanced operation
is caused by different values of H-bridge dc voltages (70 V,
50 V and 40 V) and different values of the modulation index
of reference voltages for each H-bridge (0.95, 0.9 and 0.85
respectively). The displacement angles are fixed values for
the conventional PS-PWM method (#/3 and 27/3) and the
obtained results are shown in Fig. 6.

Under the same unbalanced operational conditions, the shift
angles are calculated online in the variable-angle PS-PWM
technique following the flow diagram shown in Fig. 3. It can
be observed in Fig. 7a that the obtained displacement angles
are far from those applied in the ideal case (7/3 and 27/3). The
obtained output voltage and its harmonic spectrum using the
variable-angle PS-PWM methods are represented in Fig. 7b. In
Fig. 8 the valid solution convergence bounds defined by (34)
and the calculated values in the experiments are represented.

At first sight, it is clear that the variable-angle PS-PWM
method achieves the drastic reduction of the harmonic content
around twice the carrier frequency (2fpum). This harmonic
distortion at 2 kHz is reduced from 4% using conventional
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PS-PWM to 1% using the proposed modification in the mod-
ulation technique.

The two main applications of the cascaded H-bridge con-
verter are motor drive and grid connected power systems.
Operating as a motor drive, for instance, the IEEE519-2014
standard limits the maximum voltage THD value to 8%
imposing in addition a 5% maximum harmonic distortion for
each harmonic order. On the other hand, for grid connected
applications, energy providers apply standards (for instance
grid code EN50160-2015) where a specific maximum har-
monic distortion is allowed for each harmonic order up to
50t". Both types of grid codes for motor drive and grid
connected applications have been evaluated comparing the
obtained results with the conventional and the modified PS-
PWM methods.

In order to evaluate the motor drive application, the THD
value considering harmonics up to 30", 40" and 50"
have been calculated and included respectively in Fig. 6 and
Fig. 7b. It can be observed from the THD,4¢ and THDj5 results
(usually the variables taken into account in standards for
motor drive applications) that the modified PS-PWM method
is superior compared with the conventional method. However,
it has to be noticed that the modified PS-PWM technique
presents a slight increase in the harmonic distortion below 2
kHz. Howeyver, it can be observed from the THD3, values for
the conventional and the modified PS-PWM methods (which
are similar) that this distortion does not contribute significantly
to the THD value.

On the other hand, in order to consider a grid connected
application, the maximum allowed harmonic distortion of grid
code EN50160-2015 has been plotted in Fig. 6 and Fig. 7b. It
can be observed that both harmonic spectra do not fulfill the
grid code presenting distortion above the limits around 2 kHz
band. So, using both methods it is required a filter. However,
it is clear that the harmonic spectrum using the modified PS-
PWM is very close to the limits imposed by the grid code.

VI. EXTENSION TO MULTILEVEL CHB CONVERTERS
WITH LARGER NUMBER OF H-BRIDGES

The proposed modification of the conventional PS-PWM
can be extended to be applied to multilevel CHB converters
with larger number of cells. In this way, for instance if a
five H-bridge CHB is considered, four degrees of freedom
are present (four phase displacement angles ¢y, k = 2,...,5)
and the harmonic distortion around 2 fp,.m and 4 fp,m could
be eliminated. The equations to be fulfilled in this case are:

5 _

hi1 + Z |:h1k COS(d)k)_ = 0
k:52 -

Z |:h1k Sin(qbk) = 0
k=2 )

hot + Z {hgk COS(2¢)]€): = 0
k:52 _

[hgk sin(201)] = 0. (35)

k=2 B

These equations are not easy to be solved analytically so
an iterative method could be applied in order to achieve valid
solutions. In general, if M H-bridges are considered, the prob-
lem has (M-1) degrees of freedom and (M-1)/2 harmonics
can be eliminated. Mathematical searching methods such as
simulated annealing, ant colony systems, genetic algorithms
or other probabilistic or heuristic methods could be used to
find offline valid solutions storing the solution set in a look-
up table.

VII. CONCLUSIONS

A simplified and generalized analysis of the harmonic
response of the CHB converter with M power cells applying
PS-PWM has been presented. As expected, it is analytically
demonstrated that the optimal shift angle between consecutive
power cells for the balanced operation case is m/M because
all harmonic distortion up to 2M times the carrier frequency
is zero.

However, if the CHB converter working with a conventional
PS-PWM method, even introducing a feed-forward compen-
sation, is operated under unbalanced conditions (different dc
voltages or different reference voltages in the H-bridges), the
performance of the converter is degraded presenting low-order
harmonic distortion due to the switching in multiples of the
carrier frequency.

In order to reduce this problem, a variable shift angle PS-
PWM method has been proposed. The use of variable shift-
angles makes possible the elimination of undesirable low-order
harmonics without increasing the power losses because the
number of commutations remains constant. The limitations of
the proposal are also addressed.

As an application example of the proposed method, a three
H-bridge CHB converter has been analyzed and tested exper-
imentally using a laboratory prototype. The obtained results
demonstrate the good performance of the proposal operating
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under balanced and unbalanced conditions for motor drive or
grid connected applications taking into account the standards.
Finally, an extension of the method for CHB converter with
larger number of cells has been also introduced.
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