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 
Abstract— This paper describes a method for obtaining 

a model of a single or a set of nonlinear loads (NLL) 
connected to a certain point of an electrical network. The 
basic assumption is that the network supplying the NLL 
has significant series impedances and is disturbed by 
other parallel, random and unknown neighbor loads, 
sharing part of the supply system with the NLL. The main 
interest for obtaining the model is its further use to predict 
the amount and flow of harmonic currents generated by 
the NLL, in the case of adding a filter to reduce the 
harmonics distortion.  The modeling technique used in the 
paper is based on Multivariate Multiple Outputs 
Regression (MMOR) and leads to a set of equations giving 
the NLL behavior (one for each of the harmonic currents). 
The model is obtained from data taken at measuring point 
(MP) and is only valid to predict the NLL behavior when 
new loads are connected at this point. The modeling 
method was first tested with V, I data coming from 
simulations using Matlab-Simulink SimPowerSystems 
toolbox. Finally, the method has been validated using V, I 
data taken in a real installation with different neighbor 
loads and under different load conditions.  
 

Index Terms— Nonlinear Loads; Modeling; Harmonics; 
Power Quality; Multivariate Regression. 

I. INTRODUCTION 

 
HE nonlinear loads (NLL) connected to industrial 

networks, mainly consisting of single-phase and three-phase 
rectifiers, cause distortion in the distribution networks, which 
increases as the short-circuit impedance increases [1][2]. That 
has led to the necessity of limiting the harmonic currents 
which can be generated by each utility user, according to 
certain international standards [3]-[5]. In case that a certain 
network section does not comply with such international rules, 
the user must include some filters to fix the problem of power 
quality in the network. 

Usually, the simplest models of harmonics produced by 
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rectifiers used in the literature, consider that such loads behave 
as ideal current sources (Norton model with infinite 
impedance) [6]-[12]. If such behavior were true, the harmonic 
currents generated by the nonlinear loads (NLL) would not 
depend on external circumstances such as: harmonics of the 
supply voltage, supply impedance, harmonics produced by 
other parallel disturbing loads or the eventual connection of an 
active or passive filter (APF) (Fig.1). Nevertheless in practice 
the harmonics amount and flow depend on all the above 
mentioned circumstances. 

The real experiences show that the Norton model with 
infinite impedance can only be applied in case that the supply 
network has an infinite short-circuit capacity, which would 
mean that the harmonic currents generated by the NLL and by 
the neighbor loads, would not influence the supply voltage of 
the load being modeled. However, the presence of 
transformers and line impedances, shared by the NLL and 
other unknown loads (ZS and neighbor loads in Fig.1), brings 
to a behavior where harmonic currents generated by the load 
of interest depend on such ZS and neighbor loads.  
 

 
In order to take into account this non ideal behavior, some 

authors propose more accurate models based on Norton 
equivalent circuits with finite impedance for the NLL, 
combined with a Thevenin equivalent circuit, with a known 
internal impedance [13], to model the low voltage network. 
Others use analytical models based on the admittance matrix 
at the point of filter connection or measuring point (MP) [14]. 
Nevertheless, since the neighbor loads are usually unknown 
and random, it is very difficult to find a Thevenin-Norton or 
an admittance model which is valid for all the possible 
neighbor and load conditions. Moreover, as have described in 
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Fig. 1.  Simplified network schematic including a hypothetic active
filter (APF) at the measuring point (MP).  



[15], the insertion of a parallel filter at MP changes the supply 
conditions and modifies the NLL harmonics pattern and 
values, so usually, the model cannot be described by an 
admittance matrix obtained from a single set of voltage and 
current data. 

Recently, several authors have proposed new methods, 
based on the admittance matrix, where the matrix coefficients 
are obtained from several sets of data representing the 
different NLL conditions and different environmental 
circumstances [16]-[21]. Beside the harmonic voltages and 
currents, which are the origin of the admittance matrix, such 
data sets may include other variables, as the NLL power, the 
total available power, etc., to better describe the load and the 
network. Many of the above mentioned papers [16]-[19], used 
Neural Networks (NN) for obtaining the relationship between 
harmonic currents and harmonic voltages (in fact the terms of 
admittance matrix) Nevertheless, the models based on NN 
have a drawback, e.g., there are many degrees of freedom: one 
can choose the number of neurons, the number and structure 
of layers, the type of neurons, etc., and there are not simple 
evaluation parameters to compare the models obtained from 
different NN. So, it is always difficult to know when the 
optimal model has been reached. Because of this, this paper 
explores the option of using more evaluable statistical 
procedures, namely, the Multivariate Multiple Outputs 
Regression (MMOR) to obtain the model of the NLL. The 
modeling procedure is explained in detail in [22] and gives a 
result consisting of a set of equations that can be put in matrix 
form, resulting in a sort of admittance matrix with some extra 
parameters, as explained below.  

The input variables chosen to describe the model are: the 
fundamental and the harmonic voltages at the MP (Fig.1) and 
the active power drawn by the NLL. The output variables 
(model output) are the fundamental current and the harmonic 
currents generated by the NLL. Notice that both, voltages and 
currents, are phasors with two components: module and phase 
(in polar representation) or real and imaginary part (in 
Cartesian representation). Since the polar representation gives 
some problems when the phase of certain harmonics is close 
to π/2 [19], the Cartesian representation has been used. 

The model will consist of a set of equations giving 
harmonic currents (Ih) as a function of harmonic voltages and 
power drawn by the NLL (Vh and P). Several sets of data are 
used to get the model coefficients (model training in the 
language of NN) , which will be described in detail in section 
III. The different data sets consist of arrays of (Ih, Vh, P), with 
h=1, 3, 5, 7, 9 …up to 15. Each array is for a different P and a 
different neighbor load (PN). 

Concerning the validation, it has been done in two stages: 
Method validation and field experimental validation.  

The first stage was to validate the method and consisted of a 
model validation using data coming from a real circuit 
simulation. The second stage has been a true experimental 
validation, performed with real data collected at a ski resort 
installation. The first stage was considered necessary in order 
to validate the modeling method without the possible 
interferences of limited data resolution and measuring noise. 

In this first stage, the data used to get the model coefficients 
have had a nearly unlimited resolution. In the second stage the 
same data but with truncated resolution to 0,5V and 0,1A has 
been used. Finally we have made an experimental validation 
with data coming from real measurements, using a standard 
measuring instrument having a voltage resolution of about 1V 
(over 500VRMS full scale) and whose current resolution was 
0,1% in amplitude at full scale. Nevertheless, the current has 
been measured with a clamp, which can give significant phase 
errors for low current values. Because of that, we have only 
considered data above 5% of the rated power. 

In section II we present the mathematical basis of the used 
methodology. Section III explains the generic schematic and 
the method for obtaining the training data in the simulation 
stage. Section IV explains, from a statistical point of view, the 
variables and data sets used for model training. Section V is 
devoted to obtain de NLL model matrix, section VI is 
dedicated to the model validation and finally in section VII 
there is a summary of the conclusions. 

II. MULTIVARIATE MULTIPLE OUTPUTS REGRESSION 

METHOD 

The NLL model must be able to predict multiple outputs, 
namely the real and imaginary components of fundamental 
and harmonic currents, which will be generically designated as 
Y1, Y2 . . . YK. Such outputs are functions of a set of inputs 
named: X1, X2,. . . XJ,. Specifically, the input variables used in 
the MMOR model are the real and imaginary components of 
fundamental and harmonic voltages at the MP plus the NLL 
active power. In a first approach, we assume a linear model for 
each output (1), 

KkεβXβY
J

j
kjkjkk ..,,1

1
0  



    (1) 

Where K is the number of outputs and J is the number of 
inputs. 

The model will be obtained from N training cases, each 
consisting of a set of data (X1, …, XJ, Y1, …, YK) and 
therefore it can be described in the matrix notation as (2) 

 EXBY 
 

            (2)

 Where Y is the N×K response matrix, where the nk entry is Ynk 
. In our case the value of K is twice the number of harmonics 
which have to be predicted, since each harmonic is described 
by its real and imaginary parts and X is the N×(J+1) input 
matrix, including the harmonic voltages at the MP plus the 
NLL power, P. In our case J=K+1. B is the (J+1)×K matrix 
of coefficients (βjk) and E is the N×K matrix of errors (nk). 
Then, according to [22], the least squares estimates will be 
given by (3): 

  YXX)(XB T1T ˆ

 

          (3) 

Hence the coefficients for the kth outcome are just the least 
squares estimates in the regression of Yk on X1, . . . , XJ. 

Notice that from physical point of view, B is a matrix 
containing the coefficients relating harmonic currents to 
harmonic voltages, plus a row of coefficients relating 



harmonic currents with NLL power and a row of constant 
coefficients, β0k, given in (1). Then B could be considered a 
sort of admittance matrix, with the above described extra 
rows. 

According to [22], if the errors (εk) in (1) are not 
correlated, the multiple outputs model can be solved as 
multiple single output least squares estimates. In this paper, 
the technique used to solve the model will be the Backward-
Stepwise regression [22], consisting on selecting the best 
subset of (βjk) which explains the model and guarantees a 
certain desired error level. 

III. TRAINING DATA SET 

As explained above, the NLL model is obtained from 
several sets of data recorded using different load and 
environmental conditions, which we call “training data”. In a 
first approach, in this paper, we use a set of simulations of a 
generic circuit structure represented in Fig. 2 to get the 
training data. The simulations have been performed using 
Matlab-Simulink® and the SimPowerSystems® toolboxes.  

The circuit in Fig. 2, represents a generic case, consisting of 
a Thevenin equivalent of the supply network formed by a 
voltage source (VX) and a line impedance (ZS) upstream of the 
point of common coupling (PCC).  

 

From PCC there are several loads connected, namely, the 
nonlinear load (NLL) of interest and the unknown neighbor 
loads. It’s assumed that neighbor loads can be represented by 
two blocks: LD1, gathering all the three phase loads (not using 
the neutral wire) and LD2 gathering all the single phase loads 
using the neutral wire. The NLL and the neighbor loads are 
connected to the same PCC as shown in Fig 2, where ZL 
represents the line impedance between PCC and measuring 
point MP and ZL1 and ZL2 represent the line impedances from 
PCC to the different blocks of neighbor loads. 

In the paper we consider that the NLL is a three phase 
rectifier or a set of three phase rectifiers and the set of 

neighbor loads (NL) consists of a mix of single and three 
phase rectifiers causing random variations of the voltage at the 
PCC and by extension at MP. 

Training data sets were obtained using a random algorithm 
which assigns different values to the NLL power and to 
neighbor loads power. Specifically, 200 cases were simulated, 
with different combinations of nonlinear and neighbor load 
parameters. For each case we have an input vector (Xj) and an 
output vector (Yk). The input vector consists of the harmonic 
voltages at MP plus the NLL power and the output vector 
consists of the harmonic currents at MP. In the training data 
generation process, the range of values for NLL current was 
set between five and sixty-five amperes and for LD1+LD2 
(Fig.2) between twelve and sixty amperes. The particular 
combination of NLL and neighbor load for each case was 
chosen randomly within the above mentioned limits.  

Despite data coming from simulation could have a nearly 
infinite resolution, we have truncated the resolution to 0.5V 
for voltages and to 0.1A for currents. We have done so, in 
order to test the modeling procedure in circumstances close to 
those found in real cases, where data come from network 
analyzers measuring voltages up to 500VRMS and currents 
through a current clamp with a maximum resolution of 0.1% 
at full scale. 

In principle, only the voltages and currents of odd harmonics 
up to the fifteenth were taken into account, since, after the 
truncation, the even harmonics and those above the fifteenth, 
were the same order of magnitude as noise and therefore they 
are negligible for our purposes. With the above described data 
conditions, the dimension of input vectors (Xj) was 17 (real 
and imaginary parts of odd harmonics V1

 to V15 plus the NLL 
power) and the dimension of output vectors (Yk) was 16 (real 
and imaginary parts of odd harmonics I1

 to I15). 

IV. MODEL ESTIMATION AND STATISTICAL VALIDATION 

As stated above, our simulated data set consisted of 200 
cases. Such data set were split up into two parts: training and 
validation subsets (150 and 50 cases, respectively). With the 
training data set, we estimate the coefficients of sixteen 
models, corresponding to real and imaginary parts of harmonic 
currents (Yk) as a function of seventeen potential input 
variables corresponding to real and imaginary parts of 
harmonic voltages and NLL power (Xj). The 0k, jk 
coefficients of these models (see (1)) were estimated using the 
backward stepwise regression method. 

The statistical validation was performed by evaluating three 
typical parameters used in null hypothesis testing [22]: the p-
values, the R-squared values and the Mean Square Errors 
(MSE). In our example, the p-values of estimations were all 
less than 0.05 and the R-squared were all more than 0.99. This 
means that the models explain at least 99% of the variability 
of the output variables. All models have also been statistically 
validated from the point of view of residuals analysis and all 
MSE were less than 0.002. 

As an example, in (4) we give the model equations for 
estimation of real and imaginary parts of the 5th harmonic 

 
Fig. 2.  Simulation block diagram.  



current, corresponding to a certain NLL in a determined 
supply system,  

ܴ෢݁ሺܫହሻ ൌ െ57,366 ൅ 0,251	ܴ݁ሺ ଵܸሻ െ 0,193	ܴ݁ሺ ହܸሻ
൅ 0,575	ܴ݁ሺ ଵܸଵሻ െ 	0,530	ܴ݁ሺ ଵܸହሻ
൅ ሺ݉ܫ	0,859 ଷܸሻ െ ሺ݉ܫ	0,453 ଽܸሻ
െ ሺ݉ܫ	0,492 ଵܸଷሻ ൅ 1,152	Power	 

                         (4) 
෢݉ܫ ሺܫହሻ ൌ 89,247 െ 0,394	ܴ݁ሺ ଵܸሻ െ 0,697	ܴ݁ሺ ଷܸሻ

െ ሺ݉ܫ	2,531 ଷܸሻ ൅ ሺ݉ܫ	1,298 ଻ܸሻ
െ ሺ	݉ܫ	0,117 ଵܸହሻ ൅ 1,605	Power 

Notice that the model equations respond to the generic form 
given in (1), but we can observe the following: 

a) Real and imaginary parts of a certain harmonic do not 
necessarily depend on the same input variables (namely the 
same real or imaginary parts of Vh). 

b) Not all the input variables are significant for a certain 
harmonic. For example, in (4) only 9 out of 17 coefficients are 
significant for the real part and 7 out of 17 for the imaginary 
part. 

V. MODEL VALIDATION BY CIRCUIT SIMULATION 

The validation has been done by comparing the estimated 
harmonic currents given by the MMOR method with currents 
obtained from the circuit simulation (Fig.2). In all section V, 
we shall call “simulated” the values obtained from circuit 
simulation (by means of Matlab-Simulink SimPowerSystems) 
and “estimated” the values obtained from MMOR statistical 
model. The method used for validation was to compare the 
values of “simulated” and “estimated” outputs (fundamental 
and odd harmonic currents up to 15th). The set of “simulated” 
values were obtained from 50 circuit simulations within the 
training range (but not used for the training) plus 20 
simulations having currents above the training range. 

Despite the model was worked out in the frequency domain, 
the validation was performed both: in frequency domain and 
in time domain.  

The basic criteria to validate the model was to compare 
different parameters, namely: 

a) Comparison between simulated and estimated Total 
Harmonics Distortion THD(I)%. 

b) Comparison between simulated and estimated values of 
real and imaginary components of each particular harmonic Ih. 

c) Comparison between simulated and estimated temporal 
wave shapes of line current, obtained by using the inverse 
transformation of Fourier analysis. 

These comparisons were performed separately for two 
different situations: a) Cases having currents within the 
training range, b) Cases having currents up to a 20% above the 
training range. 

Of course, from a rigorous statistics point of view, we 
cannot pretend the model to be valid out of the range of 
training. Nevertheless, if the NLL has no current 
discontinuities (as might occur in arc furnaces, for instance) a 
certain linear behavior in the neighborhood of the training 
range can be assumed. This was checked during the validation 

process and the results were pretty good.  
Fig. 3 shows the THD(I)% difference (5) between simulated 

and estimated values, using data with infinite resolution.  

    estsimerror )I(THD)I(THD)I(THD        (5) 

Where THD(I)sim and THD(I)est are the THD of the simulated 
and estimated currents respectively, both referred to its 
respective fundamental current. 

Each spot of the Fig. 3 corresponds to a case. Blue spots 
correspond to cases used for model training, orange spots are 
cases within the training range, but not used for model training 
and black squares are estimated cases out of the training range. 
Fig. 4 shows the same THD(I)% difference, using data with 
resolution limited to 0.5V and 0.1A.  

We can observe that the THD(I)% differences between 
simulated and estimated values are less than 1% for currents 
above 50% and high resolution, while for low resolution the 
differences increase to about 2%. Notice also that maximum 
errors occur for very low currents, which generally have a 
high THD(I), which indicates that errors are basically due to 
the lack of resolution in the current data.  

 

 

 
Fig. 5 shows the real and imaginary parts of harmonic 

currents for one of the worst cases within the training range. 
The differences between simulated and estimated currents are 
less than 0.2A over a peak current of 18A. Fig. 6 shows the 

Fig. 4.  Relative error between estimated and simulated THD(I) for
truncated data resolution (dark squares correspond to cases out of
the training range). 

Fig. 3.  Difference between estimated and simulated THD(I) with
infinite resolution (dark squares correspond to cases out of the
training range). 
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temporal reconstruction for the same case as Fig. 5. Notice 
that both lines are overlapped. The differences in the worst 
point (close to zero) are less than 0.2A. 

Fig. 7 shows the real and imaginary components of 
harmonic currents for a case where the NLL current is 20% 
above the training range. The differences between simulated 
and estimated currents are less than 0.4A over a peak current 
of 93A. Fig. 8 shows a temporal reconstruction of simulated 
and estimated currents for the same case as Fig. 7. Again the 
two lines are nearly overlapped. The differences in the worst 
case are less than 2A. 

 

 

 

 

VI. EXPERIMENTAL VALIDATION 

In this section we give the details of an experimental 
validation performed with real data collected at a ski resort 
installation.  Such installation is considered a typical case 
where there are weak lines (high impedance) and a powerful 
NLL mixed with some auxiliary neighbor loads. The 
installation has two groups of loads supplied by a 1000kVA 
transformer station. Specifically the groups are:  

a) A big three phase Thyristor converter supplying a DC 
motor with a rated power of 160 kW. The drive is used to 
move a chairlift and, except for the early morning, normally 
works at 75 to 80kW. This is the NLL to model. 

b) Several three phase and single phase lines, supplying 
auxiliary installations as hotel, bar, sport stores, lights, snow 
canons, etc. … considered to be the unknown neighbor loads.  

Training data come from real measurements in such 
installation, using a standard supply network analyzer having a 
voltage resolution about 1V (over 500VRMS full scale) and a 
current resolution of 0.1A. We followed a validation 
procedure similar to that used for data in section V. We took a 
set of 135 recordings, made a first estimation model and we 
saw that the reactive current and the harmonic currents seemed 
to be grouped in two subsets of cases. Fig. 9.a shows the 
reactive current and Fig. 9.b shows the 5th harmonic real term 
versus active power. 

Both graphs in Fig. 9 suggest that there are two different 
groups of behavior of the NLL. Further investigations revealed 
that the difference have been that there was a PF correction 
equipment based on the connection of capacitors in two steps. 
From this point two different models for the two subsets of 
cases were made. Fig. 10 shows the THD(I) error for the two 
subsets.  

Fig. 11 and Fig 13 display the real and imaginary parts of 
harmonic currents for two cases not used in the models 
training. 

Fig. 8.  Simulated and estimated currents reconstruction in time
domain. Case_2, 20% out of the training range. 

 
Fig. 7.  Real and imaginary parts of simulated and estimated currents.
Case_2, 20% out of the training range. 
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Fig. 6.  Simulated and estimated currents reconstruction in time
domain. Case_1, within the training range. 
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Fig. 5.  Real and imaginary parts of simulated and estimated currents.
Case_1, within the training range. 

0 50 100 150 200 250 300 350 400
-20

-15

-10

-5

0

5

10

15

20

Samples [n]

A
m

pl
itu

de
 [A

]

 

 

Simulated
Estimated

3 5 7 9 11 13 15
-4

-2

0

2

R
ea

l C
om

po
ne

nt
 [

A
]

 

 

Simulated
Estimated

3 5 7 9 11 13 15

-2

0

2

4

6

Im
ag

in
ar

y 
C

om
po

ne
nt

 [
A

]

 

 

Simulated
Estimated



 

 
Fig. 12 and Fig. 14 show the comparison between estimated 

and measured current waveforms for two reconstruction cases, 
not used in the models training. A nearly perfect agreement in 
case of high currents and higher errors in case of low currents 
can be seen. This has been attributed to the lack of resolution 
of voltage and current measurements. 

 
 

 
 

 
 

 

Fig. 14.  Measured and estimated currents reconstruction in time 
domain. Case with PF compensation 

 
Fig. 13.  Real and imaginary parts of measured and estimated
currents. Case with PF compensation 
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Fig. 12.  Measured and estimated  currents reconstruction in time
domain. Case without PF compensation 
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Fig. 11. Real and imaginary parts of measured and estimated
currents. Case without PF compensation 
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Fig. 10.  THD(I) error for the two subsets of cases (dark blue without
PF compensation, orange with PF compensation). 
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a) 

 
b) 

Fig. 9.  a) Reactive current and b) 5th harmonic current versus NLL
power. 
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VII. CONCLUSIONS 

In this paper, we have tested the Multivariate Multiple 
Outputs Regression (MMOR) technique for obtaining a model 
for the estimation of harmonic currents generated by nonlinear 
loads (excluding those involving arc phenomena), taking into 
account the random behavior of unknown neighbor loads.  

The novelty using this technique is that it allows obtaining 
explicit equations of the model and gives additional statistical 
parameters to evaluate the goodness of the model. This is an 
important advantage of MMOR compared to the method used 
in a previous work based on NN. 

As other techniques, MMOR requires a set of data, 
containing the output results, in order to “train” the model. 
Notice that model equations are only valid for the NLL 
connected to a precise point, that we named MP.  

The method also allows detecting different groups of NLL 
behavior, as demonstrated in the experimental validation. If 
such groups are treated concurrently, the MMOR procedure 
tries to give an average model whose predictions have higher 
deviations. But splitting up the groups of behavior and making 
separate models for them gives more accurate estimation 
models.  

Model validation has been done with simulated and 
experimental data, in the time and frequency domains, 
showing, in both cases, a very good agreement between the 
model and the measured data. 

The paper also shows that the method requires a certain 
minimum resolution of data used for training. Due to that, the 
predictions for very low currents, in the lower part of the 
measuring range, lead to relatively high errors, but predictions 
in the top part of the current range or even slightly above the 
training range give models with a very high accuracy.  
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