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Universal Fractional-order Design of Linear
Phase Lead Compensation Multirate Repetitive

Control for PWM Inverters
Zhichao Liu, Student Member, IEEE, Bin Zhang, Senior Member, IEEE,

and Keliang Zhou, Senior Member, IEEE

Abstract—Repetitive control (RC) with linear phase lead
compensation provides a simple but very effective control
solution for any periodic signal with a known period. Mul-
tirate repetitive control (MRC) with a downsampling rate
can reduce the need of memory size and computational
cost, and then leads to a more feasible design of the
plug-in repetitive control systems in practical applications.
However, with fixed sampling rate, both MRC and its linear
phase lead compensator are sensitive to the ratio of the
sampling frequency to the frequency of interested periodic
signals: (1) MRC might fails to exactly compensate the peri-
odic signal in the case of a fractional ratio; (2) linear phase
lead compensation might fail to enable MRC to achieve
satisfactory performance in the case of a low ratio. In this
paper, a universal fractional-order design of linear phase
lead compensation MRC is proposed to tackle periodic
signals with high accuracy, fast dynamic response, good
robustness, and cost-effective implementation regardless
of the frequency ratio, which offers a unified framework
for housing various RC schemes in extensive engineering
application. An application example of programmable AC
power supply is explored to comprehensively testify the
effectiveness of the proposed control scheme.

Index Terms—repetitive control, DC/AC inverter, multi-
rate repetitive control, phase lead compensation, Lagrange
interpolation polynomial, programmable AC power supply

I. INTRODUCTION

CONSTANT voltage constant frequency pulse-width mod-
ulated (PWM) voltage source inverters are widely ap-

plied as a significant element in nowadays power conversion
application, e.g. uninterrupted power supply system [1], [2],
grid-connected photovoltaic power source [3], [4], etc. Repet-
itive control, which is based on internal model principle, is an
effective way to improve inverter performance with low total
harmonic distortion (THD), fast transient response, and low
steady state error [5]–[7].
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To reduce CPU processing load, multirate repetitive control
was introduced in [8]. In MRC scheme, the converter samples
with a high sampling rate, while RC processes the data with
a reduced low rate. Previous work shows that MRC is able to
maintain the convergence speed, tracking error and THD as
good as conventional RC (CRC). Note that CRC is a special
case of multirate RC with m = 1. Therefore, multirate RC
offers a more general RC scheme in applications.

To compensate the phase lag of overall system, phase lead
compensator is usually incorporated in RC scheme. Linear
phase lead compensation, as a practical and efficient design
method, prominently improves RC performance on conver-
gence speed, tracking accuracy, and system stability [9], [10].

However, MRC with linear phase lead compensation usually
confronts severe frequency robustness problems in practices:
1) MRC is sensitive to the ratio of the sampling frequency

to the reference signal fundamental frequency. In MRC,
the period delay unit z−Nm

m needs to provide a time delay
of one reference signal period, where zm = zm indicates
MRC sampling rate is m times slower than the system
sampling frequency fs, and Nm is the ratio of the MRC
sampling frequency fs/m to the reference signal frequency
fr, i.e. Nm = fs/fr/m. In previous design [8], RC
requires Nm to be an integer, which however cannot be
always true in many applications. The fraction Nm can
be caused by either a fractional fs/fr [11] (e.g. for a 60
Hz voltage reference signal under a 10 kHz MRC (m=1)
sampling frequency, Nm will be 166.67) or downsampling
ratio m. (e.g. for a 60 Hz voltage reference signal under
a 12 kHz MRC sampling frequency, when downsampling
ratio m = 3, Nm will be fs/fr/3 = 66.67).

2) The grid frequency is not a constant and has frequency fluc-
tuations [12], [13]. For example, the grid frequency could
vary between 59 Hz to 61 Hz. When the sampling fre-
quency is 12 kHz, Nm of MRC (m=1) for grid-connected
application will vary between 196.72 and 203.39. Inac-
curate period delay will shift high gains away from the
actual frequencies of interest, which will deteriorate the
performance in terms of tracking accuracy and robustness.

3) Low delay periods Nm in MRC leads to a low resolution
for linear phase lead compensation. The linear phase lead
compensator zγm, where γ is phase lead step, provides a
phase lead θ = γ × m × (ω/ωN ) × 180◦ at frequency
ω, where ωN = πfs represents the Nyquist frequency.



For RC, it is of interest to study the compensation at the
fundamental frequency of the input signal ωr = 2πfr and
its harmonies. Therefore, the resolution of linear compen-
sation will be m × (ωr/ωN ) × 180◦ at the fundamental
frequency. Thus, the phase lead compensation resolution
of linear phase compensator zγm is m× (ωr/ωN )× 180◦.
Obviously, large multirate m, high fundamental frequency
ωr, or low Nyquist frequency ωN caused by low sampling
frequency will lead to lower phase compensation resolu-
tion, e.g. 400 Hz on-broad AC power supplies on ship
[14], low switching frequency wind power system [15].
Imprecise phase lead degrades MRC control performance
or even makes the system unstable.

Addressing above issues, a finite impulse response (FIR)
based fractional delay is proposed for CRC [16], parallel
structure RC [11], and selective harmonic RC [17], which
enables frequency adaptation to the reference signal variations.
Lagrange-interpolation-based fractional delay based RC is ap-
plied in various applications, for instance, programmable AC
power source [18], grid-connected power converter [13], and
shunt active power filters [19]. And the scheme of Lagrange
interpolation-based fractional delay is further improved with
the Farrow structure to decrease computation load in [7]. How-
ever, being a general RC design, MRC still faces the frequency
robustness issues of low phase compensation resolution and
fractional sampling interval. Generally speaking, frequency
adaptive phase lead compensation MRC is still needed to offer
a universal RC design in practical applications.

To provide a comprehensive solution to above problems,
a universal fractional-order design of linear phase lead com-
pensation MRC is proposed in this paper. In the proposed
universal design, both MRC delay period Nm and phase lead
step γ are fractional. The proposed universal fractional-order
RC, which includes a fractional-order MRC and a fractional-
order linear phase compensation, provides a general frequency
adaptive RC solution. It is able to achieve accurate phase lead
compensation, consume less computation, and allow flexible
sampling frequency and time varying reference frequency.
Comprehensive analysis and synthesis method for the pro-
posed control system are given. Experimental verification of
the proposed control scheme on a programmable AC power
supply is carried out to demonstrate the effectiveness of the
proposed solution under various application scenarios.

The rest of this paper is organized as follows: Section
II introduces MRC and its linear phase lead compensation;
Section III provides the fractional-order design for linear phase
lead compensation MRC in details. Section IV presents exper-
imental results of the proposed fractional-order linear phase
compensation MRC with scenarios of frequency fluctuations
(reference frequency varies at 59 Hz, 60 Hz, and 61 Hz)
and shipboard high frequency reference signal (400 Hz). The
conclusion is summarized in the Section V.

II. LINEAR PHASE LEAD COMPENSATION MRC

A. MRC

MRC is able to reduce computation and keep the system
with a high sampling frequency [8]. For multirate RC, the

converter system has sampling time of Ts and MRC processes
the data with a sampling time of Tm, which is m times of Ts.
Then, we denote:

Tm = mTs; zm = esTm = emsT = zm. (1)

Fig. 1. Equivalent single sampling rate RC

To analyse the system with two different sampling rates,
MRC is presented by an equivalent plug-in RC structure [20]
shown in Fig. 1, through transforming the entire system with
the same sampling rate fs/m, where R(zm) is the reference
input, Gc(zm) is the conventional controller, Gp(zm) is the
plant model, D(zm) is the disturbance, Y (zm) is the system
output. Plug-in MRC controller is a feed-forward controller
consisting of MRC gain Kr, robustness filter Q(zm), stability
filter Gf (zm), and period delay z−Nm

m in which Nm equals to
the ratio of MRC sampling frequency fs/m to the fundamental
frequency fr of reference signal R(zm), i.e. Nm = fs/fr/m.
Note that due to factor of m, Nm is more likely to be a
fraction.

The MRC transfer function GMRC in Fig. 1 is:

GMRC(zm) =
Ur(zm)

E(zm)
= Kr

z−Nm
m Q(zm)

1− z−Nm
m Q(zm)

Gf (zm) (2)

where E(zm) = R(zm)−Y (zm) is the system tracking error.
Note that when m = 1, the MRC reduces to a conventional
RC. It is worth mentioning that m can be an integer or a
fraction. When m is a fraction, the signal is up-sampled first
and then down-sampled to get a fractional ratio. For simple
analysis, we only consider m as an integer in this paper
and the results we obtained can be applied for fractional m.
Note also that, theoretically, the system can be upsampled by
setting m < 1, so more sampling points will be obtained in
RC. However, it is neither efficient nor cost-effective in real
applications because the requirement of computation time and
resources will increase. Therefore, only downsampling MRC
approach with m > 1 is investigated in our study.

In the frequency domain, MRC transfer function in Eq. (2)
has infinity magnitude gain at the fundamental and all har-
monic frequencies of the reference signal when Q(zm) = 1.
Therefore, MRC can achieve zero steady-state error tracking
of periodic signals. Previous work shows that MRC is able
to maintain the convergence speed and THD as good as
conventional RC does [8]. It is clear that CRC is a special
case of MRC when m = 1. Thus, MRC is a more flexible RC
design approach.

When the ratio Nm = fs/fr/m is not an integer, conven-
tional MRC design chooses the closest integer bNme. The de-
lay error in a period ∆Nm is defined as ∆Nm = bNme−Nm.



Fig. 2. Sensitivity of MRC magnitude plot to delay period error

Using Euler’s identity, the magnitude response of MRC at
harmonics frequencies ω = 2πhfr, with h being the harmonic
order, can be obtain as:

|GMRC(zm)| =

∣∣∣∣∣Kr
z
−bNme
m Q(zm)

1− z−bNme
m Q(zm)

∣∣∣∣∣
|Q(zm)|=1−−−−−−−−→
zm=e−jωTm

Kr√
2− 2cos[2πh(1 + fr∆Nm)]

(3)

where phase lead compensation Gf (zm) has been ignored
because of unit magnitude for linear phase lead compensation.
To study the sensitivity and robustness of MRC to delay
error ∆Nm, Fig. 2 shows the magnitude plot at reference
fundamental and harmonic frequencies when ∆Nm changes
from 0 to 0.5, where 0.5 is the maximum delay error ∆Nm.
It illustrates that inaccurate delay period in MRC will result in
delay error and cause remarkable gain drop. As a result, the
capability of MRC in tracking reference signal or rejecting
disturbance signal is significantly degraded. Obviously, this
analysis shows that conventional MRC design [8] is sensitive
and not robust to delay error, which can be caused by fs/fr
itself [7], downsampling ratio m, and reference frequency
fluctuation. This puts a great challenge to conventional MRC
with a fixed time delay period bNme.

B. Linear Phase Lead Compensation for MRC

The phase lead compensator Gf (zm) in Fig. 1 improves
the system stability by providing phase lead to cancel out the
phase lag of the closed-loop system G(zm) [21]. Theoretically,
it can be implemented as the inverse of the system model
G(zm) [22]. In practice, it is difficult to obtain the inverse
of the closed-loop system accurately due to various model
uncertainties.

Fig. 3. Linear phase lead compensation for MRC

A simple and flexible phase lead compensation scheme
is linear phase compensation design given by zγm. Fig. 3
presents the MRC scheme with a typical linear phase lead
compensation [23]. By adding a leading filter zγm, it produces

a phase lead θ = γ × m × (ω/ωN ) × 180◦ at frequency ω
for the RC output. In previous design, γ is an integer, which
could lead to an inaccurate phase compensation and result in
performance degradation. It is desirable to develop an accurate
linear phase lead compensation for MRC.

III. FRACTIONAL-ORDER DESIGN OF LINEAR PHASE
LEAD COMPENSATION MRC

As integral-order phase lead compensation MRC is low-
resolution and sensitive to both reference frequency variation
and the ratio of the sampling frequency to the reference signal
fundamental frequency, fractional-order design of linear phase
lead compensation MRC is introduced in detail to solve the
issue in this section.

A. Fractional-order Multirate RC
When sampling frequency fs is not an integral multiple of

fr ×m, typical MRC is often designed based on an integral
that is the closest integral to Nm. This will result in a severe
performance degradation for tracking of periodic reference
signal or rejecting of period disturbance signal [18], [19].
Therefore, it is necessary to design MRC with exact Nm.

This paper proposes a fractional-order multirate RC
(FOMRC) scheme as shown in Fig. 4, in which z−Nm

m in
Figs. 1 and 3 is realized by the integral part z−Ni

m and
an approximation of fractional part. The new scheme is a
universal solution as it also includes a fractional order phase
lead compensation to provide accurate phase compensation,
which will be discussed in the following part.

Fig. 4. Structure of the fractional-order MRC (FOMRC) with fractional-
order phase lead (FOPL) compensation

In Fig. 4, a nth-order polynomial is designed to approximate
the fractional delay z−Nm

m for MRC:

z−Nm
m ≈ z−Nim ×

n∑
k=0

Akz
−k
m (4)

where Ni is the closest integer of (Nm − n/2), and the
fractional part of Nm is approximated by

∑n
k=0Akz

−k
m .

B. Fractional-order Linear Phase Lead Compensation
For accurate phase compensation, a fractional order phase

lead (FOPL) compensation Gf (zm) = zγm is proposed, where
γ ∈ R+ is designed as a real number, as shown in Fig. 4. The
FOPL can be approximated by a nth-order polynomial:

zγm ≈ zγim +

n∑
k=0

Bkz
k
m (5)



where γi is the nearest integer of (γ − n/2).
With Eq. (5), the FOPL filter produces a linear phase lead:

θf = γ ×m ωr
ωN

180◦ (6)

for input signal frequency ωr, where γ is a real number.
Therefore, the FOPL filter can produce higher compensation
resolution and accuracy than integral-order filter.

C. Fraction-order Approximation
The fractional approximation item

∑n
k=0Akz

k
m in (4) and

(5) is achieved by Lagrange interpolation polynomial. The
Lagrange coefficients Ak can be calculated as:

Ak =

n∏
i=0,i6=k

γ − i
k − i

. (7)

Higher order approximation can provide higher accuracy in
magnitude. However, higher order approximation needs more
computation and a more complicated design. With the tradeoff
of approximation accuracy and design complexity, a 3rd-order
FOPL is often selected in practical applications.

D. Stability of FOMRC with FOPL
For MRC system shown in Fig. 1, z−Nm

m approaches 1 at
fr and its harmonics. With the assumption that Q(zm) = 1,
the tracking error is:

lim
ω→ωh

|E(zm)| = 0 (8)

where ωh is the reference signal harmonic frequency.
The overall system holds the stability conditions: first,

the closed-loop system G(zm) = Gc(zm)Gs(zm)/[1 +
Gc(zm)Gs(zm)] is stable [24]; second, the following condition
holds:

| Q(zm)(1−KrGf (zm)G(zm)) |< 1 (9)

With the fractional-order linear phase lead filter Gf (zm),
Eq. (9) can be rewritten as:

| 1−Krz
γ
mG(zm) |< 1

‖Q(zm)‖
(10)

Substitute zm = ejωTm , where Tm is MRC sampling
time, the equivalent closed-loop transfer function can be
expressed as G(ejωTm) = Ng(e

jωTm)exp(jθg(e
jωTm)) , with

Ng(e
jωTm) and θg(e

jωTm) being its magnitude and phase
characteristics. The robustness filter Q(zm), with the form
as Q(zm) = azm + (1 − 2a) + az−1m , can be expressed as
Q(ejωTm) = Nq(e

jωTm), with Nq(ejωTm) being its magnitude
characteristics. Note that Q(zm) is a zero phase low pass filter,
so its phase characteristic is always 0. Then (10) becomes:

| 1−KrNg(e
jωTm)ej[θg(e

jω)+γω]Tm) |< 1

Nq(ejωTm)
(11)

Since Kr and Ng(ejωTm) are both positive, we can get:

0 < Kr <
1−N2

q (ejωTm)

N2
q (ejωTm)(KrN2

g (ejωTm))

+
2cos[(θg(e

jωTm) + γω)Tm]

Ng(ejωTm)

(12)

The first item on the right-hand side of (12) is a non-negative
value because 0 ≤ Nq(e

jω) ≤ 1. Then, (12) will be satisfied
if the following condition holds:

0 < Kr ≤
2cos[(θg(e

jω) + γω)Tm]

Ng(ejω)
(13)

From (13), the frequency bandwidth condition can be ob-
tained as:

| θg(ejω) + γω |< 90◦ − ε (14)

where ε is a small positive constant to enhance the system
robustness.

The advantage of the design is that it decouples the gain
Kr and phase lead γ in (10) such that they can be designed
separately. In practice, since the processing unit and circuit
will introduce un-modeled delays in the system, the selection
of γ could be different from the one given by Eq. (14) based
on the theoretical model.

IV. APPLICATION EXAMPLE: SINGLE-PHASE
PROGRAMMABLE AC POWER SUPPLY

Programmable AC power sources that provide adjustable
frequency and adjustable amplitude AC voltages are widely
used in automatic testing and bench-top applications, such
as avionics testing, International Electrotechnical Commission
(IEC) testing, shipboard testing, and power supply test appli-
cations. Both output amplitude and output frequency can be
set over a large range. For example, electrical utilities require
power supply with frequency of 50 Hz and 60 Hz while ship
and aircraft requires power supply with 400 Hz. Under various
load conditions, a high-performance programmable AC power
source needs to generate very clean sinusoidal output voltage.
In addition to the state-of-the-art high-frequency PWM tech-
nology, advanced control techniques should be employed to
enable power converters to achieve these targets.

In this section, the system modeling and state feedback
controller are built first, then two scenarios are used to test
the advantage of the proposed fractional-order design of linear
phase lead compensation MRC:
1) 110V output with frequency variation from 59 Hz to 61

Hz under MRC (m=4), and
2) 110V, 400Hz output under MRC (m=1). Both of them have

sampling frequency of 11 kHz.

A. System Modeling and State Feedback Controller
Fig. 5 shows a MRC controlled single-phase DC/AC in-

verter, where En is the DC bus voltage; L and C are
inductor-capacitor filter; R is the linear load; Cr, Lr, and
Rr are capacitor, inductor, and resistor in the rectifier load,
respectively. The output voltage Vout and inductor current IL
are two states for state feedback controller; Vin is the input
PWM voltage.

The experimental testbed consists of the state feedback
controller and plug-in universal fractional-order MRC con-
troller designed in Matlab Simulink and implemented by
dSPACE DC1103 board to control the H-bridge IGBT con-
verter. The output voltage and current waveform are recorded



Fig. 5. Plug-in MRC controlled inverter system

via sampling circuit by ControlDesk for real-time control and
performance analysis.

With the MRC sampling rate of fs/m, the discrete-time
state space of the single-phase inverter system in Fig. 5 can
be written as:[

v(k + 1)
i(k + 1)

]
=

(
ϕ11 ϕ12

ϕ21 ϕ22

)[
v(k)
i(k)

]
+

(
g1
g2

)
u(k) (15)

where ϕ11 = 1 − Tm/(RC) + T 2
m/(2R

2C2) − T 2
m/(2LC),

ϕ12 = Tm/C − T 2
m/(2RC

2), ϕ21 = −Tm/L+ T 2
m/(2RLC),

ϕ22 = 1− T 2
m/(2LC), g1 = EnT

2
m/(2LC), g2 = EnTm/L.

The state feedback controller has the form as:

u = −k1v(k)− k2i(k) + gvref (k) (16)

where k1, k2 and g are controller parameters, vref is the
reference sinusoidal voltage. With the state feedback controller
(16), the transfer function can be rewritten as:

G(z) =
m1z +m2

z2 + p1z + p2
(17)

where p1 = −(ϕ22 − g2k2) − (ϕ11 − g1k1), p2 = (ϕ11 −
g1k1)(ϕ22 − g2k2) − (ϕ12 − g1k2)(ϕ21 − g2k1), m1 = g1k,
m2 = g2k − g1k(ϕ22 − g2k2).

TABLE I
SYSTEM PARAMETERS

Parameter Value Parameter Value
DC voltage, En 200 V Inductor, L 3 mH

Capacitor, C 10 µF PWM frequency 11 kHz
Sampling frequency, fs 11 kHz Linear load, R 200 Ω

Rectifier capacitor Cr 60 µF Rectifier inductor Lr 3 mH
Rectifier resistance Rr 200 Ω

B. Experimental scenario I: 110V output with variable
frequency 59 Hz, 60 Hz, and 61 Hz

With parameters in Table I and state feedback control gain
k1 = 1.5, k2 = 7, and g = 0.5, the closed loop transfer
function G(zm) can be derived as:

G(zm) =
1.396zm + 0.899

z2m + 0.9915zm + 0.3569
(18)

The feedback control system is stable with the poles at
−0.4957 ± 0.3334i in the unit cycle. With this feedback

Fig. 6. Output performance under feedback control: (a) linear load, (b)
rectifier load

controller, the system response under two kinds of loads for
60 Hz 110V voltage is shown in Fig. 6. From the results, state
feedback presents the stable response, but serious magnitude
error, phase lag and voltage waveform distortion result in the
large tracking error, which are 38.88V and 43.51V, and poor
THD performance, which are 6.43% and 10.05%.

The experiment employs a MRC controller with down-
sampling ratio m = 4, which reduces RC sampling frequency
to 1/4 of CRC. For 60 Hz reference frequency, the ratio of the
MRC sampling frequency and reference frequency fr equals
to fs/fr/m = 45.83 which is not an integer. Therefore, the
delay period bNme for integral MRC is chosen as the closest
integer 46, while the Nm in FOMRC is chosen as 45.83, which
is approximated by a 3rd-order FIR filter as:

z−45.83m ≈ −0.02z−44m + 0.18z−45m + 0.89z−46m − 0.04z−47m .
(19)

For the other two reference frequency cases, the similar
designs for delay period Nm are applied: Nm = 46.61 for
59 Hz and Nm = 45.08 for 61 Hz.

Fig. 7. Phase lead compensation comparison: (a) frequency bandwidth
(b) Kr upper limit

Fig.7 (a) and (b) show the phase lead compensation band-
width and Kr in the range of the Nyquist frequency with dif-
ferent phase lead steps of γ. Based on condition (14), the phase
after compensation should stay within ±75◦ with ε = 15◦.
Condition (13) indicates that the upper limit of the gain Kr

must be positive but smaller than the minimum value of the



curve 2cos[(θg(e
jωm)+γωm)Tm]/Ng(e

jωm). Fig.7 (a) shows
that in the cases of no phase lead (γ = 0, 1) and excessive
phase lead (γ = 3), the phase lead compensation results in
limited controllable bandwidth of about 550 Hz, 1200 Hz, and
350 Hz respectively. Although the phase lead compensation
with γ = 2 stays in stable area, it already reaches the limited
stability area at high frequency. On the contrary, the phase lead
compensation with γ = 1.5 stays in ±75◦ below the Nyquist
frequency, which means it can guarantee zero error tracking of
periodic signals. From Fig. 7 (b), the gain Kr of the fractional-
order compensator with γ = 1.5 has an upper limit of 1.83
below the Nyquist frequency, compared with 0.36 for γ = 2.
For γ = 0, 1 and 3, it is not possible to hold Kr positive for
the whole Nyquist frequency. This result shows that fractional-
order phase compensation leads to a larger stable frequency
bandwidth and a larger gain Kr upper-limit.

As mentioned early, the practical γ could be different
from the theoretical value. By carrying out experiments with
different phase leads, the best result for integral phase lead
can be obtained when γ = 2; for FOPL, the best performance
happens when setting γ = 1.7. This is different from the the-
oretical analysis and is mainly caused by the system modeling
uncertainty and delay in the DSP controlled PWM [25], [26].

The MRC gain Kr for both integral phase lead and FOPL
are 1, which is within Kr upper limit for both systems. Based
on Eq. (5) and (7) the FOPL with γ = 1.7 has the form of:

z1.7m ≈ −0.05z1m + 0.33z2m + 0.77z3m − 0.06z4m (20)

Experiments are compared under three MRC design meth-
ods: MRC with integral-order phase lead, FOMRC with inte-
gral phase lead, and FOMRC with FOPL.

Fig. 8. Transient response of FOMRC with FOPL

Fig. 8 shows the transient response and tracking error after
applying FOMRC with FOPL for 60Hz reference frequency.
When system operates under state feedback control, the peak
tracking error is about 50 V and this is mainly caused by
the response phase lag and magnitude error. After applying
FOMRC with FOPL, the system tracking error converges and
becomes stable within about 4 cycles.

Fig. 9 shows the steady-state performance comparison be-
tween MRC, FOMRC, and FOMRC with FOPL for 60 Hz
reference under linear load and rectifier load. It is clear that
FOMRC with FOPL has the best waveform performance. Sim-
ilar comparison results can be obtained for reference signals

with 59 Hz and 61 Hz, in which MRC and FOMRC show
even worse waveform performance. To further demonstrate
the performance of FOMRC with FOPL, Fig. 10 shows the
waveforms for 59 Hz, 60 Hz, and 61 Hz under Linear and
rectifier load, respectively. It shows that FOMRC with FOPL
has very good performance under different frequencies.

The tracking accuracy of PWM inverters is normally eval-
uated in two important aspects: (1) THD concerning how
”sinusoidal” the output is (in term of power quality); (2)
tracking error concerning the absolute control accuracy. Table
II shows the variable input frequency steady-state performance
comparison between the three MRC methods, where LL, NL,
and RL means the load conditions of linear load, no load,
and rectifier load, respectively. The steady state performance
is mainly considered in tracking error root mean square (RMS)
value and THD. For 59 Hz reference input, FOMRC gives an
obvious improvement when it is compared against the integral-
order MRC. This is mainly caused by the accurate delay period
in FOMRC. FOPL gives a further improvement by achiev-
ing more accurate compensation. The FOMRC with FOPL
achieves 31.4%, 28.1%,and 41.5% improvement on tracking
error and 15.2%, 28.1%, and 40.4% on THD comparing with
FOMRC without FOPL for linear, no, and rectifier loads,
respectively.

For 60 Hz and 61 Hz reference input, similar results are
obtained. For general cases (beyond PWM converters), the
assessment of the tracking accuracy of a control system only
concerns the tracking error. That means the proposed method
offers a general control solution to extensive applications
(including power converters).

Fig. 9. Steady-state performance comparison between MRC, FOMRC
and FOMRC with FOPL for 60 Hz reference voltage

From Fig. 9, Fig. 10, and Table II, it is easy to draw the
conclusion that the proposed FOMRC with FOPL design is
insensitive to the ratio of fs/fr and is able to deal with
fractional order delay unit. More importantly, the proposed
design is able to efficiently deal with the varying reference
frequency or frequency fluctuation and thus increases the
robustness of the repetitive control design.



TABLE II
STEADY-STATE PERFORMANCE COMPARISON OF MRC CONVERTERS AT DIFFERENT FREQUENCIES

59 Hz reference input 60 Hz reference input 61 Hz reference input
Tracking Error (V) THD(%) Tracking Error (V) THD(%) Tracking Error (V) THD(%)
LL NL RL LL NL RL LL NL RL LL NL RL LL NL RL LL NL RL

MRC 6.12 4.60 9.17 3.84 2.44 6.59 7.59 5.72 11.2 3.92 2.76 8.25 9.31 7.11 13.4 4.31 2.82 9.70

FOMRC 2.13 1.17 2.99 1.05 0.64 1.78 1.71 1.11 1.91 0.91 0.66 1.26 1.94 1.01 2.22 0.98 0.62 1.28
FOMRC

with FOPL 1.46 0.82 1.75 0.89 0.46 1.06 1.10 1.00 1.39 0.62 0.41 0.92 1.37 1.00 1.29 0.70 0.57 0.75

Fig. 10. Steady-state voltage response of FOMRC with FOPL for 59 Hz,
60 Hz, and 61 Hz reference voltage under linear load and rectifier load

Fig. 11 shows the transient response of the universal
fractional-order design of MRC at 60Hz operates under sudden
load switches from (a) no load to linear load and (b) from
no load to rectifier load, respectively. From the response, the
output voltage recovers from sudden step load change within
2 cycles (0.033 second) when a linear load is switched on, and
recovers within 5 cycles (0.083 second) when a rectifier load
is switched on. The experiments demonstrate that the proposed
universal fractional-order design of MRC is robust to sudden
load changes.

C. Experimental scenario 2: 110V, 400Hz output

The high frequency power supply can reduce equipment
volume and weight, which is significant for aircraft and ship.
Therefore, 110 VAC at 400 Hz is much popular used in aircraft
and ship AC power supply. However, with the same sampling
frequency fs = 11 kHz, high reference frequency fr leads to
a small delay period N = fs/fr in RC, which may result in a
fractional ratio and a low phase lead compensation resolution.
With a small N , we do not downsample the signal, i.e. m = 1,
thus we drop the subscript m. However, we still use FOMRC
to make the notation consistent.

The state feedback control gain is chosen as k1 = 1, k2 =
7, and g = 0.5 for 400 Hz system, the closed-loop transfer
function G(z) based on Eq. (17) is derived as:

G(z) =
0.1223z + 0.1121

z2 − 1.413z + 0.7729
(21)

Fig. 11. Sudden load switch of 60Hz reference voltage: (a) from no load
to linear load, (b) from no load to rectifier load

The poles of the system are 0.7065 ± 0.5232i, which are
within the unit circle. Under only feedback controller, it gives
stable responses for different loads. However, it cannot present
a satisfactory performance in both tracking error and THD.
The THDs for no load, linear load, and rectifier load are all
larger than 10%.

As the ratio of fs/fr is a fraction in this case study, FOMRC
with N = 27.5 and CRC with bNe = 28 are used; the RC
gain Kr for both integral phase lead and FOPL are also set as
0.5, which is within Kr upper limit for both systems. With the
similar experiment process, the best result for integral phase
lead can be obtained as γ = 3; for FOPL, the best result is
achieved when γ = 3.5 which can be approximated as:

z3.5 ≈ −0.06z2 + 0.56z3 + 0.56z4 − 0.06z5. (22)

Experiments are carried out under three kinds of loads by
comparing three RC design methods: CRC with integral-order
phase lead (N = 28, γ = 3), FOMRC with integral-order
phase lead (N = 27.5, γ = 3), and FOMRC with FOPL (N =
27.5, γ = 3.5).



Fig. 12. Transient response after applying FORC with FOPL

Fig. 12 shows the transient response and tracking error after
applying RC with FOPL. It shows that the system tracking
error converges and becomes stable within about 3 cycles.

Fig. 13. 400 Hz RC system steady-state voltage response of FORC
(N = 27.5) with FOPL (γ = 3.5) under linear load and rectifier load

TABLE III
STEADY-STATE PERFORMANCE COMPARISON AT 400 HZ

N γ
Tracking Error (V) THD (%)

LL NL RL LL NL RL

CRC 28 3 61.29 - - 6.53 - -

FOMRC (m=1) 27.5 3 1.63 2.35 3.99 0.85 1.81 3.38
FOMRC (m=1)

with FOPL 27.5 3.5 1.54 1.90 3.84 0.81 1.10 2.85

Fig. 13 shows the waveforms of FOMRC with FOPL under
linear and rectifier load, respectively. It is clear that the
output voltage traces the reference accurately under different
load conditions, which presents a strong robustness of FOPL
compensation. Table III summaries the steady state perfor-
mance comparison among RC methods (’-’ means unstable).
Comparing between CRC and FOMRC, an accurate delay
period is achieved in FOMRC. On the contrary, the CRC
cannot even maintain a stable output under no load and rectifier
load conditions. Comparing with integral-order phase lead
compensation, FOPL achieves more accurate compensation
which results in smaller tracking error and lower THD. Com-
paring with FOMRC without FOPL, FOMRC with FOPL
achieves 5.5%, 19.1%, and 37.6% improvement on tracking
error and 4.7%, 39.2%, and 15.7% on THD for linear, no,
and rectifier loads, respectively. Fig. 12, Fig. 13, and Table
III show that the proposed FOMRC with FOPL has excellent
capability to deal with applications with low delay periods and
overcomes its limitation on inaccurate phase compensation.

Fig. 14. Sudden load switch of 400Hz reference voltage: (a) from no
load to linear load, (b) from no load to rectifier load

Fig. 14 shows the transient response of the universal
fractional-order design of MRC at 400Hz operates under
sudden load switches from (a) no load to linear load and (b)
from no load to rectifier load, respectively. From the response,
the output voltage recovers from sudden step load change in 1
cycle (2.5 ms) when linear load is switched on, and recovers
within 3 cycles (7.5 ms) when rectifier load is switched on.

V. CONCLUSION

In this paper, a universal fractional-order design of linear
phase lead multirate repetitive control is proposed to provide a
general frequency adaptive RC design. The proposed approach
is simple and effective in the applications where sampling
frequency fs, the fundamental frequency of the reference
signal fr, and downsampling ratio m can be flexibly selected.
Theoretical analysis and experiments show that this new
FOMRC with FOPL design leads to significant performance
improvement in applications where the unit delays in a period
of the reference signal (ratio of fs/fr/m) is not an integer,
the fundamental reference frequency fr has fluctuations, and
the phase compensation resolution is low. It is noted that
conventional RC is a special case of MRC and therefore
the proposed design can be used for conventional RC. The
effectiveness of the proposed FOMRC with FOPL is verified
on a series of application examples of programmable AC
power supplies with high tracking accuracy, low THD, and
good transient response.
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