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Abstract—This paper proposes a dc voltage incipient
sensor fault isolation method for single-phase three-level
rectifier devices in high-speed railway electrical traction
systems. Different incipient fault modes characterizing lo-
cations and incipient fault types are parameterized nonlin-
early by unknown fault parameters. A new incipient fault
isolation method is developed by combining sliding mode
technique with nonlinear parametrization adaptive estima-
tion technique. A bank of particular adaptive sliding mode
estimators is proposed, which facilitates to derive new
isolation residuals and adaptive threshold intervals. The
isolability is studied, and the isolable sufficient condition
is derived using new functions. For the practical electrical
traction system in CRH2 (China Railway High-Speed 2),
simulation and experiment based on TDCS-FIB (a software)
are presented to verify the effectiveness and feasibility of
the proposed method.

Index Terms—Rectifiers dc voltage sensors, fault isola-
tion, sliding mode and adaptive techniques.

I. INTRODUCTION

CHINA high-speed railways are fed by 2× 25KV/50Hz
single phase ac current sources [1]. The ac/dc/ac electri-

cal traction system in CRH2 includes a single-phase three-
level ac-dc rectifier, a three-phase dc-ac inverter and four
driving motors where the rectifier is different from the two-
level rectifier discussed in [2]. Such a power electronic system
may experience static electricity corrosion, high humidity and
high temperature, electrical loading and mechanical vibration.
For example, the electrical traction drive for an urban tram may
experience 106−108 power cycles in its lifetime, with temper-
ature swings up to 80◦C [3]. In addition, aging components
in sensors, such as electrolyte loss in electrolytic capacitors
which are most fragile [4], may result in incipient faults and
further develop into serious failures. Therefore, early incipient
sensor fault diagnosis is essential and significant.
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During the past decades, model-based fault diagnosis has
been widely studied and applied such as [5] and [6]. The
sliding mode observer based FDI (fault detection and iso-
lation) has been extensively studied [7], [8] and [9]. In [7]
and [8], the “equivalent output injection” concept is used to
explicitly reconstruct fault signals to detect and isolate sensor
faults and actuator faults. Using a sliding mode observer, an
actuator FDI scheme is developed by generating residuals
instead of reconstructing fault signals in [9]. All the above
sliding mode observer based methods require that the fault
signals are bounded by known functions. In addition, the
challenging problem of residuals’ convergence for mismatched
fault modes is not considered in [9]. Adaptive is a significant
technique to solve these problems, especially to deal with
uncertainties such as [10] and [11], and adaptive observer
based FDI has been studied in [12], [13], [14], etc.. However,
residuals and adaptive thresholds generated in these papers
are conservative. Sliding mode technique in combination with
adaptive technique is a pertinent solution to improve robust-
ness of FDI against modeling uncertainties and disturbances.
In [15] and [16], the adaptive and sliding mode techniques
are used to estimate fault signals. However, residual based
fault isolation by combining adaptive approach together with
sliding mode technique is rarely few. In practical rectifiers,
there always exist switching noises and grid-side voltage and
current harmonics. However, sliding mode techniques have
good robustness and are completely insensitive to the so-called
matched uncertainty, and can also be used to deal with both
structural and unmatched uncertainty (see e.g. [17]). They are
usually used to control and monitor electrical equipments such
as rectifiers, inverters and induction motors [18]. Therefore, the
application of sliding mode techniques for rectifier incipient
voltage sensor fault isolation offers good potential.

In this paper, a multi incipient sensor faults isolation method
is developed for single-phase three-level rectifier dc voltage
sensors in high-speed railway electrical traction systems. The
voltage incipient sensor faults are modeled by differential
equations with unknown inputs parameterized by fault param-
eters in a nonlinear way. To isolate different fault modes,
a bank of particular designed sliding mode and adaptive
estimators is proposed. In the FIEs (fault isolation estimators),
the projection adaptive laws are proposed based on Min-Max
method proposed in [19] to estimate the fault parameters.
In addition, all the estimation errors generated by FIEs are
ensured to enter into the sliding surface in finite time and
maintain on it thereafter, no matter whether the matched or
mismatched fault modes occur. New residuals are defined,
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and adaptive threshold intervals are designed based on the
interval observer theory (see e.g., [20]). The incipient sensor
fault mode isolable condition characterizing which fault mode
can be isolated, is derived by new defined functions. The ef-
fectiveness and feasibility of the proposed dc voltage incipient
sensor fault isolation method is tested using the TDCS-FIB
program provided by Central South University fault injection
team.

Notations: For a real matrix or a vector M , M > 0(M ≥ 0)
means that its entries are positive (nonnegative). The symbol
diag(v) denotes a diagonal matrix with the diagonal elements
formed by the elements of the vector v. The identity matrix
with dimension n is denoted by In. The n dimensional column
vector with all elements being 1 is denoted by In.

II. MODELING AND PRELIMINARIES

A. Rectifier Modeling

The equivalent schematic diagram of the single-phase three-
level PWM rectifier device in CRH2 is shown in Fig. 1 where
us and is are the grid side voltage and current respectively, Sij ,
i = 1, 2, 3, 4, j = a, b are the IGBT modules of bridges a and
b, respectively, u1 and u2 are the voltages of capacities C1 and
C2 in dc-link side respectively, and il is the load current. For
simplifying analysis, the ideal switching functions Sj , j = a, b
are defined as in [21]. Suppose that there is no power loss and
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Fig. 1. Switch equivalent circuit

energy storage in IGBTs. Then it yields that

uab =S1u1 − S2u2, ip = S1is and in = S2is. (1)

where S1 = Sa(Sa+1)−Sb(Sb+1)
2 and S2 = Sa(Sa−1)−Sb(Sb−1)

2 .
Suppose that there is also no power loss and energy storage in
the ac/dc/ac electrical traction system. Then the instantaneous
powers are equal between the dc side and traction motors, that
is

(u1 + u2)il = Pm (2)

where Pm is the instantaneous power of traction motors.
It should be pointed out that the IGBT switching and

the harmonics in grid side voltage us result in harmon-
ics in grid current is and dc voltages u1 and u2. In this
paper, these harmonics are considered as disturbances and
uncertainties in the rectifier devices, and are represented
by ηn(us, is, u1, u2, ω, t) = col(ηis(·), ηu1(·), ηu2(·)), which
should be considered in fault diagnosis. From Fig. 1, on the

basis of the Kirchhoff current and voltage principles, it has
that

dis
dt

=
1

L
(us −Ris − uab) + ηis(us, is, u1, u2, ω), (3)

du1

dt
=

1

C1
(ip − il) + ηu1(us, is, u1, u2, ω), (4)

du2

dt
=

1

C2
(−in − il) + ηu2

(us, is, u1, u2, ω). (5)

Thus, the state-space of the single-phase three-level rectifier
device is obtained by

Ẋ = AnX + gn(X) +BnU + ηn(X,U, ω, t) (6)
y = X (7)

where X = col(is, u1, u2), U = us and Bn = col(1/L, 0, 0),

An =

 −R
L
−S1
L

S2
L

S1
C1

0 0

−S2
C2

0 0

 and gn (X) =

[
0

− Pm
C1(X2+X3)

− Pm
C2(X2+X3)

]
.

B. Incipient Sensor Fault Modeling
An incipient sensor fault always develops in a continuous

way that has been dicussed in [22], which can be modeled
based on the following lemma.

Lemma 1. [23] For any piecewise continuous vector function
f : R+ → Rq , and a stable q × q matrix Af , there always
exists an input vector ξ ∈ Rq such that ḟ = Aff + ξ.

For the dc voltage sensors, there are three fault modes: only
sensor u1 has incipient fault, only sensor u2 has incipient fault
and both sensors u1 and u2 have incipient faults simultane-
ously. From Lemma 1, these fault modes are modeled by

ḟ i = Aiff
i +Di

2∆(u1, u2, U, θ
i), f i(0) = 0, i = 1, 2, 3 (8)

where Aif are Hurwitz matrices. The functions
∆(u1, u2, U, θ

i) are continuous with small amplitude,
which are used to describe the incipient faults. They are
parameterized by θi nonlinearly. The faults considered are
different from the existing linear parameterized faults as in
[14]. It should be noted that Aif are not design parameters.
The unknown input distribution matrix Di

2, i = 1, 2, 3 are
given by

D1
2 =

[
0 0 0
0 1 0
0 0 0

]
, D2

2 =
[

0 0 0
0 0 0
0 0 1

]
, D3

2 =
[

0 0 0
0 1 0
0 0 1

]
. (9)

Let p and N denote the number of sensors and number of
possible fault modes in the rectifier device respectively. Then
a set ΣD related to considered fault modes is defined by

ΣD = {Di
2, i = 1, · · · , N}. (10)

The functions ∆(·, θi) := col{δ(·, θi1), · · · , δ(·, θip)}, i =
1, · · · , N where θi = col(θi1, · · · , θip) ∈ Rph with θij ∈ Rh,
j = 1, · · · , p represent the unknown fault parameter vectors,
and are assumed to belong to known hypercubes Θi, given by

θi ∈ Θi =
{
θi ∈ Rph

∣∣θij ≤ θij ≤ θ̄ij , j = 1, · · · , ph
}
. (11)

where θij and θ̄ij are upper bound and lower bound of θij
respectively. Therefore, the matrix Aif and the unknown input
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Di
2∆(·, θi) characterize a class of incipient fault modes, in

which the structure and time varying “magnitude” are param-
eterized by Aif , Di

2 and θi.

Remark 1. In [14], it is assumed that only one sensor fault
occurs, which is can be applied to the case when multi faults
occur simultaneously in practical systems. In this paper, multi
incipient sensor faults isolation schemes are developed. The
set ΣD in (10) contains multi incipient sensor faults mode in
rectifier devices which will be isolated under certain conditions
in this paper. ∇

C. Augmented System
Let xi := col(X, f i) ∈ Rn+p where n is the dimension of

the rectifier. Inverter model (6)-(7) and fault models (8) can
be represented in an augmented form as

ẋi=Aixi + g(xi) +Bu+ η(xi, u, ω, t) +Di∆(y, u, θi), (12)

y=[Ip, Ip]x
i, i = 1, · · · , N (13)

where y is the actual measured signals, u = U , Ai =
diag(An, A

i
f ), g(xi) = col(gn(Cxx

i), 0) = col(gn0(xi), 0)
with Cx = diag(In, 0), B = col(Bn, 0), η(·) = col(ηn(·), 0)
and Di = col(0, Di

2). It should be pointed out that Di are
not necessary full column rank, which are different from
traditional papers such as in [7] and [8].

It is assumed throughout this paper that rank(Di
2) = qi, i =

1, · · · , N , which mean that there are qi elements 1 in diagonal
of Di

2. Since Di
2 and Dj

2 (j 6= i) are diagonal matrices with
elements 1 and 0 in diagonal, there exists one and only one
orthogonal matrix T i0 ∈ Rp×p such that

(T i0)TDi
2T

i
0=

[
0 0
0 Dii

23

]
(14)

where Dii
23 = Iqi . Then

(T i0)TDj
2T

i
0=

[
Dij

22 0

0 Dij
23

]
(15)

where Dij
22 ∈ R(p−qi)×(p−qi) and Dij

23 ∈ Rqi×qi are diagonal
matrices with only elements 1 and 0 in diagonals. Supposing
that there are dj1 elements 1 in Dij

22 and dj2 elements 1 in Dij
23,

respectively, dj1 + dj2 = qj . Let

T ia =

[
In 0
Ip (T i0)T

]
, T ib = T i0. (16)

Then
1) zi = T iax

i = col(z1, z
i
2) = col(X,X + (T i0)T f i) where

z1 ∈ Rn and zi2 ∈ Rp,

2) T iaA
i(T ia)−1=

[
A11 0
Ai21 Ai22

]
=

 A11 0
Ai211

Ai212

Ai11
22 Ai12

22

Ai21
22 Ai22

22

=[
An 0

An −Aif T i0A
i
f (T i0)T

]
where A11 = An, Ai211 ∈

R(p−qi)×n, Ai212 ∈ Rqi×n, Ai11
22 ∈ R(p−qi)×(p−qi) and

Ai22
22 ∈ Rqi×qi ,

3) T iaD
iT ib =

 0
0 0
0 Dii

23

, T iaD
jT ib =

 0

Dij
22 0

0 Dij
23

,

4) [Ip, F ](T ia)−1 =
[

0 T i0
]
.

Accordingly, T iag (·), T iaη(·) and T iaB can be obatined.
With matrix (T ib )

−1, the jth ∆(·, θj), j = 1, · · · , N is
assumed to be reordered as ∆i(·, θij) = (T ib )

−1∆(·, θj) where

∆i(·, θij) =col(∆i
1(·, θij1),∆i

2(·, θij2)), (17)

θij =col
(
θij1, θij2

)
(18)

where

∆i
1(·, θij1) =col(δ(·, θij1 ), · · · , δ(·, θijp−qj )), (19)

θij1 =col
(
θij1 , · · · , θ

ij
p−qj

)
∈ R(p−qj)h, (20)

∆i
2(·, θij2) =col(δ(·, θijp−qj+1), · · · , δ(·, θijp )), (21)

θij2 =col
(
θijp−qj+1, · · · , θijp

)
∈ Rqjh. (22)

Furthermore, for the jth fault mode, the unknown fault param-
eter vector θij1 in (20) and θij2 in (22) are assumed to belong
to known hypercubes Θij1 and Θij2 respectively, which can
be obtained based on (11) and the matrix T ib .

Remark 2. It should be pointed out that different fault modes
j and transformations T ib have different Θij1 and Θij2, which
provide the capabilities to isolate different fault modes. ∇

Assumption 1. The modeling uncertainties η(·) in (12) sat-
isfies that ∀t > 0, ‖η(·)‖ ≤ η̄ where η̄ is a known constant.
Moreover, the nonlinear function gn0

(
xi
)

in (12) is uniformly
Lipschitz, i.e.

∥∥gn0

(
xi
)
− gn0

(
x̂i
)∥∥ ≤ L

∥∥xi − x̂i∥∥ where
L is the known Lipschitz constant.

Remark 3. In this paper, there is no constraint on the struc-
ture of uncertainties. The voltage and current harmonics are
main sources of disturbances, and uncertain capacitances and
inductances are the main sources of uncertainties in practical
rectifier systems. In general, the injection expressions ηis , ηu1

and ηu2
in system (3)-(5) caused by harmonics and uncertain

capacitances and inductances can be obtained based on recti-
fier working mechanism. Then the bounds η̄ on uncertainties
η(·) in (12) can be obtained based on specifications provided
by manufacturers. Moreover, the historic statistical data can be
used to help to estimate the bounds on external disturbances.
∇

For the ith fault mode, augmented system (12)-(13) is
transformed to

ż1 =Anz1 + gn0((T ia)−1zi) +Bnu+ ηn(·), (23)

żi21 =Ai211z1 +Ai11
22 z

i
21 +Ai12

22 z
i
22 + gi21((T ia)−1zi)

+Bi21u+ ηi21(·), (24)

żi22 =Ai212z1 +Ai21
22 z

i
21 +Ai22

22 z
i
22 + gi22((T ia)−1zi)

+Bi22u+ ηi22(·) +Dii
23∆i

2

(
y, u, θii2

)
, (25)

y =T i0z
i
2 (26)

where zi2 = col(zi21, z
i
22) with zi21 = [Ip−qi , 0](T i0)T y ∈

Rp−qi , zi22 = [0, Iqi ](T
i
0)T y ∈ Rqi . In (24) and (25), the

functions gi21 and gi22, the matrices Bi21 and Bi22, and the
uncertainties ηi21 and ηi22 are obtained from T ia.
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Fault detection is to detect the occurrence of faults, while
fault isolation focuses on localization (classification) of dif-
ferent fault modes. In this paper, multi incipient sensor faults
isolation schemes will be developed based on sliding mode
technique and nonlinear parameterization adaptive estimation
technique, which are completely different from [22].

III. INCIPIENT SENSOR FAULT ISOLATION SCHEMES

A. FIEs Design and Incipient Fault Isolation Decision
Scheme

Different from FIEs in [13], the following FIEs are con-
structed by combining sliding mode technique with nonlinear
parameterization adaptive estimation technique. Suppose that
the incipient sensor fault is detected at time Td when FIEs
are activated. Each FIE corresponds to one potential fault
mode. There are N FIEs corresponding to N potential fault
modes. Denote ẑ1, ẑs21 and ẑs22 as estimation of z1, zs21 and
zs22 respectively, and es22 = zs22− ẑs22. The sth FIE is designed
as

˙̂z1 =Anẑ1 + gn0((T sa )−1ẑs) +Bnu, ẑ1(Td) = 0, (27)
˙̂zs21 =As211ẑ1 +As11

22 ẑ
s
21 +As12

22 z
s
22 + gs21((T sa )−1ẑs)

+Ks
11 (zs21 − ẑs21) +Bs21u+ D̄ss

22∆s
1(·, θ̂ss1)

+ νs21 + νs22, ẑ
s
21(Td) = 0, (28)

˙̂zs22 =As212ẑ1 +As21
22 z

s
21 +As22

22 ẑ
s
22 +Ks

22 (zs22 − ẑs22)

+ Âs22
22 εsat(

es22

ε
) + gs22

(
(T sa )−1ẑs

)
+Bs22u

+Dss
23∆s

2(·, θ̂ss2) +Dss
23Λ̂s2(·, θ̂ss2)sat(

es22

ε
)

−Ψs(zs21, z
s
22), ẑs22(Td) = 0 (29)

where ẑs , col(ẑ1, (T
s
0 )T y), the matrix Ks

11 = As11
22 − Âs11

22

with Âs11
22 being symmetric negative definite, the matrix D̄ss

22 =
Ip−qs . The matrix Ks

22 = As22
22 − Âs22

22 with Âs22
22 being

symmetric negative definite and Metzler∗ where the positive
system theory is used. The positive constant ε is chosen as
a small scalar. The vector function Λ̂s2(·) = diag(Λs2(·))
where Λs2(·) is given in (74) with α being chosen as es22

(see Appendix). Ψs(·) ∈ Rqs will be determined later. The
functions νs21 and νs22 are defined by

νs21=m
s
21(·)sgn (zs21 − ẑs21) , νs22=M

s
22(·)sgn (zs21 − ẑs21) (30)

where the scalar function ms
21(·) and the diagonal matrix

Ms
22(·) are determined later.
The vectors θ̂ss1 and θ̂ss2 are estimations of θss1 and

θss2 respectively. The update laws, derived using Min-Max
approach (see e.g., [19] and [24]), are proposed by

˙̂
θss1 =PΘs1

{
−Γθs1e

s
21W

s
1 (·, θ̂ss1)

}
, θ̂ss1(0) ∈ Θs1, (31)

˙̂
θss2 =PΘs2

{
−Γθs2e

s
22W

s
2 (·, θ̂ss2)

}
, θ̂ss2(0) ∈ Θs2 (32)

where Γθs1 = ΓTθs1 > 0 and Γθs2 = ΓTθs2 > 0. The matrix
function W s

1 (·) is given in (73) with α being chosen as es21,
and the matrix function W s

2 (·) is given in (74) with α being

∗A real matrix is called Metzler matrix if all its off-diagonal entries are
nonnegative.

chosen as es22 (See Appendix). In (31), the projection operator
PΘs1 restricts the parameter estimation θ̂ss1 in Θs1. Also,
PΘs2 in (32) restricts the parameter estimation θ̂ss2 in Θs2. In
order to enter into sliding motion and guarantee the stability,
the convex regions Θs1 and Θs2 are defined as

Θs1 =
N
∪
i=1

Θsi1, Θs2 = Θss2. (33)

where Θsi1 and Θss2 are obtained based on (11) and T sb .
This paper is different from the fault isolation schemes

presented in [14] in that the adaptive threshold interval concept
will be introduced later. Considering this, the incipient sensor
fault mode isolation decision principle in this paper is
presented as follows: if, for each h ∈ {1, · · · , N}\{s}, there
exist some finite time th > Td and some j ∈ {1, · · · , qh}
such that rhj (t) /∈

[
ςhj , ς̄

h
j

]
, then the occurrence of the sth

fault mode is concluded, where rhj (t) represents the jth

residual of the hth FIE, and
[
ςhj , ς̄

h
j

]
is the corresponding

adaptive threshold interval. The fault isolation time is defined
as T sisol , max{th, h ∈ {1, · · · , N}\{s}}.

B. Stability Analysis
Denote e1 = z1 − ẑ1 and es21 = zs21 − ẑs21. Define the

hyperplane sliding surfaces S s for the sth FIE as follows

S s = {(e1, e
s
21) | es21 = 0}, s = 1, · · · , N. (34)

Note that

(T sa )−1(zs − ẑs)=
[
In 0
−T s

0 T s
0

] [
z1−ẑ1

0

]
=
[
In
−T s

0

]
(z1 − ẑ1). (35)

From (23) and (27),

ė1 =Ane1+gn0((T sa )−1zs)− gn0((T sa )−1ẑs) + ηn(·). (36)

Thus, it can be obtained that e1 = eAnte1 (Td) +∫ t
Td
eAn(t−τ)(gn0

(
(T sa )−1zs

)
− gn0

(
(T sa )−1ẑs

)
+ ηn(·))dτ.

In rectifier control systems, the objective is to ensure unity
power factor operation and dc link voltage regulation. The
inner loop of the rectifier device controls the input current
is using a classical PI controller, which is designed as a
classical I-type system. When switching frequencies are high
enough, the close-loop current in inner loop is first-order
inertial element. The external loop of the rectifier device
controls the dc link voltages u1 and u2 using a classical PI
controller, which is designed as a classical II-type system. The
closed-loop external loop closed-loop system is a minimum
phase stable three-order damper system. Therefore, in rectifier
control systems, the switching signals Sa and Sb are designed
such that the switching system (6) is ISS (input-to-state stable)
and An is Hurwitz. Thus, from [25], there exist positive
constants k0 and λ0 such that

∥∥eAnt
∥∥ ≤ k0e

−λ0t, t ≥ Td.
Suppose that there exists ω1 such that ‖e1(Td)‖ =

‖z1(Td)‖ ≤ ω1. Then by applying the Bellman-Gronwall
lemma, it follows from Assumption 1 and (35) that ‖e1(t)‖
satisfies that

‖e1(t)‖ ≤ χ (·) , t ≥ Td (37)

where χ (·) , χ (k0, η̄, λ0,L , T s0 ) which can be obtained
from [25] and [13].
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With the transformation matrices T sa and T sb , in the presence
of the hth (h ∈ {1, · · · , N}) fault mode, the unknown input
of zs21 is described by Dsh

22 ∆s
1(y, u, θsh1). By comparing with

(28), the error dynamic is obtained by

ės21 =As211e1 + Âs11
22 e

s
21+ gs21((T sa )−1zs)− gs21((T sa )−1ẑs)

− νs21 +Dsh
22 ∆s

1(·, θsh1)− D̄ss
22∆s

1(·, θ̂ss1)

+ η21(·)− νs22. (38)

The following proposition is ready to be presented.

Proposition 1. Let κ ≥ sup ‖θsh1 − θ̂ss1‖ with θsh1 ∈ Θsh1

and θ̂ss1 updated by (31). In the presence of the hth fault
mode, h ∈ {1, · · · , N}, if the scalar function ms

21(y, u, t) and
the diagonal matrix function Ms

22(y, u, θ̂ss1) in (30) satisfy

ms
21(·) ≥ (‖As211‖+ L (1 + ‖T s0 ‖))χ (·)

+ ‖W s
1 (·, θ̂ss1)‖κ+ ‖Λ̂s1(·, θ̂ss1)‖

+ |∆s
1(·, θ̂ss1)‖+ η̄ +$, (39)

Ms
22(·) =Λ̂s1(·, θ̂ss1), t ≥ Td (40)

where Λ̂s1(·) = diag(Λs1(·)), Λs1(·) and W s
1 (·) are given in (73)

(see Appendix), then es21 will enter into the hyperplane S s

given in (34) in finite time and will remain on it thereafter.

Proof: Let V = (es21)T es21. It follows from (38) that V̇ =

V̇1 + V̇2 + V̇3 where V̇1 = (es21)T
(
Âs11

22 + (Âs11
22 )T

)
es21 < 0

due to that Â11s
22 is symmetric negative definite,

V̇2 =(es21)T {As211e1 −Dsh
22W

s
1 (·, θ̂ss1)(θsh1 − θ̂ss1)) (41)

+ gs21((T sa )−1zs)− gs21((T sa )−1ẑs)− ηs21(·)− νs21}

and

V̇3 =(es21)T {Dsh
22 ∆s

1(·, θsh1)− D̄ss
22∆s

1(·, θ̂ss1)

+Dsh
22W

s
1 (·, θ̂ss1)(θsh1 − θ̂ss1)− νs22}. (42)

Note that Dsh
22 + D̄sh

22 = Ip−qs = D̄ss
22. Then, V̇3 = V̇31 + V̇32

where

V̇31 = (es21)T {Dsh
22 ∆s

1(·, θsh1)−Dsh
22 ∆s

1(·, θ̂ss1)

+Dsh
22W

s
1 (·, θ̂ss1)(θsh1 − θ̂ss1)

−Dsh
22 Λ̂s1(·, θ̂ss1)sgn(es21)}, (43)

V̇32 = −(es21)T {D̄sh
22 ∆s

1(·, θ̂ss1)

+ D̄sh
22 Λ̂s1(·, θ̂ss1)sgn(es21)}. (44)

From (69), (70) and (73), and choosing α = es21 in Ap-
pendix, it follows from the gain Ms

22(·) in (40) that Πi =
|es21i| (sgn (es21i) (δ(·, θhi )−δ(·, θ̂si )+wi(·)(θhi −θ̂si ))−λi(·)) ≤
0. Then, V̇31 =

∑dh1
i=1 Πi < 0. Due to the fact that

κ ≥ sup ‖θsh1 − θ̂ss1‖, ‖Dsh
22‖ ≤ 1 and ‖D̄sh

22‖ ≤ 1,
and also ‖η21‖ < η̄, ‖gs21((T sa )−1zs) − gs21((T sa )−1ẑs)‖ ≤
L (1 + ‖T s0 ‖)‖e1‖, the gain ms

21(·) in (39) ensures that
V̇2+V̇32 ≤ −$ ‖e21‖. Therefore, V̇ ≤ −$ ‖e21‖ ≤ −$V 1/2,
which implies that the reachability condition is satisfied.

Hence, the conclusion follows.

Remark 4. It should be pointed out that these isolation
schemes require that all sliding motions take place earlier than

faults occur. Compared with abrupt faults, incipient sensor
faults in rectifiers usually take long time to cause system
failures. In addition, the time taken to reach sliding surfaces
(34) can be reduced by adjusting $ and ẑs21(0) to ensure that
the sliding motions occur at the very initial stage. Therefore,
the developed results can be applied to a majority of cases in
reality. ∇

C. Adaptive Threshold Interval
Based on the fault mode isolation principle presented in

Section III-A, the sth fault isolation residual rs is required to
be sensitive not only to the sth fault mode, but also to the
hth fault mode with h ∈ {1, · · · , N}\{s}, which is different
from [14] since sliding mode is introduced in FIEs (27)-(29).
Therefore, a tuning error es22ε = es22 − εsat(

es22
ε ) + T szs21 is

defined as the isolation residual, where the constant matrix
T s ∈ Rqs×(p−qs) is chosen such that T sDsh

22 6= 0 when Dsh
22 6=

0 for the hth fault mode to guarantee that es22ε is sensitive to
Dsh

22 ∆s
1(·).

Accordingly, the Ψs(·) in (29) is given by

Ψs(·) =T sAs211ẑ1 + T sAs11
22 z

s
21 + T sAs12

22 z
s
22

+ T sgs21((T sa )−1ẑs)− Âs22
22 T

szs21. (45)

For the sth fault mode, when es22 ≥ ε, ės22ε = ės22 +T sżs21. By
substituting (45) to (29) and comparing with (25), the error
dynamic is obtained by

ės22ε =(As212 + T sAs211)e1 + Âs22
22 e

s
22ε

+ (gs22 + T sgs21)((T sa )−1(zs − ẑs))
+ (ηs22 + T sηs21)(·) +Dss

23∆s
2

(
·, θss2

)
−Dss

23∆s
2(·, θ̂ss2)−Dss

23Λ̄s2(·, θ̂ss2). (46)

Also when es22 ≤ −ε, ės22ε = ės22 + T sżs21,

ės22ε =(As212 + T sAs211)e1 + Âs22
22 e

s
22ε

+ (gs22 + T sgs21)((T sa )−1(zs − ẑs))
+ (ηs22 + T sηs21)(·) +Dss

23∆s
2

(
·, θss2

)
−Dss

23∆s
2(·, θ̂ss2) +Dss

23Λs2(·, θ̂ss2). (47)

Remark 5. The estimation error col(es21, e
s
22) is chosen as

isolation residual in [13] and [14] while only es22ε is selected as
residual in this paper, which and the characteristic that es21 =
0 when sliding motion occurs facilitate the design of more
proper adaptive thresholds to improve isolability. ∇

According to (46) and (47), the adaptive threshold interval
is defined as [ςs, ς̄s] where

˙̄ςs=(Υ1 + Ῡ2)Iqs+Âs22
22 ς̄

s, ς̇s=−(Υ1 + Υ2)Iqs+Âs22
22 ς

s (48)

where Υ1 = (‖As212 + T sAs211‖+ L (1 + ‖T s0 ‖))χ(t) + (1 +
‖T s‖)η̄ > 0, Ῡ2 = ‖W̄ s

2 (·, θ̂ss2)‖‖θ̃ss2‖ > 0 and Υ2 =
‖W s

2(·, θ̂ss2)‖‖θ̃ss2‖ > 0.
Under the initial condition that ς̄s(Td) ≥ 0 and ςs(Td) ≤ 0,

it has that ς̄s(t) ≥ 0 and ςs(t) ≤ 0, ∀t > Td because Âs22
22 is

Metzler.
Define two errors ēs22ε = ς̄s − es22ε when es22 ≥ ε, and

es22ε = es22ε − ςs when es22 ≤ −ε, respectively. Assume that
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ςs(Td) ≤ es22ε(Td) ≤ ς̄s(Td), ēs22ε(Td) ≥ 0 and es22ε(Td) ≥ 0.
Then

˙̄es22ε =Âs22
22 ē

s
22ε + φ̄, ēs22ε(Td) ≥ 0, (49)

ės22ε =Âs22
22 e

s
22ε + φ, es22ε(Td) ≥ 0 (50)

where φ̄ and φ can be obtained based on (46), (47) and (48).
From (71) and (72) in Appendix with α = es22, it can be

obtained that when es22 ≥ ε, φ̄ ≥ 0, and when es22 ≤ −ε,
φ ≥ 0.

Consider when one of the component ēs22εi of ēs22ε in (49)
is equal to zero for the first time at t = t1 > Td. Then,

˙̄es22εi(t1) =

qs∑
j=1

Âs22
22ij ē

s
22εj(t1) + φ̄j (51)

where Âs22
22ij represent the ith row and jth column of Âs22

22 .
At t = t1, ēs22εi(t1) = 0, ēs22εj(t1) ≥ 0, j 6= i and φ̄j ≥ 0.
From the fact that Âs22

22 is Metzler, Âs22
22ij > 0, i 6= j, then

˙̄es22εi(t1) ≥ 0, which implies that ēs22εi will stay nonnegative.
Finally ēs22εi remains nonnegative for any time t ≥ Td.
Therefore, ēs22ε ≥ 0,∀t > Td. Using the same analysis, the
result that es22ε ≥ 0,∀t > Td can be obtained.

Then, the following proposition is ready to be presented.

Proposition 2. If 0 ≤ es22ε(Td) ≤ ς̄s(Td), then ς̄s(t) ≥ 0,
and es22ε(t) ≤ ς̄s(t), ∀t > Td, else if ςs(Td) ≤ es22ε(Td) ≤ 0,
ςs(t) ≤ 0, ςs(t) ≤ es22ε(t), ∀t > Td. Furthermore, if ςs(Td) ≤
es22ε(Td) ≤ ς̄s(Td), then ςs(t) ≤ es22ε(t) ≤ ς̄s(t), ∀t > Td.

Proof: The result is obtained directly from the analysis
above and the proof is omitted here.

It should be noted that the estimation error θ̃ss2 is used
in (48). Since θss2 is unknown, ς̄s and ςs cannot be used in
the design directly. The projection adaptive law proposed in
(32) ensures that ‖θ̃ss2‖ is bounded by a known constant κ1.
Therefore, in the fault isolation scheme, ‖θ̃ss2‖ in (48) can be
replaced by κ1 in practical design.

D. Incipient Sensor Fault Isolability Analysis
For the rth FIE (r = 1, · · · , N ), there exist two variables

ϑ̄rr and ϑrr satisfying that

˙̄ϑrr =Âr22
22 ϑ̄

rr +Drr
23

(
∆r

2(·, θ̂rr2) + Λ̄r2(·, θ̂rr2)
)
, (52)

ϑ̇
rr

=Âr22
22 ϑ

rr +Drr
23

(
∆r

2(·, θ̂rr2) + Λr2(·, θ̂rr2)
)

(53)

where ϑ̄rr(Td) = 0 and ϑrr(Td) = 0. Also for the sth fault
mode and the rth FIE, there exists a variable ζrs satisfying
that ζrs(Td) = 0,

ζ̇rs = Âr22
22 ζ

rs + T rDrs
22∆r

1(·, θrs1) +Drs
23∆r

2(·, θrs2). (54)

To measure the different effects between the two fault modes,
the two functions between the sth fault mode and the hth fault
mode are defined by

J̄rs = ζrs − ϑ̄rr, Jrs = ζrs − ϑrr. (55)

Remark 6. From a qualitative point of view, J̄rs and Jrs

can be interpreted as a filtered version of the difference
between the actual fault functions T rDrs

22∆r
1(y, u, θrs1) +

Drs
23∆r

2(y, u, θrs2) and its estimation Drr
23∆s

2(y, u, θ̂rr2) asso-
ciated with the rth FIE whose structure does not match the
actual sth fault mode. The functions given in (55), defined as
the ability of the rth FIE to match the sth fault mode, provide
a quantitive measure of the difference between the sth fault
mode and the rth fault mode. ∇

Then the following theorem is ready to be presented.

Theorem 1. Consider the FIEs described by (27)-(29). Sup-
pose that the sth fault mode occurs at time t = T0 which is
detected at time t = Td. The sth fault mode is isolable if for
each r ∈ {1, · · · , N}\{s}, there exist certain time tr > Td
and some j ∈ {1, · · · , qr} such that the functions J̄rsj or Jrsj
satisfy that

J̄rsj (tr) ≤ −F̄rsj − δ̄rj , J
rs
j (tr) ≥ Frsj − ςrj (56)

where J̄rsj and Jrsj are the jth component of J̄rs and Jrs

respectively, δ̄rj and ςrj are the jth component of ς̄r and ςr

respectively, F̄rsj and Frsj will be given later.

Proof: When the sth fault mode occurs, the rth FIE
dynamic is described by

ėr22 =Ar212e1 + Âr22
22

(
er22 − εsat(

er22

ε
)

)
+ gr22

(
(T ra )−1zr

)
− gr22

(
(T ra )−1ẑr

)
+ ηr22(·) +Drs

23∆r
2(·, θrs2)

−Drr
23∆r

2(·, θ̂rr2)−Drr
23Λr2(·, θ̂rr2)sat(

er22

ε
)−Ψ(·). (57)

From the definition of the residual er22ε = er22 − εsat(
er22
ε ) +

T rzr21, the dynamics of er22ε can be obtained based on (57).
Let ērs22ε = er22ε + ϑ̄rr − ζrs. It follows from the dynamics

of er22ε that

˙̄ers22ε =(Ar212 + T rA211)e1 + Âr22
22 ē

rs
22ε + (T rgr21 + gr22)(

(T ra )−1zr − (T ra )−1ẑr
)

+ (T rη21 + ηr22)(·). (58)

Since Âr22
22 is Hurwitz, using the Bellman-Gronwall lemma

and the similar reasoning as that used in (37), there exists a
bank of positive time functions F̄rsj (t), j = 1, · · · , qs such
that

− F̄rsj (t) ≤ ērs22εj ≤ F̄rsj (t) (59)

where ērs22εj represents the jth component of ērs22ε in (58).
Let ers22ε = er22ε + ϑrr − ζrs when er22 ≤ −ε. Similar with

(59), there exists a bank of positive time functions Frsj (t) such
that

−Frsj (t) ≤ ers22εj ≤ F
rs
j (t) (60)

where ers22εj represents the jth component of ers22ε.
To isolate the sth fault mode, it requires that at least one

component er22εj , j = 1, · · · , qr of er22ε, r ∈ {1, · · · , N}\{s}
runs out of the adaptive threshold interval

[
ςrj , ς̄

r
j

]
. Since,

when er22ε > 0, er22ε = ērs22ε − J̄rs, and when er22ε < 0,
er22ε = ers22ε − J

rs, then

er22εj = ērs22εj − J̄rsj ≥ ς̄rj or er22εj = ers22εj − J
rs
j ≤ ςrj . (61)

Hence, eqs. (56) are obtained, and the result follows.
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Remark 7. It can be seen from (56) in Theorem 1 that the
matrices Asf and Arf do not affect isolation ability directly
because (56) does not contain Asf and Arf . From the analysis
in Section III-B, it obtains that Aif does not affect the stability
of sliding mode and adaptive FIEs. Therefore, matrices Aif in
(4) are chosen by considering not only the practical character-
istics of incipient rectifier voltage sensor faults, but also the
enlargement of the differences between θi. ∇

Remark 8. It is worthy to point out that it is challenging to
develop multi sensor faults isolation schemes only using slid-
ing mode technique (see e.g., [9]). In this paper, the nonlinear
parameterization adaptive estimation technique is introduced
to propose novel multi incipient sensor faults isolation schemes
which are quite different from single sensor fault isolation
schemes in [14]. ∇

IV. VERIFICATION

In this section, simulation based on the model (6)-(7)
and experiment based on TDCS-FIB (traction and driving
control system-fault injection benchmark) will be presented.
The TDCS-FIB is programmed based on SimPower System
toolbox to simulate common faults that may occur on CRH2
by Central South University Fault Injection Team, which
is outside the red rectangle frame in Fig. 2. The designed
incipient voltage sensor fault isolation schemes are included in
the red rectangle frame in Fig. 2. In both simulation and exper-

Fig. 2. Schematic diagrams of TDCS-FIB and fault isolation schemes.

iment, the railway is supposed to work at a fixed velocity. Then
the instantaneous power Pm is fixed. The parameters in model
(6)-(7) and values of the electrical components in the rectifier
device in Fig. 2 are given by Table I. Thus, the matrices

TABLE I
PARAMETERS.

Parameter Value Unit
Pm 800 kW
R 0.34 Ω
L 2.2× 10−3 H
C1 1.6× 10−3 F
C2 1.6× 10−3 F

us 1500
√

2 sin(314t) V

in (6)-(7) are given by An =

[
−154.55 −454.55S1 454.55S2

62.50S1 0 0
−62.50S2 0 0

]
,

Bn =
[

454.55
0
0

]
and gn (X) =

[ 0

− 5×106

X2+X3

− 5×106

X2+X3

]
where Si, i = 1, 2

are generated by TCU (traction control unit) module.

Consider the 3−order harmonic of grid side current is
and parameter uncertainties ∆R = 0.02Ω, ∆L = 0.2 ×
10−4H and ∆C = 2 × 10−4F in this paper. Then ηis =
His is√
2 cos(ωt)

sin (3ωt− ϕ) + ∆1isis + ∆2isu1 + ∆3isu2, ηu1
=

∆1u1
is and ηu2

= ∆1u2
is with His = 100, ω = 314, ∆1is =

7.6145, ∆2is = 4.0950, ∆3is = −4.0950, ∆1u1
= −0.7716

and ∆1u2
= 0.7716. Thus, η̄ in Assumption 1 is obtained by

η̄ ≥

∥∥∥∥∥
[

His
sin(3ωt−ϕ)
√

2 cos(ωt)
+∆1is ∆2is ∆3is

∆1u1 0 0

∆1u2
0 0

]∥∥∥∥∥ ‖X‖ .
Note that is ∈ [0, 500] and u1, u2 ∈ [1000, 1500] in CRH2.
Then the constant bound η̄ can be obtained. Using differential
mean value theorem presented in [26], the Lipschitz constant
of gn(X) in Assumption 1 is L = 1.58.

The base function δ(·) used to construct ∆(·) in (8) is given
by

δ(·) = ζ(u1, u2, t)θ
2 (62)

where ζ(u1, u2, t) = 0.01(u1 sin(314t)+u2 sin(314t+π/3)+
(u1 + u2) sin(314t+ 2π/3)). The distribution matrices in (9)
and the basis function δ(·) are all used in the sequel simulation
and experiment.

A. Simulation
In the 1st fault mode, the incipient fault is modeled by

ḟ1 = A1
ff

1 +D1
2∆(u1, u2, θ

1), f1(0) = 0 (63)

where A1
f = −100I3. It is assumed that fault parameters θ1

1 ,
θ1

2 and θ1
3 in ∆(·, θ1) = col(δ(·, θ1

1), δ(·, θ1
2), δ(·, θ1

3)) belong
to the intervals that θ1

1 = 0, θ1
2 ∈ [0, 100], θ1

3 = 0. In the 2nd
fault mode, the incipient faults is modeled by

ḟ2 = A2
ff

2 +D2
2∆(u1, u2, θ

2), f2(0) = 0 (64)

where A2
f = −20I3 and the intervals of fault parameters θ2

1 ,
θ2

2 and θ2
3 in ∆(·, θ2) are given by θ2

1 = 0, θ2
2 = 0 and θ2

3 ∈
[0, 50]. In the 3rd fault mode, the incipient faults is modeled
by

ḟ3 = A3
ff

3 +D3
2∆(u1, u2, θ

3), f3(0) = 0 (65)

where A3
f = −50I3 and the intervals of fault parameters θ3

1 ,
θ3

2 and θ3
3 in ∆(·, θ3) are given by θ3

1 = 0, θ3
2 ∈ [0, 60] and

θ3
3 ∈ [0, 80].

Suppose that the fault parameters θ3
1 = 0, θ3

2 = 0, θ3
3 = 0

before 0.15s, and θ3
1 = 0, θ3

2 = 40, θ3
3 = 60 after 0.15s.

As comparison, the fault isolation method in [13] and [14]
is used to isolate this incipient sensor fault mode firstly. The
simulation results of the 1st FIE constructed based on [13]
and [14] are shown in Figs. 3 and 4. Since that It can be
seen from Fig. 3 that the incipient fault parameter estimation
lines are not convergent, which means that the adaptive laws
in [13] and [14] can not be used to estimate incipient faults
parameterized nonlinearly efficiently. Furthermore, it is clear
from Figs. 4 that none of the isolation residuals exceeds their
adaptive thresholds, which is conflicting with the isolation
requirement in [13] and [14]. Thus, there is no need to show
the simulation results of the 2ed FIE and no isolation decision
can be made based on the principles provided in [13] and [14].
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Fig. 3. Parameter estimation lines in the 1st and 2nd FIEs.
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Fig. 4. Residuals of the 1rd FIE (dashed and black lines) and corre-
sponding adaptive thresholds (solid and red lines).

The reason is that multi sensor faults cases are not considered
in these two paper.

Then, the multi incipient faults isolation schemes developed
in this paper are constructed. Corresponding to the three
fault modes, there are three groups coordinate transformation
matrices for three FIEs. The 1st group is described by

T 1
a =

[
I3 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]
, T 1
b =

[
1 0 0
0 0 1
0 1 0

]
,

For the 2nd and 3rd groups, T 2
a = T 3

a = I6 and T 2
b = T 3

b = I3.
Two important schemes in FIEs are constructing adaptive laws
˙̂
θss1 and ˙̂

θss2 for nonlinear incipient fault parameters in (31)
and (32), and selecting gains ms

21(·) and Ms
22(·) to ensure

sliding motion in Proposition 1. In two schemes, λ̄i (·), λi (·),
w̄i (·) and wi (·), i = 1, 2, 3 are used to construct W i

1(·), Λi1(·),
W i

2(·) and Λi2(·). Based on Lemma 2, these terms for the 3rd
incipient fault mode (65) with nonlinear parameterization (62)
in the 1st FIE are expressed by λ̄1 (·) = 0, λ̄2 (·) = 0, λ̄3 (·) =
0, w̄1 (·) = 0, w̄2 (·) = −100δ (·), w̄3 (·) = −100δ (·),

λ1 (·) = 0, λ2 (·) = −δ (·)
(
θ̂3

3

)2

+ 100δ (·) θ̂3
3 , λ3 (·) =

−δ (·)
(
θ̂3

2

)2

+100δ (·) θ̂3
2 , w1 (·) = 0, w2 (·) = −2δ (·) θ̂3

3 and

w3 (·) = −2δ (·) θ̂3
2 . The expressions of those terms in the 2nd

and the 3rd FIEs are similar to these in the 1st FIE, which are
omitted here due to space limitation. Then the adaptive laws in
(31) and (32), and gains in (39) and (40) can be constructed.
Thus, based on (27)-(29), these three FIEs corresponding to the
three incipient sensor fault modes can be easily constructed.

The estimation lines of incipient fault parameters in three
developed FIEs are shown in Fig. 5. It can be seen that all
the estimations lines are bounded. The incipient sensor fault
isolation results are shown in Figs. 6 and 7. It can be seen
from Fig. 6 that r1 in the 1st FIE exceeds the lower bound ς1

at t1, and r2 in the 2st FIE exceeds ς2 at t2 as well, while r3
1

and r3
2 are both stay in their threshold intervals

[
ς31, ς̄

3
1

]
and[

ς32, ς̄
3
2

]
all the time respectively in Fig. 7. As a result, based
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Fig. 5. Parameter estimation lines in the 1st, 2nd and 3rd FIEs.
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Fig. 7. Residuals of the 3rd FIE (solid and black lines) and correspond-
ing adaptive threshold intervals (dashed and red lines).

on the isolation principle developed in this paper, the decision
that the 3rd incipient sensor fault mode occurs at time instant
t2 is made.

B. Experiment
The TDCS-FIB in Fig. 2 can effectively simulate some

common faults occurring in the electric traction and driving
system of high-speed railway, which provides a good platform
to study the fault diagnosis issue for electrical traction systems.
The two voltage sensors in DC-Link module in Fig. 2 are both
injected incipient faults provided by fault expression (65) with
incipient sensor fault parameters θ3

1 , θ3
2 and θ3

3 given as in the
simulation part. The developed incipient sensor fault isolation
schemes are established and added to the traction system in
the way presented in the red rectangle frame in Fig. 2.
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Fig. 8. Residuals of the 1st and 2nd FIE (solid and black lines) and
corresponding adaptive threshold intervals (dashed and red lines).
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Fig. 9. Residuals of the 3rd FIE (solid and black lines) and correspond-
ing adaptive threshold intervals (dashed and red lines).

The response curves in experiment in Fig. 8 and Fig. 9 are
similar with those in simulation in Figs. 6 and 7. It can be
seen from Fig. 8 and Fig. 9 that r2 in the 2nd FIE exceeds[
ς2, ς̄2

]
at t1, and r1 in the 1st FIE exceeds

[
ς1, ς̄1

]
at t2.

However, residuals r3
1 ∈

[
ς31, ς̄

3
1

]
and r3

2 ∈
[
ς32, ς̄

3
2

]
all the

time. Therefore, based on the isolation principle developed in
this paper, it can make the decision that both voltage sensors
have incipient faults after time instant t2.

V. CONCLUSION

This paper has proposed a dc voltage incipient sensor fault
isolation scheme for single-phase three-level rectifier devices
in high-speed railway electrical traction systems. A novel
incipient fault isolation method has been developed by com-
bining sliding mode technique with nonlinear parametrization
adaptive estimation technique. In the proposed method, novel
residuals and adaptive threshold intervals have been presented
to isolate different fault modes. The isolability has been
studied and the sufficient isolable conditions have been derived
by the defined functions. Based on TDCS-FIB, simulation
and experiment results have demonstrated that the proposed
method is effective and practicable.

APPENDIX

Lemma 2. For any bounded continuous known scalar function
f(φ, θ) with φ being known and θ ∈ Θ ⊂ Rh, and any given
θ̂ ∈ Θ, there exist vector function w(φ, θ̂) ∈ Rh and scalar
function λ(φ, θ̂) such that

J (w(·), θ)− λ(·) ≤ 0 (66)

where J (w(·), θ) = sign (α) (f(φ, θ)− f(φ, θ̂) + w(·)(θ − θ̂))
with α being known.

Proof: Refer [19] and [24].
According to Lemma 2, for any δ(·, θjr), θjr ∈ Rh, r =

1, · · · , p, j = 1, · · · , N , there exist row function vector
wr(·, θ̂jr) ∈ Rh and scalar function λr(·, θ̂jr) such that

δ(·, θjr)− δ(·, θ̂jr) + wr(·, θ̂jr)(θjr − θ̂jr) + λr(·, θ̂jr) > 0, (67)

and row function vector w̄r(·, θ̂jr) ∈ Rh and scalar function
λ̄r(·, θ̂jr) such that

δ(·, θjr)− δ(·, θ̂jr) + w̄r(·, θ̂jr)(θjr − θ̂jr)− λ̄r(·, θ̂jr) < 0. (68)

Given θ̂ij1 ∈ Θij1, for ∆i
1(·, θij1) in (19), there exist diag-

onal matrix functions W̄ i
1(·, θ̂ij1) and W i

1(·, θ̂ij1) and vector
functions Λ̄i1(·, θ̂ij1) and Λi1(·, θ̂ij1) such that

∆s
1(·, θij1)−∆s

1(·, θ̂ij1)+W s
1(·)(θij1 − θ̂ij1) + Λs1(·) > 0, (69)

∆s
1(·, θij1)−∆s

1(·, θ̂ij1)+W̄ s
1 (·)(θij1 − θ̂ij1)− Λ̄s1(·) < 0 (70)

where W̄ i
1(·, θ̂ij1) = diag(w̄r(·, θ̂ij1)), W i

1(·, θ̂ij1) =
diag(wr(·, θ̂ij1)), Λ̄i1(·, θ̂ij1) = col(λ̄r(·, θ̂ij1)) and
Λi1(·, θ̂ij1) = col(λr(·, θ̂ij1)), r = 1, · · · , p− qi.

Also, given θ̂ij2 ∈ Θij2 for ∆i
2(·, θij2) in (21), there exist

diagonal matrix functions W̄ i
2(·, θ̂ij2) and W i

2(·, θ̂ij2) and
vector functions Λ̄i2(·, θ̂ij2) and Λi2(·, θ̂ij2) such that

∆i
2(·, θij2)−∆i

2(·, θ̂ij2)+W i
2(·)(θij2 − θ̂ij2) + Λi2(·) > 0, (71)

∆i
2(·, θij2)−∆i

2(·, θ̂ij2)+W̄ i
2(·)(θij2 − θ̂ij2)− Λ̄i2(·) < 0 (72)

where W̄ i
2 = diag(w̄r(·, θ̂ij2)), W i

2 = diag(wr(·, θ̂ij2)),
Λ̄i2 = col(λ̄r(·, θ̂ij2)) and Λi2 = col(λr(·, θ̂ij2)), r = p −
qi + 1, · · · , p. The W i

1(·, θ̂ij1) and Λi1(·, θ̂ij1) are defined as{
W i

1(·, ·) = W̄ i
1(·, ·),Λi1(·, ·) = Λ̄i1(·, ·), α > 0,

W i
1(·, ·) = W i

1(·, ·),Λi1(·, ·) = Λi1(·, ·), α < 0,
(73)

and W i
2(·, θ̂ij2) and Λi2(·, θ̂ij2) are defined as{
W i

2(·, ·) = W̄ i
2(·, ·),Λi2(·, ·) = Λ̄i2(·, ·), α > 0,

W i
2(·, ·) = W i

2(·, ·),Λi2(·, ·) = Λi2(·, ·), α < 0.
(74)
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