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Abstract— This paper presents a methodology for the feature estimation of a new fault 

indicator focused on detecting gear mechanical degradation under different operating 

conditions. Preprocessing of acoustic emission signal is performed by applying chromatic 

transformation to highlight characteristic patterns of the mechanical degradation. In this 

work, chromaticity based on the computation of the HLS transformation of the main 

acoustic emission intrinsic mode functions is performed. Then, a topology preservation 

approach is carried out to describe the chromatic signature of the healthy gear condition. 

Thus, the detection index can be estimated. It must be noted that the applied chromatic 

monitoring process only requires the characterization of the healthy gear condition, being 

applicable to a wide range of operating conditions of the gear. Performance of the 

proposed system is validated experimentally. According to the obtained results the 

proposed methodology is reliable and feasible for monitoring gear mechanical 

degradation in industrial applications.  

 

Index Terms— Acoustic signal processing, Acoustic testing, Chromatic monitoring, 

Fault detection, Frequency-domain analysis, Gears. 
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I. INTRODUCTION 

URING the last years, the diagnosis procedures are being particularly oriented beyond the electrical 

motor. Indeed, mechanical components such as gears, external bearings or screw shafts, among others, are 

critically important for a proper operation of the machinery [1]. The faulty condition of a mechanical 

component, even external to the electrical machine, represents a triggering factor that leads to the 

propagation of secondary damages due to the continued operation. The most common failures, dealing with 

industrial machinery, are those related with the power transmission chain [2]. The gearbox is found to be 

the most critical part since its downtime per failure is usually critical in comparison to other components 

[3]. It is for this reason that gearbox condition monitoring is of significant importance to reduce failures 

and to assure the continuity of machinery operation. A research effort is required to achieve monitoring 

procedures specifically designed to estimate fault indicators for gear- based drives. 

Dealing with mechanical fault detection, vibration monitoring is one of the most common approaches [4], 

[5], however, acoustic emission (AE), shows three important advantages [6], [7]. First, AE sources are non-

directional, which reduces the number of required sensors. Second, AE is produced from microscopic 

levels, which allows the detection of mechanical fractures at earlier stages. Third, AE implies higher elastic 

wave frequency, which avoids structural resonances and mechanical background noise. In rotating 

gearboxes, AE is produced by the load transmission due to the contact of gears in relative motion. Thus, a 

surface or subsurface crack initiation leads to a rapid release of strain energy caused by a structural 

alteration that produces elastic wave emission. During a mechanical fracture procedure, three different 

phases are commonly identified: initiation, incubation and propagation. Different studies on metallic 

materials tribology shown that, in presence of fractures, the AE events exhibit an amplitude increase as 

well as a different distribution of the frequency content. This effect is analyzed in works such as the 

presented by E. Martinez-Gonzalez et al. in [8], [9], and Z. Shi et al. [10], where the correlation of the AE 
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signature in regard with the mechanical fracture phases is studied. Thus, as the fracture evolves, the effects 

are more evident, until can be detected by mechanical vibration based frequency transducers. Indeed, other 

approaches such as vibrations, temperatures or stator currents based are limited to the detection of 

advanced fracture propagation stages. 

Research towards gear mechanical degradation monitoring schemes by means of AE has been carried out 

by several authors. Elforjani et al. [11] compared the applicability of AE and vibration technologies in 

detecting defects on worm gears by means of statistical-time features. The results showed that the AE-

based approach was more reliable, robust and sensitive to the detection of defects than the vibration based 

monitoring scheme. Similar approach is presented by Tan et al. [12]. In [13], Li and He presented a 

methodology for gear health monitoring in rotational machinery. The diagnosis scheme is divided in two 

major steps, the incorporation of a threshold-based denoising technique into Empirical Mode 

Decomposition (EMD), and the estimation of multiple statistical-time features from the resulted signal, 

which are fused later in a singular feature for healthy states identification. The method reaches reliable 

tooth root crack detection, but it does not face the effect of the speed variation over the proposed fault 

indicator. In [14], the authors dedicated their effort in the estimation of kurtosis and crest factor of the 

resulting EMD time-domain acoustic signals to determine the conditions of bearings and gears. It was 

found that the methodology is very effective, but the interpretation of the severity damage is not obvious. 

Some authors as Eftekharnejad et al. [15], focused their efforts to decompose the signal into several 

frequency ranges thereby achieving better understanding of the frequency content of the signal. The 

frequency spectrum of AE signatures at various wavelet decomposed levels showed variations during 

different stages of the fracture. In this kind of analysis, the fault indicators extracted from thresholding the 

energy across different frequency bands are the most used ones. However, the energy values extracted are 

directly used in fault classification systems in order to be processed with the rest of parameters, and not 

previously analyzed in order to extract a fault indicator which contains fault detection information itself, as 

it is proposed in this study. Indeed, the main drawback of these methods is related with both the use of 
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statistical time based fault indicators, which directly affects the effectiveness of identifying the fault 

patterns hidden within the dynamic signals [16], and the lack of a common framework able to be applied 

simply in a range of speed operating regimes to interpret the condition of the component under test. 

In this paper, partially damaged gears which operate under different speed conditions are studied. For this 

objective, the AE signals are, first, decomposed in the main intrinsic mode functions (IMF). Then, the 

chromatic estimation by HLS transformation is proposed to obtain a high-dimensional chromaticity space 

describing the healthy gear operation. Next, a neural network based topology preservation scheme is 

proposed to describe such chromaticity space. Finally, a reliable and low computational cost parameter is 

proposed to detect mechanical gear degradation by quantifying chromatic deviations. 

The contribution of this study lies in a new feature estimation methodology, and the verification of the 

chromatic theory capabilities for fault gear detection based on AE signal analysis. A high-resolution 

chromaticity space by means of EMD has been chosen in order to check the proposed fault indicator when 

different speed operating regimes and fault severity conditions take place. The use of a self-organizing map 

(SOM), as topology preservation technique, allows the exploration of the high-dimensional chromaticity 

space for interpretation and visualization purposes. Indeed, this approach allows the preservation and 

analysis of the underlying physical phenomenon of the mechanical degradation. 

Novelties of this work include a new fault detection method based on the AE signal decomposition, their 

chromatic transformation, and the spectral contents analysis and characterization through a topology 

preservation map. Note that it is the first time that this methodology as well as this gear mechanical 

degradation indicator is used in electromechanical systems for mechanical gear fault detection. 

This paper is organized as follows. The theoretical basis and overview of chromatic monitoring and HLS 

transformation is presented in Section II. The novel feature estimation methodology, including empirical 

mode decomposition, topology preservation and fault indicator calculation are explained in Section III. The 

experimental set-up is explained in Section IV. Competency of the method and experimental results are 

discussed in section V. Finally, conclusions are shown in Section VI. 
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II. HLS TRANSFORMATION 

The chromatic analysis is based on the interpretation of applying different receptors partially superposed 

over a signal [17], [18], like human perception. The resulting parameters are, then, interconnected between 

them, which allow a smooth behavior of their response. However, this approach requires a different 

methodology for information assimilation and representation. Thus, the chromatic monitoring is considered 

as a balanced distribution between the estimation of signal characteristics and condition interpretation and 

visualization [19]. The chromatic methodology is based upon comparisons, which are translated into 

mathematical cross correlations. Thus, to extract meaningful information from the outputs of a set of 

receptors, chromaticity theory transforms them into mathematical forms that can emphasize and distinguish 

particular information. Indeed, Stergioulas et al. [20], demonstrated that three chromatic processors are 

capable of discriminating approximately 95% of considered signals following a Gabor’s representation. 

The Gabor expansion can be implemented as a Gabor analyzer in a way analogous to a spectrum analyzer 

that performs a Fourier analysis in terms of sinusoidal signals. Filters with gaussian response (Gabor 

filters), evaluated over the signal result in Gabor coefficients. Such coefficients have been demonstrated to 

be highly reliable in the reconstruction of an objective signal, x(t), following a von Neumman’s lattice 

subsets approach of Gaussian signals, r(t;A,ρ), such as: 

𝑥𝑥(𝑡𝑡) = � �
1
𝜋𝜋
𝑆𝑆𝑚𝑚𝑚𝑚 (𝜌𝜌)𝑟𝑟(𝑡𝑡;𝐴𝐴,𝜌𝜌)

𝑁𝑁

𝑛𝑛=1

𝑀𝑀

𝑚𝑚=1

 

                 (1) 

where Smn(ρ) represents an array of coefficients, A is a discretized complex number defined as mα1+jnα2 in 

the von Neumann’s lattice subset consideration, where m and n are integer numbers and α1 and α2 define 

the von Neuman’s lattice cell area, and the Gaussian shape parameter ρ a fixed value greater than 0. 

Considering, for example, a random signal in frequency, x(f), the chromaticity theory considers three signal 

receptors, R, G and B, that is, Gabor filters. Fig. 1(a) shows the classical gaussian-shaped chromatic 

processor profiles. 
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Fig. 1. HLS transformation. a) Non-orthogonal receptors applied over a spectral response of a 

signal. b) Chromatic parameters representation. 

 

The receptors R, G and B correspond to filter structures, which determine the sensitivity throughout the 

frequency range and provides three chromatic values, Gabor’s coefficients, classically named as red, green, 

and blue. Instead of a signal reconstruction scheme, in this study is proposed the transformation of such 

information into chromatic parameters in order to characterize and distinguish among different signals. 

There are many transformations well established in the literature, however, the HLS transformation (Hue, 

Light and Saturation), represents a good trade-off between simplicity and performance. The transformation 

is done as follows: 

𝐻𝐻 =

⎩
⎪
⎨

⎪
⎧240− 120 ·  �

𝑔𝑔
𝑔𝑔 + 𝑏𝑏�  𝑖𝑖𝑖𝑖 𝑟𝑟 = 0

360− 120 ·  �
𝑏𝑏

𝑏𝑏 + 𝑟𝑟�  𝑖𝑖𝑖𝑖 𝑔𝑔 = 0

120− 120 ·  �
𝑟𝑟

𝑟𝑟 + 𝑔𝑔�  𝑖𝑖𝑖𝑖 𝑏𝑏 = 0

 

                  (2) 

𝐿𝐿 =
𝑅𝑅 + 𝐺𝐺 + 𝐵𝐵

3  
                      (3) 

𝑆𝑆 =
𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅,𝐺𝐺,𝐵𝐵) −𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅,𝐺𝐺,𝐵𝐵)
𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅,𝐺𝐺,𝐵𝐵) + 𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅,𝐺𝐺,𝐵𝐵)                    (4) 

where r = R-min(R, G, B), g = G-min(R, G, B) and b =B-min(R, G, B). Thus, H, the hue, characterizes the 

frequency contents in an angle range from 0º to 360º, i.e. low values of H imply low frequency contents 

while high values of H correspond to high frequency contents. The L, the lightness, represents the intensity 
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in a range from 0 to 1, i.e. low values of L correspond to a limited content, while high values of L 

correspond to an elevated content. Finally, the S, the saturation, characterizes the dominating frequency in a 

range from 0 to 1, i.e. low values of S correspond to signals with wide spectral content, while high values 

of S correspond to signals with narrow spectral content. Thus, the values resulting from the HLS 

transformation represent an equivalent chromatic representation of which the original signal is member, as 

shown in Fig. 1(b). Thus, such chromatic approach allows a simple and powerful characterization of 

signals. The chromatic parameters are proposed to be advantageous in order to detect the presence of 

mechanical gear degradation. 

III. CHROMATIC MONITORING METHODOLOGY  

The estimation of numerical features is a crucial step in most pattern recognition problems. This fact is, 

mainly, due to the irrelevant information or noise usually contained in the raw input data. Indeed, the 

features must be chosen accordingly to a particular application, which determines the requirements of the 

information to be extracted. However, in numerous occasions the amount of available data is too large, 

requiring an important computational burden. Taking into account such circumstances it is suitable to apply 

comprehensive and optimized pattern recognition schemes in general, and enhanced feature estimation 

procedures in particular. This allows retaining as much as possible the relevant information contained in the 

raw input data in a reduced set of parameters easily recognizable by a fault detection procedure. Dealing 

with gear mechanical degradation by means of AE, it must be taken into account that the AE activity 

increases with the mechanical fracture, as well as the presence of additional frequency bands during the 

earlier stages of the mechanical degradation [21]. Thus, the chromatic approach, that is, the estimation and 

analysis of hue, lightness and saturation is highly aligned with the mechanical fracture effects over the AE 

signal, since the amplitude and frequency distribution are characterized. The chromatic monitoring 

methodology proposed in this work involves five sequential steps, first, the decomposition of the acquired 

AE signal in intrinsic mode functions in order to identify main oscillatory frequency modes. Second, the 
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application of the chromatic processors to obtain Gabor’s coefficients (R, G and B). Third, the generation of 

a D-dimensional chromaticity space by means of the HLS transformation over the obtained R, G and B 

coefficients of each considered intrinsic mode function. Such chromaticity space will contain, then, the 

complete description of the AE signal acquired during the healthy gear condition characterization. Fourth, 

the chromaticity space mapping by means of a topology preservation based technique. And, fifth, the 

estimation of the proposed fault indicator by the assessment of new AE measurements over the mapped 

chromaticity space. The complete proposed detection methodology is represented in Fig. 2. 

 

Fig. 2. Proposed fault detection methodology. 

 

A. Acoustic decomposition process 

Classical AE approaches applied to mechanical degradation analysis are based on AE events counting by 

thresholding the signal [22]. These methods have been proved to be useful under controlled metallographic 

samples analysis at laboratory scale. Dealing with industrial electromechanical machinery, the temporal AE 

signal is subjected to variability due to the operating set point or oscillatory load modes among others. 

Thus, the analysis of the spectral content becomes in a significant alternative in order to estimate the 

mechanical degradation [23]. The classical spectral analysis (Fourier transform), allows splitting a time-

signal into its individual frequencies by computing the relative strength of each component. However, one 

drawback of the Fourier transform is that it may mask failure related components that appear in a given 

time instant and are of a very short duration in regard with the temporal window used for the Fourier 

transform calculation. This is the case in gear teeth degradation analysis, where the presence of a fractured 
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tooth will be only significantly reflected in those AE events collected during the stress of the corresponding 

gear tooth, i.e. once per gear rotation in regular spur gears. In this sense, different signal decomposition 

approaches are being the most promising strategies to be applied for AE analysis. The main drawbacks of 

these methods are related with the frequency ranges to be included in each sub-signal. In particular, the 

IMF estimation is considered as a good balanced decomposition due to its signal adaptive capabilities. The 

IMF represent oscillatory modes, but are much more general than harmonic functions. In fact, it is worth 

noting that the IMF are modulated both in amplitude and in frequency and, consequently, are not restricted 

to be stationary. The EMD method extracts, from a given time based signal, x(t), the M number of IMF by 

the so called shifting process [24]. The obtained imf(k) ,k=1..M, can be reassembled in order to obtain the 

original data as follows: 

𝑥𝑥(𝑡𝑡) = �𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘(𝑡𝑡)
𝑀𝑀

𝑘𝑘=1

+ 𝑟𝑟𝑀𝑀(𝑡𝑡) 

                  (5) 

where rM(t), the last residue, is a constant or a monotonic function which represents the general trend of the 

time series. Indeed, the EMD models a signal as a sum of oscillatory components (IMFs), formed by 

narrow spectral bands. Thus, the EMD gives the evolution of such frequency bands along the considered 

time window [25]. Current approaches suggest discarding the less contributive IMF, usually related with 

uncertainties and non-significant modes. In the proposed methodology, for each considered intrinsic mode 

function three chromatic processors are applied, and the corresponding HLS transformation is carried out to 

obtain a D-dimensional chromaticity space. 

B. Chromaticity space mapping 

Feature reduction methods have been applied in the last years to preserve and characterize the 

information in a lower d-dimensional space, where D>d. The feature reduction process has been typically 

implemented with linear techniques such as Principal Component Analysis (PCA). However, PCA has been 

discussed by many authors emphasizing its limitation dealing with large data sets, because it seeks for a 
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global structure of the data [26]. Concerning with this problem manifold learning methods has been applied 

in the last years [27]. Among them, the self-organizing map is the most used, which is based on developing 

a neural network grid to preserve most of the original distances between feature vectors in the D-space into 

a d-dimensional output space. The output space is predefined as a regular d-dimensional grid, usually d=2 

for visualization purposes. Each point in the grid represents a neuron. For each neuron nei, a D-dimensional 

weight vector wvj is defined. The weights represent the neurons’ position in the input space. Mapping is 

performed by assigning each data point xvi in the input space to one of these neurons, namely the one 

whose weight vector is closest to the point. The position vector yvi in the output space of such data point is, 

then, given by the grid position of this neuron. A schematic representation of the SOM performance is 

shown in Fig. 3. During the training of the topology preservation map, the used error function corresponds 

as follows: 

𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆 = � ��𝑤𝑤𝑣𝑣𝑣𝑣 − 𝑥𝑥𝑣𝑣𝑣𝑣�
2

𝑖𝑖∈𝑠𝑠𝑦𝑦𝑦𝑦𝑗𝑗

 

                  (6) 

with sy-i being the set of data points which have neuron i as closest neuron. ESOM expresses the average 

squared distance from a point in the original D-dimensional space to its representative neuron. The 

minimization of ESOM represents the objective of the operation, and is performed with respect to the weight 

vectors wv-j. Thus, the feature reduction procedure is applied to highlight and characterize patterns. 

The proposed method is based on the detection of deviations in regard with the chromatic signature of the 

healthy gear condition. The topology preservation approach conserves the topology properties of the data to 

be mapped, which allows the interpretation of the underlying physical phenomena described by the 

chromaticity space. 
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Fig. 3. Self-organizing mapping procedure in a 2-dimensional input space. (a) Representation of a 

2-dimensional set of measurements. (b) Resulting 2-dimensional positioning of a predefined set 

of four neurons. During the training process, the neurons minimize a topology preservation error 

by improving their position. The dotted lines represent boundaries of the input space regions 

related to each neuron considering the regular Euclidian distance. (c) Example of a new 

measurement assessment. In this case, the shortest distance corresponds to ne1, then, the 

corresponding ne1 weight vector will be applied to project the sample in the resulting d-

dimensional space. 

 

C. Damage assessment 

The collection a priori of data corresponding to damaged gears is a critical matter in most of practical 

applications. Thus, the proposed methodology has been envisaged in order to be initialized only with the 

healthy conditions. Then, the data corresponding to the healthy scenarios is characterized in a d-

dimensional map. Similar AE measurements will exhibit short distances to the map, which reflect the 

healthy behavior. AE deviations, however, will show larger distances. That is, AE samples containing 

faulty gear patterns, characterized by means of the chromatic parameters, will be projected far from the 

neurons’ map. For this purpose, a healthy threshold, Ht, is defined. The number of AE measurements over 

the threshold as well as their distances to the nearest neuron, are considered as a representative metric of 

the fault severity level (7). Then, the proposed gear mechanical degradation indicator, IGMD, includes not 
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only the identification of characteristic AE healthy/faulty patterns, but also the assessment of the severity 

degree. 

𝐼𝐼𝐺𝐺𝐺𝐺𝐺𝐺 =
∑ �∑ �𝑥𝑥𝑗𝑗𝑖𝑖 − 𝑦𝑦𝑗𝑗𝑖𝑖�

2𝐷𝐷
𝑗𝑗=1

𝑀𝑀
𝑖𝑖=1

𝑀𝑀  
                  (7) 

where M means the number of measurements which distances to their closest neuron are bigger than the 

threshold condition, D corresponds to the chromaticity space dimensionality, x the measurement and y the 

corresponding closest neuron to the measurement projection. 

IV. EXPERIMENTAL RESULTS  

The experimental set-up is based on two permanent magnet synchronous machines, PMSMs, acting as a 

drive and load connected to a 1:1 rated gearbox by means mechanical couplings. The motors respond to 3 

pair of poles at 6000 rpm and 2.3 Nm of rated speed and torque respectively. A commercial AE transducer, 

Vallen-Systeme VS900-M, covering the spectral band of interest from 50 kHz to 500 kHz, is located in 

contact with the gearbox casing as close as possible to the shaft as proposed in similar works [28], [29]. 

Data acquisition is done with DAQ NI PXI 6115, a multifunction board up to 10Msamples/s and 12 bits of 

resolution. 

Three different rotating speeds conditions at half-rated load have been considered: 150 rpm, 250 rpm and 

450 rpm. Thus, the load motor is commanded by a half-rated torque set point, while the drive motor is 

commanded by one of the three speed set-points considered. Three gears have been used to carry out the 

methodology validation, a healthy gear, He, a faulty gear with 4 fractures induced on the base corners of 

four teeth (sized between 1mm and 2mm), Fa, and another faulty gear with fractures induced along the 

base of four teeth (sized around 5mm), Fb. The fractures, over 31-teeth F114 steel gears, have been carried 

out by mechanical fatigue tests. It must be noted that fracture tooth represents a challenging mechanical 

gear fault scenario [30]. Thus, by means of laboratory testing machinery, gears were subjected to fatigue 

cycles until the elastic module of the material was reached and a fracture appeared. The tests were stopped 
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once cracks were evidenced macroscopically and, then, measured. Once the gears were submitted to the 

fatigue tests they were mounted in the rotating test bench for AE acquisition. The electromechanical 

experimental setup and the set of gears are shown in Fig. 4 and Fig. 5 respectively. The sampling frequency 

is fixed at 2 MHz. A total amount of 20 ksamples are acquired, that is, each acquisition corresponds to 10 

msec. of AE signal. For each experimental condition analyzed, a total acquisition time of 10 sec. has been 

carried out. 

 

Fig. 4. Experimental setup for mechanical gear fault detection formed by two PMSMs controlled 

by independent inverters, a gearbox, an AE transducer and the acquisition card. 
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Fig. 5. Mechanical gear fractures induced. (a) Example of one of the fractures at the corner base 

of a gear tooth, fault Fa. (b) Example of one of the fractures along the base of a gear tooth, fault 

Fb. 

 

A. Competency of the method 

Previously to the evaluation of the proposed methodology, the performance of a classical AE event 

thresholding approach has been analyzed. Thus, considering the healthy gear records, thresholds from 25% 

to 90% of the maximum AE event have been applied. The resulting counting values are shown in Fig. 6. 

Indeed, the speed increase implies an excitation stress intensification resulting from the tooth contact. Such 

effect means a gain in the AE activity and, consequently, longer AE event decays. This behavior is clearly 

manifest in the AE signal thresholding analysis, where the number of AE counts increases with the speed. 

However, although most of the thresholds exhibit AE counts bigger than the obtained under the 

corresponding healthy gear condition, it is not possible to select one to distinguish among the nine 

experimental tests. Then, the AE activity must be characterized for every speed set-point, which is an 

unfeasible approach in practical applications. 
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Fig. 6. Counting results of the AE events for the considered experimental tests during one rotation 

cycle under: He gear condition, ●; Fa gear condition, ◊; Fb gear condition, ×. (a) @ 150rpm. (b) 

@ 250rpm. (c) @450rpm. 

 

Hence, in order to exploit hidden characteristic fault patterns in the AE signal under different gear 

conditions, the proposed method includes frequency analysis. The healthy gear condition is considered, 

first, to define the reference. In order to analyze the generalization capabilities of the method, all the AE 

data corresponding to the three gear conditions, He, Fa and Fb, at 250 rpm has been set apart. Thus, the 

data in regard with the 250 rpm operating condition is reserved just for testing purposes and will not be 

used during the training of the proposed method. The AE signals corresponding to the healthy gear 

condition at 150 rpm and 450 rpm are, then, decomposed in IMFs. Since the characteristics of the measured 

AE waveforms (amplitude and frequency distribution), reflect the presence of fractures in the gear teeth, 

the chromatic analysis of the resulting IMFs is proposed. 

The first three IMF have been selected, which contain most part of the spectral band of interest for this 

application. Thus, it can be seen in Fig. 7 and Fig. 8 an example of time-based AE signal and IMFs under 
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healthy, He, and faulty, Fb, gear conditions at 150 rpm respectively, as well as the corresponding frequency 

distributions. Also, it can be seen in Fig. 9 and Fig. 10 an example of time-based AE signal and IMFs under 

healthy, He, and faulty, Fb, gear conditions at 450 rpm respectively, as well as the corresponding frequency 

distributions. Indeed, the EMD highlights the AE signal characteristics dealing with fractured teeth gears. It 

can be seen in Fig. 8(f) and Fig 10(f), the first IMF corresponding to the faulty, Fb, gear condition at 150 

rpm, and at 450 rpm, respectively. In these two scenarios the contents differ, in terms of amplitude and 

frequency distribution of the homologous healthy condition, Fig. 7(f) and Fig. 9(f). 

The amplitude of the acquired AE signals is highly related with the considered rotating speeds. However, 

compared with homologous healthy gear scenarios, the presence of fractures in the gear teeth introduces 

persistent alterations in the AE signature, including uneven frequency distributions and the extension of 

frequencies to higher parts of the considered bandwidth. Although second and third IMFs contain lower 

frequency bands, it can be observed also differences in their contents comparing healthy and faulty 

conditions. 

 

Fig. 7. Example of AE signal acquisition and resulting IMFs. Healthy gear condition @150rpm. (a) 

Time-based representation. (b) First IMF, time-based representation. (c) Second IMF, time-based 

representation. (d) Third IMF, time-based representation. (e) Frequency distribution. (f) First IMF, 
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frequency distribution. (g) Second IMF, frequency distribution. (h) Third IMF, frequency 

distribution. 

 

 

Fig. 8. Example of AE signal acquisition and resulting IMFs. Faulty, Fb, gear condition @150rpm. 

(a) Time-based representation. (b) First IMF, time-based representation. (c) Second IMF, time-

based representation. (d) Third IMF, time-based representation. (e) Frequency distribution. (f) 

First IMF, frequency distribution. (g) Second IMF, frequency distribution. (h) Third IMF, frequency 

distribution. 

 

In order to quantify such gear fracture affectations, the estimation of the chromatic parameters, H, L and 

S, over each considered IMF is proposed as suitable approach. 
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Fig. 9. Example of AE signal acquisition and resulting IMFs. Healthy gear condition @450rpm. (a) 

Time-based representation. (b) First IMF, time-based representation. (c) Second IMF, time-based 

representation. (d) Third IMF, time-based representation. (e) Frequency distribution. (f) First IMF, 

frequency distribution. (g) Second IMF, frequency distribution. (h) Third IMF, frequency 

distribution. 

 

 

Fig. 10. Example of AE signal acquisition and resulting IMFs. Faulty, Fb, gear condition 

@450rpm. (a) Time-based representation. (b) First IMF, time-based representation. (c) Second 
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IMF, time-based representation. (d) Third IMF, time-based representation. (e) Frequency 

distribution. (f) First IMF, frequency distribution. (g) Second IMF, frequency distribution. (h) Third 

IMF, frequency distribution. 

 

That is, for each IMF, three chromatic processors are applied to obtain the corresponding chromatic 

parameters. Three digital band-pass FIR filters with identical 225 kHz bandwidth have been designed with 

an overlapping of 50%, as a good tradeoff between simplicity and performance. The performances of the 

designed chromatic processors are shown in Fig. 11. 

 

Fig. 11. Performance of the three proposed chromatic processors to be applied over each of the 

considered IMFs. 

 

Thus, from each AE measurement, the three first IMFs are estimated and, for each of them, three 

chromatic processors are computed, resulting in a total of D=9 chromatic features, which compose the 

chromaticity space. In order to analyze the intrinsic dimension of data, that is, the minimum number of 

dimensions to maintain most of the data integrity, some estimators has been selected, such as geodesic 

minimum spanning tree (GMST), the principal component analysis (PCA), and the maximum likelihood 

(MLE), since each of them shows different estimation criteria [31]. Table I shows the intrinsic dimension 

estimation over the 9-space defined by the healthy data. Taking into consideration the non-orthogonality of 

the chromatic processors, an intrinsic dimensionality estimation lower than D is expected. In this sense, 



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 

 
SOM application results highly advantageous. On one hand, it quantizes the input data using model vectors 

in order to reach a discrete characterization of the D-dimensional manifold. On the other hand, it also 

performs a nonlinear projection to the units defined in a lower-dimensional map grid in order to be used as 

a visualization tool of the D-dimensional data representation. 

 

TABLE I 

INTRINSIC DIMENSION ANALYSIS OF THE D-DIMENSIONAL MANIFOLD 

Estimator Estimated intrinsic dimension 

GMST 5.5665 

PCA 5.0000 

MLE 5.2285 

 

As it has been mentioned, the SOM training has been carried out by the data corresponding to the healthy 

gear condition under 150 rpm and 450 rpm. A 2-dimensional grid of 25x25 neuron units has been defined 

as low-dimensional SOM representation. Thus, the model vectors corresponding to the 625 neurons units 

are adapted during the SOM training process, in this study, following a classical sequential training 

algorithm. The training process results a quantization error, Qerror, of 0.050, that is, the mean distance 

between each 9-dimensional data points and the corresponding (closest), 2-dimensional neuron units. This 

is a good data mapping resolution value considering that healthy 9-dimensional data dispersion is estimated 

at 0.5 approximately. In Fig. 12, a qualitative representation of the nine-dimensional chromaticity manifold 

is shown by means of the principal component analysis. The considered three principal components exhibit 

an accumulative variance of 72%, which emphasizes the qualitative meaning of the illustration. Two 

clusters can be identified in the data distribution, related with the affectation of the speed conditions 

considered (150 rpm and 450 rpm). It must be noted that, as the acquisition time is predefined, the gear’s 
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teeth considered in each acquisition varies from one acquisition to another. This fact is also affected by the 

consideration of different rotating speeds. That consideration implies a certain degree of variance for each 

AE measurement and, in consequence, in each of the nine chromatic parameters. 

 

Fig. 12. Qualitative representation of the nine-dimensional chromaticity manifold by means of a 3-

dimensional PCA based representation. Projection of healthy gear condition data @150rpm and 

450rpm, ○. SOM neuron units’ projection after training, ×. 

 

 

Fig. 13. Resulting U-matrix by means of the healthy gear condition data @150 rpm and 450 rpm. 

The lighter the color between two neuron units is, the larger is the relative distance between 

them. 
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The unified distance matrix method, U-matrix, applied over the resulting SOM training structure, allows 

the visualization of distances between adjacent neuron units in the defined two-dimensional map. It is 

shown in Fig. 13 that two main large areas can be distinguished, which means that the data behaves as two 

neighbor clusters. Indeed, the AE, as it was expected, exhibits speed modulations (150rpm and 450rpm in 

this case), considered in the chromatic characterization, mainly by the L parameter, of the proposed 

methodology. The component plane representation, Fig. 14, shows the individual component behaviors. 

Each plane shows the distribution of one of the chromaticity manifold dimensions. The components planes 

have been scaled in order to allow comparison. Component 1, Fig.14(a), H chromatic parameter, shows a 

predominance of the low frequency components in the AE signal under healthy gear condition. It can be 

seen that components 2, Fig.14(b) and 5, Fig.14(e), corresponding to the L chromatic parameter, exhibit a 

significant contrast between two regions of the corresponding component planes. This effect is due to the 

two rotating speed values considered and the consequence amplitude affectation, as it was aforementioned. 

Components 3, Fig.14(c), 6, Fig.14(f) and 9, Fig.14(g), corresponding to the S chromatic parameter, show 

an homogenous behavior, since the frequency distribution under healthy gear condition does not present 

relevant high frequency components. 
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Fig. 14. Nine component planes of the resulting nine-dimensional chromaticity manifold model by 

SOM. Healthy gear condition data at 150 and 450rpm are considered. The lighter the color is, the 

higher the value of the component. (a) H of first IMF. (b) L of first IMF. (c) S of first IMF. (d) H of 

second IMF. (e) L of second IMF. (f) S of second IMF. (g) H of third IMF. (h) L of third IMF. (i) S of 

third IMF. 

 

The data histogram of a new set of healthy data at 150 rpm and 450 rpm over the SOM training structure 

is shown in Fig. 15(a). It exhibits the data distribution in terms of hits over the neuron units. As expected, 

some neuron units are not selected as best matching units, however the histogram shows a proper 

homogeneous distribution over the SOM map. 

 

Fig. 15. Resulting data histogram of AE measurements collected during different gear conditions, 

including both speeds 150 rpm and 450 rpm. Larger the black square is, the larger is the number 

of matched measurements. (a) He gear condition. (b) Fa gear condition. (c) Fb gear condition. 

 

Considering the trained SOM mapping with healthy data, the projection of the faulty gear conditions 

follows. This step has been done by the application of the same procedure, that is, EMD processing over 

the AE measurements, chromatic processors estimation, HLS transformation and, finally the projection 

over the trained SOM map. The resulting data histograms are shown in Fig 15(b) and Fig. 15(c) 

corresponding to Fa and Fb respectively. The projected AE measurements, corresponding to faulty gear 

conditions exhibit both healthy and faulty AE characteristics, since the gears are not homogeneously 

degraded. That is, some tooth has been induced to fracture while the rest still maintain their mechanical 
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properties. This is clear in the corresponding histograms representations. Unlike the healthy gear condition, 

the faulty scenarios show clusters of AE activity as well as a relative increase ratio of AE events at the 

boundaries of the reference map. The resulting quantization error corresponding to each AE measurement 

under the three considered gear conditions is shown in Fig. 16. Compared with the healthy gear data, Fig. 

16(a), the deviation of some AE measurements under Fa and Fb gear conditions, Fig. 16(b) and Fig. 16(c) 

respectively, is explicit. The healthy gear condition exhibits a Qerror mean value of 0.52, that is similar to 

the one obtained during the SOM training stage, and a Qerror kurtosis value of 129.5, which means that a 

great deal of measurements are near the mean value. The Fa and Fb gear conditions, however, show Qerror 

mean values of 0.088 and 0.082 respectively, and Qerror kurtosis values of 31.10 and 7.73 respectively. 

 

 

Fig. 16. Quantization error series resulting from the projection of AE measurements collected 

during different gear conditions @150 rpm and 450rpm. (a) He gear condition. (b) Fa gear 

condition. (c) Fb gear condition. 

 

The presence of such AE faulty gear characteristics is quantified following the proposed gear mechanical 

degradation indicator, IGMD (7). In order to avoid false positives, the healthy threshold, Ht, can be selected 

four times the Qerror mean value obtained during the SOM training, that is, in this study Ht = 0.2. Thus, 

while the healthy gear condition exhibits an IGMD = 0, the Fa and Fb gear conditions show an IGMD = 6.2 



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 

 
and an IGMD = 4.6 respectively. Indeed, the Fa and Fb gear conditions contain different AE characteristics, 

due to the induced gear fractures, which differ from those corresponding to the healthy gear condition. 

Component 1, Fig. 17(a), H chromatic parameter, shows an increase of higher values compared with the 

homologous healthy gear condition. That is, an extension of the corresponding frequency distribution to 

higher frequency bands is observed. Components 2, Fig. 17(b), 5, Fig. 17(e) and 8, Fig. 17(h) 

corresponding to the L chromatic parameter, exhibit also a significant contrast between two regions of the 

corresponding component planes. Similar than in the healthy gear condition, this effect is due to the two 

rotating speed values considered. Components 3, Fig. 17(c), 6, Fig. 17(f) and 9, Fig. 17(g), corresponding 

to the S chromatic parameter, show an increase of lower values, since the frequency distribution under 

faulty gear condition presents additional high frequency components. 

 

Fig. 17. Nine component planes of the SOM trained by means of faulty gear conditions data, Fa 

and Fb, at 150 rpm and 450 rpm. The lighter the color is, the higher the value of the component. 

(a) Parameter H of first IMF. (b) Parameter L of first IMF. (c) Parameter S of first IMF. (d) 

Parameter H of second IMF. (e) Parameter L of second IMF. (f) Parameter S of second IMF. (g) 

Parameter H of third IMF. (h) Parameter L of third IMF. (i) Parameter S of third IMF. 
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For checking the generalization and robustness properties of the proposed methodology, sets of AE 

measurements under each of the considered gear conditions, He, Fa and Fb at 250 rpm have been 

evaluated. The corresponding data histogram and quantization error is shown in Fig. 18 and Fig. 19 

respectively. Under this new operating condition the healthy gear maintains an IGMD = 0, and the Fa and Fb 

gears show an IGMD = 8.7 and an IGMD = 4.9 respectively. 

The results show an excellent performance of the proposed methodology, allowing gear mechanical 

degradation detection under multiple speed conditions at a demanding low-load scenario. It must be noted 

that, for such range of operating conditions, no speed and torque measurements are required, however, for a 

wider range, the measurement of the speed and torque would be necessary. Thus, depending on the 

operating condition, a different chromaticity space would be applied. 

The gear mechanical degradation indicator and, therefore, a possible threshold to pull out the gears to 

service for maintenance operation purposes can be specified by analyzing the trend of the IGMD values 

depending of operating conditions. The analysis of the evolution of such indicator and the comparison with 

the values obtained from a healthy machine may indicate the value of this threshold. 

 

Fig. 18. Resulting data histogram of AE measurements collected during the three different gear 

conditions @250rpm. Larger the black square is, the larger is the number of matched 

measurements. (a) He gear condition. (b) Fa gear condition. (c) Fb gear condition. 
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Fig. 19. Quantization error series resulting from the projection of AE measurements collected 

during the three different gear conditions @250rpm. (a) Healthy gear condition. (b) Fa gear 

condition. (c) Fb gear condition. 

 

V. CONCLUSION  

This paper presents a novel methodology in order to detect mechanical gear degradation in 

electromechanical systems under multiple speed operating conditions. There are three important aspects in 

this new method. The first one is the application of HLS transformation as a chromatic processing tool 

together with the AE analysis. HLS transformation offers a characterization of the amplitude and frequency 

distribution of the AE signal; highly suitable in case of gear mechanical degradation analysis. The second is 

the decomposition of the AE signal in IMFs, since the separation of the main different frequency modes 

allows the analysis of characteristic patterns. The third is the calculation of a new coefficient from the 

information provided by the HLS transformation of the main AE intrinsic mode functions by means of 

SOM mapping. Nine different experimental conditions have been considered, which represent an important 

range of system conditions. Under all of these experimental scenarios, the proposed fault indicator exhibit a 

reliable fault detection. Moreover, the gear mechanical conditions dealt with in the experimental tests 

represent noncritical gear faults. Therefore, the fault indicator shows still enough dynamic range to detect 

even lower gear mechanical degradation faults. The proposed feature estimation method exhibit a reliable 
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gear damage detection, since allows interpreting the underlying physical phenomenon of the mechanical 

degradation, that is, the differences in the amplitude and frequency distributions of the AE when 

mechanical gear fractures take place. It has to be highlighted that the proposed methodology is simple to 

implement. That is, it requires only the healthy data of the system and it shows a high reliability when 

performing the mechanical gear fracture detection in a range of speed operating conditions. The results 

obtained in this work suggest that this fault indicator may be also useful for any other rotating mechanical 

component faults. Future work will focus in the analysis of the load effect over the chromaticity space, and 

the optimum chromatic monitoring configuration in front of different gear fault types by means of AE 

signatures analysis. 
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