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 

Abstract—A new process technology for 4H-SiC planar power 

MOSFETs based on a Boron diffusion step to improve the 

SiO2/SiC interface quality is presented in this work. Large area 

(up to 25 mm2) power MOSFETs of three voltages ratings (1.7 

kV, 3.3 kV and 4.5 kV) have been fabricated showing significant 

improvements in terms of inversion channel mobility and on-

resistance in comparison with counterparts without Boron oxide 

treatment. Experimental results show a remarkable increase of 

the channel mobility, which raises the device current capability, 

especially at room temperature. When operating at high 

temperature, the impact of the high channel mobility due to 

Boron treatment on electrical forward characteristics is reduced 

as the drift layer resistance starts to dominate in the total on-

state resistance. In addition, the 3rd quadrant characteristics 

approximate to those of an ideal PiN diode, and the device 

blocking capability is not compromised by the use of Boron for 

the gate oxide formation. The experimental performance in a 

simple DC/DC converter is also presented. 

 
Index Terms— Gate dielectric, High Voltage, Power MOSFET, 

SiC, Wide Band Gap Semiconductors.  

I. INTRODUCTION 

ODAY, electricity accounts for 40% of primary energy 

consumption,  which is expected to increase with the full 

introduction of renewable energies. It is expected that 80% of 

electricity will pass through some kind of power electronics by 

2030 [1]. Power electronics plays a key role in the generation-

storage-distribution cycle of the electric energy since the main 

portion of the generated electric energy is consumed after 

undergoing several transformations through power electronic 
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converters. The largest portion of the power losses in power 

electronic converters is dissipated in their power 

semiconductor devices, and consequently the improvement of 

these power devices technologies is crucial to achieve a more 

rational use of the electric energy together with considerable 

improvements in efficiency, size and robustness of power 

converters. 

At present, most power devices are based on the very well-

established Silicon technology, covering a huge market of 

applications as low as 20 V up to several kV. However, 

Silicon material properties limit power devices’ performances 

regarding blocking voltage capability, operation temperature 

and switching frequency. Therefore, new generations of power 

devices based on Wide Band Gap (WBG) semiconductor 

materials are mandatory for high efficiency power converters.  

Silicon Carbide (SiC) is one of the most advanced WBG 

materials for power devices as far as commercial availability 

of starting high quality material (wafers and epitaxial layers) 

and maturity of their technological processes is concerned [2, 

3]. However, the SiC high voltage capability is not fully 

exploited yet. SiC diodes have been available in the market for 

more than 15 years (recently up to 15 kV [4]), becoming key 

components in various power applications. SiC switches are 

relatively new in the market and systems designers are 

becoming familiar with them. The development of low 

resistance SiC power MOSFETs has been delayed due to the 

very low inversion channel mobility values (μfe), high 

threshold voltage (VTH) instability, reduced maximum 

negative gate voltage and leakage through the channel at 0 V 

gate bias. These problems are mainly caused by a poor MOS 

interface quality, affected by large interface trap density (Dit) 

values. Improvements in the MOS interface quality have 

allowed the appearance of commercial SiC MOSFETs up to 

1.2 kV - 1.7 kV [5, 6], and full SiC power modules with 

current capabilities in the range of 100 A [5-7]. It is expected 

that SiC MOSFETs will compete with Silicon IGBTs and will 

replace them up to 5 kV breakdown voltage in a near future. 

This paper presents an innovative process technology for 

high voltage SiC power MOSFETs with a Boron doped gate 

oxide to improve the SiO2/SiC interface quality. In the next 

sections, design considerations, process technology and 

experimental results of fabricated devices will be discussed. 

As it will be shown, significant improvements in terms of μfe, 

on-resistance (RDSon), and 3
rd

 quadrant behavior are obtained 

in comparison with counterparts without Boron treatment. 
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II. DESIGN AND PROCESS CONSIDERATIONS 

Fig. 1 shows the schematic cross-section of a vertical SiC 

power MOSFET. Several considerations arising from the SiC 

material properties must be taken into account for a proper 

device design.  

 

 
Fig 1. Schematic cross-section of a SiC power MOSFET half-unit cell. 

 

First, doped regions in SiC cannot be obtained by impurities 

thermal diffusion due to their low diffusion coefficient values. 

Hence, these regions are usually defined by multiple high 

energy ion implantations although shallow  junction depths are 

obtained (typically below 1 μm). In addition, the epilayer 

doping level for a given blocking voltage is higher than that 

needed for a Silicon power MOSFET. Consequently, the 

extension of the depletion region within the p-well in the off-

state can easily reach  the  n
+
-source leading  to  a  premature  

punch-through breakdown. Therefore, the p-well doping 

profile must be carefully designed to avoid the punch-through 

while maintaining the desired VTH [8, 9]. Fig. 2 (a) highlights 

the punch-through of a power MOSFET with a non-optimized 

p-well doping profile by means of numerical simulations [10]. 

Another strategy to prevent the punch-through phenomenon 

is to increase the channel length but this has a negative impact 

on the device RDSon, especially due to the low μfe values. 

Therefore, submicron channel lengths together with a suitable 

design of the p-well region are needed to reduce RDSon and, at 

the same time, to avoid the punch-through. Fig. 2 (b) depicts 

the numerical simulation of the same power MOSFET with a 

higher p-well doping profile. As it can be inferred from this 

figure, the p-well doping level prevents the depletion region to 

reach the n
+
-source. 

The p-well doping profiles used for the simulation results 

shown in Fig. 2 are plotted in Fig. 3. In both cases, the 

resulting doping profile has been obtained by multiple 

Aluminum implantations allowing achieving a high doping 

level deep inside the p-well while maintaining a relatively low 

value at the surface in order to not compromise the VTH value. 

The submicron channel length is obtained with a self-aligned 

process using a polysilicon layer through which both p-type 

and n-type impurities are implanted. After the p-type 

implantation, the polysilicon layer is oxidized, and then the n-

type implantation is performed. The lateral length of the 

oxidized polysilicon defines the channel length. 

 

 
(a) 

 

 
(b) 

 

Fig. 2. Simulated electrical current distributions in a SiC power MOSFET 
with (a) a non-optimized, and (b) an optimized  p-well doping profile. 

VDS=1.3 kV. 
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Fig. 3. Simulated one-dimensional p-well doping profiles.  

 

On the other hand, one of the main issues in the SiC 

MOSFET technologies is the quality of the SiO2/SiC interface. 

The large Dit values and the surface roughness severely affect 

μfe increasing the device RDSon and compromising reliability. 

μfe values in SiC MOSFETs are more than one order of 

magnitude lower than in Silicon. Hence, new gate oxide 

configurations must be considered to improve the interface 

oxide quality and then μfe. Several technological solutions 
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have been proposed to improve the MOS interface quality, 

such as the use of Nitrogen [11] or Phosphorus [12, 13] 

doping during post-oxidation. More recently, alkaline earth 

elements (Sr, Ba) [14, 15] have also been proposed to 

passivate charge traps and to generate counter doping effect at 

the SiO2/SiC interface. In addition, different ionic species 

have been used to passivate the interface, for example Sb (μfe 

= 100 cm
2
/(V·s)) [16] or La (μfe=130 cm

2
/(V·s)) [17]. 

Recently, Okamoto et al [18] have proposed Boron diffusion 

in dry oxide to passivate dangling bonds, thus decreasing Dit. 

This approach allows obtaining high μfe values (μfe=100 

cm
2
/(V·s)) with a higher VTH stability. Other groups have also 

obtained encouraging results by Boron treatments [19] with μfe 

up to 115 cm
2
/(V·s).  

An important issue in designing a SiC MOSFET is to 

prevent high electric field values at the gate oxide interface. 

Although the critical electrical field strength in SiC is one 

order of magnitude higher than in Silicon, the existence of 

high electric fields at the SiO2/SiC interface could 

compromise either the gate oxide integrity or its reliability due 

to hot electrons injection into the oxide. Consequently, a 

shielded SiC MOSFET design is needed to ensure relatively 

low electric field values at the gate oxide interface [9].  

Another design consideration is the use of a Low Doped 

Source (LDS) structure (see Fig. 1). It consists in a highly 

doped n
+
-source tied to a lower doped n-region. Although this 

structure penalizes RDSon, it allows limiting the μfe reduction 

effect and decreasing hot carrier injection into the oxide [20]. 

III. DESIGN AND PROCESS TECHNOLOGY 

4H-SiC vertical power MOSFETs of voltage classes 

targeting 1.7 kV, 3.3 kV and 4.5 kV have been fabricated with 

a process technology having 13 photolithographic steps. Table 

I shows the SiC epilayer properties used to fabricate devices 

of three voltage classes. The mask set includes small and large 

area (up to 25 mm
2
) power MOSFETs, lateral n-MOSFETs 

and test structures. The p-well doping profile used for all the 

devices is the optimized one shown in Fig. 3. Fig. 4 shows a 

picture of the fabricated monitor chip. 

 
TABLE I 

SIC EPILAYER PARAMETERS 

Voltage class 
(kV) 

Thickness 
(μm) 

Doping concentration 
(×1015 cm-3) 

1.7 15 5 

3.3 34 1.5 

4.5 40 1 

 

A new gate oxide configuration based on a Boron diffusion 

step has been considered. Unlike [18], where a simple thermal 

dry oxide was used, the gate oxide presented in this work 

consists of a rapid thermal oxide (RTO) grown in N2O 

ambient similar to the one in [21], in which Boron diffusion is 

carried out by means of BN planar sources [22, 23]. Finally, a 

PECVD TEOS oxide is deposited on top (see Fig. 5), resulting 

in total oxide thickness around 100 nm. Boron concentration is 

equally distributed in the thermal oxide, and no Boron 

impurities have been found in the TEOS. SIMS measurements 

have also shown that Boron atoms do not penetrate into the 

SiC crystal [23,24]. In addition, these measurements have also 

evidenced a lack of Boron concentration uniformity across the 

wafer and, consequently, more effort will be further required 

to optimize the Boron diffusion process to avoid spreading in 

device performance. 

 

 
 

Fig. 4. Photograph of the monitor chip showing four large area power 

MOSFETs and test structures. 

 

Furthermore, the power MOSFET edge termination consists 

in a Junction Termination Extension (JTE) with p-well guard 

rings surrounded by additional JTE rings with a total length of 

158 μm [25]. Simulation results have shown good edge 

termination efficiency (defined as the ratio between 

breakdown voltage and parallel plane voltage) for all the three 

voltage class devices, and have also been confirmed on test 

structures showing efficiencies close to 90% [26, 27].  

 

 

 
 

Fig. 5. Schematic cross-section of the gate oxide, SiO2/SiC interface, and 

expected Boron concentration. 

IV. EXPERIMENTAL RESULTS 

Fig. 6 shows the measured forward blocking characteristics 

of a power MOSFET for the three voltage classes. 
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Independently of the voltage capability, similar blocking 

voltages have been obtained in devices with or without Boron 

diffusion into the gate oxide. This fact demonstrates that the 

Boron diffusion process does not affect either the edge 

termination area or its efficiency.  
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Fig. 6. Forward blocking characteristics of 25 mm2 power MOSFETs with 

(solid) and without (dashed) Boron treatment. 

 

Fig. 7 depicts the transfer characteristics of 25 mm
2 

4.5 kV 

power MOSFETs with and without Boron diffusion treatment. 

As it can be seen, Boron significantly reduces the channel 

resistance component and also decreases the VTH value. This 

VTH reduction allows the use of both thicker gate oxides and 

higher p-well doping profiles, which are useful to prevent a 

premature punch-through as mentioned before. The VTH (VGS 

at which IDS is equal to 1 mA) mean value is between 4 V and 

5 V for the three voltage class devices with Boron diffusion 

process. 
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Fig. 7. Transfer characteristics of 25 mm2 4.5 kV power MOSFETs. 

VDS=0.1 V.  

 

The maximum gate voltage before oxide degradation was 

55 V, which is slightly lower than that measured on wafer 

without Boron (~ 60 V). Consequently, the Boron doping of 

the gate oxide does not significantly impact the gate oxide 

integrity. Moreover, it has only a slightly influence on VTH 

stability. In this sense, Bias Stress Instability (BSI) tests have 

been carried out biasing the MOSFET gate between -5 V and 

+25 V following the sequence shown in Fig. 8 (a). Fig. 8 (b) 

depicts the resulting VTH drift of power MOSFETs with and 

without Boron treatment under PBSI and NBSI stress.   
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Fig. 8. (a) Bias Stress Instability test sequence. (b) VTH drift of 9 mm2 power 

MOSFETs with and without Boron treatment under PBSI and NBSI stress at 

room temperature. 

 

As it can be seen, after the last bias step of 3600s the VTH 

drift of the power MOSFET with Boron is lower than 5% 

under negative BSI (NBSI) and 2% under positive BSI 

(PBSI). Hence, the VTH stability is not significantly affected 

by the Boron gate oxide treatment. However, some 

improvements are still needed to reach the stability levels of 

commercial gate oxides showing nearly zero Vth drift after 

1000 hours BSI test [28, 29]. On the other hand, the 

comparison of test structures with and without LDS structure 

on the same wafer has revealed that the LDS does not 

influence the VTH stability. However, the VTH drift under 

NBSI increases until 12% when the negative gate test bias is 

set to -10 V. These drift values are not as good as those 

obtained in novel power MOSFET generations. The trade-off 

between high mobility and VTH stability is still a challenge we 

improved in this work but further optimizations are still 

needed.  
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Fig. 9. Boron impact on the field-effect mobility. VDS=0.1 V, LCH=12μm. 

 

Fig. 9 plots μfe obtained from the transconductance curves 

of lateral n-MOSFET test structures according to 

μfe=L(WCoxVDS)
-1

dIDS/dVGS, where L and W are the channel 

length and width, and Cox is the oxide capacitance per unit 

area. As it can be seen, the Boron treatment significantly 

increases μfe with values as high as 60 cm
2
/(V·s) for normal 

gate operation biases. These values are lower than those 

reported in [18] because the p-well has been performed by 

multiple high-energy implantations. In our case, other lateral 

n-MOSFETs with the same gate oxide configuration 

fabricated on p-type epitaxied substrates exhibit μfe values as 

high as 160 cm
2
/(V·s) [23, 30] which is 60% higher than the 

results reported in [18]. 

The experimental IDS(VDS) output characteristics of a large 

area 4.5 kV power MOSFET is presented in Fig. 10. The 

average measured RDSon of the device active area at VGS=20 V 

is 28 mΩ·cm
2
, 45 mΩ·cm

2
 and 62 mΩ·cm

2
 for 1.7 kV, 3.3 kV 

and 4.5 kV devices at room temperature. These values are 

relatively high due to the large conservative cell pitch 

dimensions (36 μm). By reducing the cell pitch using stepper 

lithography the above mentioned values could be reduced by 

at least a factor of 2. 
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Fig. 10. Experimental output characteristics of a fabricated 25 mm2 4.5 kV 

power MOSFET. 
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Fig. 11. Impact of temperature on the output characteristics of 0.8 mm2 

power MOSFETs with Boron treatment. (a) 1.7 kV, (b) 3.3 kV and (c) 4.5 

kV. VGS=20 V. 

 

RDSon values of power MOSFETs without Boron treatment 

are 4 to 5 times higher, thus showing the efficiency of the gate 

oxide Boron doping in reducing the on-state losses. As 

mentioned before, the μfe increase due to the Boron diffusion 

strongly raises the current capability at room temperature for 

all blocking voltage classes, and this current value decreases 

when raising temperature. However, power MOSFETs with 

and without Boron treatment show a different temperature 

behavior since the scattering mechanisms that affect μfe show 
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different temperature dependences. Scattering with phonons 

are more effective at higher temperatures while scattering with 

surface interface traps becomes less effective as increasing 

temperature since the faster moving carriers interact less 

effectively with them. In the case of MOSFETs without Boron 

treatment (high Dit) the current capability increases as the 

temperature is raised from room temperature up to 150 ºC and 

then starts decreasing at higher temperatures. This is a due to 

the fact that, first mobility increases with temperature since 

scattering with interface traps predominate while at higher 

temperatures the mobility decreases due to phonon scattering. 

On the other hand, the current capability in devices with 

Boron diffusion in the gate oxide (low Dit) always decreases 

when increasing temperature due to the phonon scattering 

predominance. Figs. 11 and 12 show the impact of 

temperature on the output characteristics measured on small 

area power MOSFETs with and without Boron, respectively 

(only the output characteristics of structures with Boron 

treatment are represented in the case of 3.3 kV power 

MOSFETs since their counterparts without Boron were not 

fabricated). As it can be inferred from these figures, at 300ºC 

the current capability is very similar for devices with and 

without Boron diffusion for each blocking voltage since the 

major contribution of the drift layer to the RDSon. 
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(b) 

Fig. 12. Impact of temperature on the output characteristics of 0.8 mm2 

power MOSFETs without Boron treatment. (a) 1.7  kV and (b) 4.5 kV. 

VGS=20 V. 

The interface quality improvement by the Boron treatment 

of the gate oxide can also be inferred from the 3
rd

 quadrant 

MOSFET characteristics [31, 32]. In this operation mode, 

there are two interacting paths for the current flow; i.e., 

through the PiN diode and through the MOS channel. The 

current through the channel is determined by the MOS gate 

bias which suffers from a VTH reduction due to the body-effect 

[31].  The current through the channel is strongly affected by 

the interface quality, and can be suppressed by applying a 

negative gate voltage. The I(V) characteristics of fabricated 

devices have been measured to check the channel current flow 

at 0 V and at -4 V gate biases (see Fig. 13). As it can be seen, 

at VGS=0 V current starts increasing for drain voltages lower 

than the p-n built-in potential (~2.5 V) although these voltages 

are higher in the case of devices with Boron treatment. Given 

that all fabricated devices have the same cell structure design, 

it could be another indication that Boron treatment improves 

the interface quality since the I(V) curve is closer to that of a 

PiN diode.  
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Fig. 13. 3rd quadrant I(V) characteristics at VGS=0 V and VGS=-4 V of 25 

mm2 fabricated power MOSFETs (a) without Boron treatment, (b) with 

Boron treatment. 
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It is also clearly seen that the current through the channel is 

reduced when applying a -4 V gate bias as shown in 

commercial devices [32]. Concerning devices with Boron 

treatment, epilayers targeting 1.7 kV and 3.3 kV show 

different knee voltages at 0 V and -4 V while there is almost 

no difference for epilayers targeting 4.5 kV (both curves 

approach to that of an ideal PiN diode).  In any case, a further 

negative increase of the gate voltage does not shift the diode 

characteristics. 

The switching performance of fabricated MOSFETs has 

been preliminary tested using a resistive circuit. A low 

switching frequency (fsw≈1 kHz) signal is applied to the gate 

of the 3.3 kV power MOSFET with a signal generator. The 

voltage applied to the gate to turn on and off the MOSFET are 

20 V and -5 V respectively. Fig. 14 shows the experimental 

switching waveforms. The performance of the power 

MOSFETs under test has been analyzed in a simple DC/DC 

converter. A prototype of a boost converter was developed and 

used to test the switching behavior under inductive load. A 

PWM signal has been applied to the MOSFET gate using a 

driver to increase switching speed. The applied gate voltages 

to turn the MOSFET on and off were also 20 V and -5 V, and 

the switching frequency is 50 kHz. The experimental 

waveforms at Vin=0.5 kV, Vout=1 kV by the boost converter of 

approximately 1 kW are shown in Fig. 15. In this operation 

point, the efficiency of the boost converter was around 95%. 
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Fig. 14. Switching waveforms of a 3.3 kV MOSFET under resistive load. 

(a) turn-on and (b) turn-off. 

 

 
 

Fig. 15. Experimental waveforms of the boost converter at Vin= 500 V, 

Vout= 1000 V and P=1 kW. 

V. CONCLUSION 

The Boron gate oxide treatment presented in this work 

significantly improves the electrical characteristics of high 

voltage planar power MOSFETs with respect to counterparts 

without Boron diffusion. High voltage devices with voltage 

ratings up to 4.5 kV have been fabricated. The improvements 

include increase of inversion channel mobility and reduction 

of specific on-resistance. Moreover, the forward blocking 

capability and the threshold voltage stability are not 

significantly affected by the Boron treatment. Nevertheless, 

further improvements on VTH stability are still needed. High 

temperature measurements have also shown that the channel 

contribution to the total on-resistance lowers as the 

temperature is increased. In addition, switching performance 

has been successfully tested in a simple DC/DC converter. 
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