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 

Abstract— This paper proposes the adoption of the 
inherent emitter stray inductance LeE in high-power 
insulated gate bipolar transistor (IGBT) modules as a new 
dynamic thermo-sensitive electrical parameter (d-TSEP). 
Furthermore, a family of 14 derived dynamic TSEP 
candidates has been extracted and classified in 
voltage-based, time-based and charge-based TSEPs. 
Accordingly, the perspectives and the implementation 
challenges of the proposed method are discussed and 
summarized. Finally, high-power test platforms are 
designed and adopted to experimentally verify the 
theoretical analysis. 

 
Index Terms— High-power IGBT modules, auxiliary 

parasitic inductance, dynamic thermo-sensitive electrical 
parameters, junction temperature extraction principles. 

 

I. INTRODUCTION 

HE fast-growing pace of high-power conversion systems 

keep developing high-power Insulated Gate Bipolar 

Transistors (IGBTs) [1,2]. Thermal performance is currently 

regarded as one of the most important specifications in 

high-power modules, since both the short-term characteristics 

[3] and long-term ones are temperature-dependent [4,5]. In 

terms of the maximum operating junction temperature Tj, the 

commercially-available silicon-based power devices are rated 

up to 175 °C and the expected operation Tj in Wide-Band-Gap 

devices can reach 300 °C [6]. Hence, the knowledge of Tj has a 

crucial effect on the safe operation area of IGBTs. 

So far, many practical methods have been proposed [7-10]. 

Generally, the widely-studied Tj estimation methods in 
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practical applications can be classified into three groups: a) 

sensor-based methods, b) model-based methods, and 

thermo-sensitive electrical parameter (TSEP)-based methods. 

Regarding in sensor-based methods, simple 

temperature-dependent components are soldered on Direct 

Bond Copper (DBC) substrate as close as possible to the active 

areas of the module, i.e. the IGBT dies. Nevertheless, the 

distances of the formers from the latter ones together with the 

considerable response delays typically lead to a great 

estimation error. In order to get a faster estimation of Tj, many 

efforts have been done very recently on model-based methods 

[11-14]. In such methods, Tj estimation can be achieved as the 

response of an equivalent thermal RC network to power losses. 

As a result, the accuracy is strongly dependent on the 

measurement accuracy of instantaneous power losses and the 

correct identification of the thermal RC network. However, the 

thermal RC network is nonlinear at high temperatures and, on 

top of it, it is also strongly dependent on aging effects [15-17]. 

Hence, the needed real-time calculations and corrections make 

model-based methods very complex and time-consuming. 

Lastly, TSEP-based methods estimate Tj from the variation of 

physical temperature-dependent electrical parameters which 

are closely dependent on it. These methods are very promising 

as they could provide a very fast and cheap estimation of the 

junction temperature together with great accuracy, but still they 

require a non-negligible calibration process and computation 

time at runtime. 

In view of the characteristics of fast response (within 100 

µs), high accuracy, and low cost, a large numbers of 

TSEP-based methods have been proposed and applied to 

MOSFETs, IGBTs, IGCTs, and Wide-Band-Gap devices over 

past five years [18-20]. Considering the operating status of 

power devices, the optional TSEP candidates can be classified 

into the static TSEPs and dynamic TSEPs (d-TSEPs) [21-23]. 

Since the number of d-TSEPs is larger than that of static 

TSEPs, more and more d-TSEP methods are being developed 

for Tj estimation recently [21, 24-26]. Practically, according to 

the magnitude of electrical parameters, TSEPs can be divided 

further into gate-related TSEPs and collector-related TSEPs, as 

depicted in Fig.1. 
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Fig. 1.  Gate-related and collector-related TSEP candidates. 

Since the electrical parameters in the gate loop are 

low-voltage quantities, the gate-related TSEPs can be sampled 

by low-voltage sampling circuits directly. Some key published 

gate-related TSEPs are based on: peak gate current [8], 

integration of gate current [20], threshold voltage vth [27], and 

Miller plateau width [28]. On the other hand, plenty of 

collector-related TSEPs can be identified, e.g.: dic/dt, dvce/dt, 

maximum turn-off voltage peak Vpeak, maximum turn-on 

current peak Ipeak, etc. Of course, once the collector-related 

quantities can be measured at a low cost, a lot of new and 

practical TSEPs candidates can be extracted. However, the 

sampling circuit should be designed to withstand high voltages 

and/or large currents during converter operations, making the 

adoption of such a method not convenient or even not feasible 

at all. 

To overcome the above shortcomings, a new approach for 

extracting collector-related dynamic TSEPs is proposed in this 

work. Taking into account the specifications of high-power 

IGBT module packages, the internal parasitic inductance LeE 

between the power emitter and Kelvin emitter can be profitably 

used as an intermediary for the conversion from several 

hundreds of amperes to tens of volts. A lot of collector-related 

d-TSEPs can be extracted through the induced voltage veE 

across LeE. Moreover, a number of new measurable electrical 

parameters are proven to be possibly adopted as d-TSEPs. 

Finally, it is worth to point out that all the veE-based d-TSEP 

obtained through the presented method can have a unified 

evaluation system, which facilitates designers to select the 

proper d-TSEP candidate for a given application. 

II. PROPOSED METHOD 

A. High-power IGBT module with parasitic parameters 

The typical high-power IGBT modules and related circuit 

diagrams are illustrated in Fig.2, which have been taken from 

Infineon’s portfolio [29]. The depicted high-power multi-chip 

IGBT modules are characterized by a common gate terminal for 

the parallel-connected chips. 

From the electrical point of view, the high-power IGBT 

module can be considered as a five-port module, which consists 

of power collector C (C = C1, C2 and C3 connected together), 

power emitter E (E = E1, E2 and E3 connected together), 

auxiliary collector terminal c, Kelvin emitter e and gate 

terminal g. Its equivalent circuit considering the parasitic 

inductances is depicted in Fig.3, together with a modern IGBT 

gate driver [30]. It is worth noting that the inductance LeE can be 

regarded as a relatively constant for a given part number, and its 

value can also be extracted during the calibration process.  

B. Switching behavior and related veE 

During the switching transitions, an induced voltage veE is 

generated. This induced voltage veE consists of vek related to 

dige/dt and vkE related to dic/dt, as shown in Fig.3. Moreover, in 

power IGBTs, gate current ige is far negligible in respect to the 

collector current ic. To better understand the relationship 

between the hard-switching waveforms and corresponding 

induced voltage veE under inductive load, the typical IGBT 

switching transitions have been reported in Fig.4, which can be 

divided into four states: on-state, turn-off transition, off-state, 

and turn-on transition. 

Referring to Fig.4, at the beginning of turn-off transition, the 

rapid decline of vge causes a negative ige variation from the gate 

capacitors Cgc and Cge. This variation leads to a positive-going 

vek across Lek between t0 and t1. For the time period from t0 to t1, 

the collector current ic can be regarded as constant because the 

turn-off vge is still higher than the threshold voltage vth. 

Therefore, the inductance Lek can be extracted by the voltage 

spike during ∆t1. Between t1 and t2 the Miller plateau takes 

place. Moreover, with a low dige/dt and constant collector 

current ic, the value of veE from t1 to t3 is approximately zero. 
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Fig. 2.  Typical appearances of high-power IGBT modules and 
related circuit diagrams for single switch module. 

 

Fig. 3.  Equivalent circuit of a high-power IGBT module 
including parasitic parameters, equipped with a modern gate 
driver. 
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Then, at t3, the load current begins to fall after vge reaches vth, 

and the maximum turn-off dic/dt can be detected by the 

negative peak veE(t4), whose area is S(t4). The turn-off process 

is over at t5. The rapidly falling ic is reflected by a synchronous 

jump of veE. After t3, the induced veE is mainly caused by the 

collector current variation dic/dt. Hence, the inductance LkE can 

be calculated by the second veE peak value at t4. 

The turn-on transition takes place at t6. Then, when the gate 

voltage vge begins to rise, an induced voltage veK occurs across 

Lek, which is mainly due to the rapid gate current ige variation. 

Once again, vkE is zero as ic doesn’t vary, so veE has the same 

behavior. With respect to the time period from t6 to t8, the 

collector current ic is zero because the gate voltage vge is lower 

than the threshold voltage vth. Moreover, with a low dige/dt and 

zero ic, the value of veE from t7 to t8 is approximately zero. Then, 

the collector current ic begins to rise after vge reaches vth. This 

rapidly rising ic is reflected by a synchronous jump of veE. There, 

the ic contains the dynamic characteristics of both diode and 

IGBT. As a result, the induced veE during turn-on transition also 

contains information about the commutated diode. After t8, the 

induced veE is mainly caused by the collector current variation 

dic/dt. At t9, the turn-on collector current slope reaches the 

maximum value, which can be reflected by the peak value 

veE(t9). At t10, the collector current equals to the load current, 

and the forward current though commutation diode is decreased 

to zero and the reverse recovery process begins. When the 

turn-on ic reaches its peak value Ipeak, the induced veE comes to 

the zero-crossing point at t11. Then, the negative veE can reach 

the negative peak value veE(t12), which can be used for the 

maximum reverse recovery current slope extraction. From t10 to 

t13, the collector current ic consists of reverse recovery current id 

and the load inductor current IL. Therefore, the corresponding 

induced veE from t10 to t13 is affected by the diode 

characteristics. Accordingly, the enclosed area S(t9) is caused 

by the rapid dic/dt before reaching Ipeak, and the decreasing 

collector current after Ipeak induces the negative area S(t10) on 

the veE waveform. In summary, the induced veE during the 

whole switching period is given by (1). 

From Fig.4 and (1), it can be concluded that the effects of the 

gate current transitions on veE take place at different time 

intervals with respect to the effects from the collector current, 

therefore these latter ones can be separated from the former 

ones and easily determined. 
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                  (1) 

Nevertheless, the former ones can be also profitably used as 

a timing reference for the latter ones as will be clarified in the 

next section. Moreover, with the internal parasitic inductance 

LkE in a role of intermediary, the low and measurable voltage 

signal veE can be straightforwardly converted to the electrical 

parameter dic/dt. Last but not least, since the temperature Tj has 

impact on dic/dt in several manners, including diode junction 

temperature TjD at turn on, the induced veE can be exploited to 

extract an equal number of d-TSEP methods once the relation 

between veE and Tj and TjD has been identified and the related 

parameters have been calibrated. 

III. COLLECTOR-SIDE DYNAMIC TSEPS 

According to the waveforms of Fig.4, the collector-side 

d-TSEPs extracted by means of veE can be classified into three 

categories, namely: time-based, voltage-based and 

charge-based d-TSEPs. Besides, the definitions for electrical 

parameters are adopted from the standard IEC 60747-9: 

Semiconductor devices [31]. 

A. Time-based d-TSEPs 

The time-based TSEPs are distributed on the horizontal axis 

of Fig.4, and are measured in ns/°C. The duration of a given veE 

pulse is a function of Tj through a given time-based TSEP. To 

measure such duration, an analog comparator should be used 

 

Fig. 4.  Hard-switching waveforms of conventional IGBT module under inductive load. 
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with an appropriate threshold voltage, together with a time 

counter. 

(1) Turn-off delay time tdoff 

The induced voltage veE consists of vek introduced by dige/dt 

at the beginning of vge fall and vkE introduced by dic/dt at t3. As a 

result, the starting point of tdoff can be determined by Lek·dige/dt, 

and the ending point is triggered by LkE·dic/dt. Hence, tdoff is 

equal to (∆t1+∆t2+∆t3), as shown in Fig.4. The relationship 

between Tj and tdoff based on the physical mechanisms has been 

enunciated and discussed in [23]. 

(2) Current fall time tif 

The current fall time tif is usually defined as the falling time 

of ic from 90% IL to 10% IL. In practice, due to different 

semiconductor techniques, the 10% IL limitation for current fall 

time can be reset according to the practical tail current. In [32], 

the instantaneous collector current has been extracted by a 

sophisticated and isolated PCB Rogowski coil. Compared with 

this solution, tif can be conveniently extracted with the 

proposed method as the length of the negative pulse of veE, i.e. 

∆t4. This latter duration and corresponding tif can be determined 

by setting a threshold voltage in an analog comparator. 

(3) Turn-off time toff 

The turn-off time toff is defined as the sum of the turn-off 

delay time tdoff and the fall time tif, without including the tail 

current part. The duration of toff can be obtained by the sum of 

(∆t1+∆t2+∆t3+∆t4). As method (1), a significantly longer time 

has to be measured in respect to method (2), which is highly 

beneficial from the measurement accuracy standpoint. 

(4) Turn-on delay time tdon 

The turn-on delay time tdon is defined as the duration from the 

beginning of the vge transient t6 to the beginning of the collector 

current increase t8. In the veE waveform, the starting point of tdon 

can be determined as the beginning of the negative peak at t6, 

and its ending point can be approximately obtained as the 

positive voltage jump at t8. Hence, the duration tdon can be 

extracted by the sum of (∆t5+∆t6). 

(5) Voltage fall-time tvf 

The collector voltage fall time tvf is defined as the time 

interval where the collector voltage vce falls from 90 % to 10 % 

of the bus voltage Vdc. Therefore, tvf can be extracted as 

(∆t7+∆t8). 

(6) Turn-on time ton 

The total turn-on time ton can be obtained from the sum of 

turn-on delay time tdon and current rise time tir., i.e. from t6 to t10. 

However, the time t10 cannot be extracted by veE directly. For 

this reason, time t11 must be detected in place of it (∆t5+∆t6+∆t7), 

which also includes the reverse recovery time of the diode, 

which is temperature-dependent too. Therefore, in this method 

the diode Tj should also be determined firstly. Nevertheless, it is 

worth to point out that, in the likely approximation that IGBT’s 

and diode’s junction temperatures are related to each other, this 

method can be successfully adopted. 

B. veE Voltage-based d-TSEPs 

In Fig.4, the veE voltage-based d-TSEPs are distributed on the 

veE vertical axis, and are measured in mV/°C. Accordingly, the 

veE voltage-based TSEPs can be measured by means of 

low-voltage peak detectors [8]. 

(7) Maximum turn-off dic/dt 

The negative veE peak occurring at t4 is proportional to the 

maximum dic/dt at turn-off. Therefore, to the extent that such a 

quantity appreciably depends on Tj, (2) can be adopted 

4

max_off

(t )c eE

kE

di v

dt L
                                 (2). 

(8) Maximum turn-on dic/dt 

Similarly to method (7), the maximum turn-on changing rate 

of dic/dt induces a positive voltage drop on LkE. Hence, it can be 

calculated by the peak veE at t9, which is given by 

9

max_on

(t )c eE

kE

di v

dt L
                                 (3). 

(9) Maximum turn-off reverse recovery did/dt 

The negative peak voltage of veE at t12 is related to the diode 

maximum turn-off slope did/dt. Besides, the maximum turn-off 

did/dt during the reverse recovery period is studied and 

developed as a TSEP candidate for Tj extraction of P-i-N diodes 

[33]. Since the load current IL can be assumed to be constant in 

good approximation, the relationship between the induced veE 

and did/dt from t11 to t13 is given by 

12

max

(t ) ( )eE c L d d

kE

v di d I i di

L dt dt dt


                  (4). 

It is worth noting that the changing rate dic/dt is related to the 

IGBT characteristics. Therefore, the knowledge of the IGBT Tj 

is a prerequisite for the diode Tj extraction. 

C. Charge-based d-TSEPs 

The charge-based d-TSEPs are combined parameters related 

to both vertical and horizontal information about veE. By means 

of an integrator, the enclosed area of veE waveforms such as 

S(t4), S(t9) and S(t10) can be used for the extraction of several 

TSEP candidates. 

(10) IGBT forward storage charge QrrI 

During turn-off transition, IL can be considered as a constant 

and the extraction of ∆t4 can be used for the integration limits. 

The instantaneous collector current ic can be estimated as the 

integration of veE and the initial condition IL [34]. 
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In Fig.5, the estimated instantaneous ic from (5) during 

turn-off transition is reported together with the experimental 

waveforms of an IGBT. In case of fixed Tj, the swept-out 

charge QrrI [35] during turn-off transition is related to both IL 

and length of ∆t4 and can be obtained as 
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During the switching transition, the load current IL can be 

treated as constant, so the calculated QrrI is proportional to the 

extracted ∆t4. Finally, the combination of the derivative effect 

of the stray inductance LkE and the integrator gives an accurate 

estimation of the collector current variation ∆ic in the 

considered interval. 

(11) and (12) Diode recovery storage fall charge QrrD [35] 

and maximum reverse recovery current Irrm 

In [36], the extracted charge during the reverse recovery 

falling phase of high-voltage P-i-N diodes has been developed 

as a dynamic TSEP for diode Tj extraction. 



 

In Fig.6, the experimental instantaneous turn-on ic and the 

related veE at Vdc=1600 V, IL=500 A are depicted (IGBT 

Tj=TjD=25°C). Correspondingly, the duration ∆t8 is around 385 

ns and the parasitic LeK is around 6 nH. 

According to that approach, the enclosed area S(t10) and 

recovery storage fall time ∆t8 (t11~t13) can be used for QrrD 

calculation. Hence, the QrrD extraction principle during diode 

turn-off transition is derived from 
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Compared with the measured charge QrrD 73.2 μC, the 

calculated QrrD by (7) is around 70.2 μC. Therefore, the 

extracted QrrD can be predicted by using the negative area S(t10), 

and the related ∆t8 at given LkE. More importantly, the peak 

value of reverse recovery current Irrm can also be obtained by 

S(t10) and LkE. 

D. Other electrical parameters extracted by veE 

(13) Turn-on peak collector current Ipeak 

The peak current Ipeak at turn on can also be extracted in the 

presented approach. Referring to Fig.6, since ic after t10 consists 

of the reverse recovery current id and the load current IL, the 

peak current Ipeak is the sum of IL and Irrm: Ipeak=IL+Irrm. The 

turn-on Ipeak and Irrm can be estimated as 

11
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Theoretically, through a combination of (7) and (8), the load 

current IL during the switching transition can be estimated by 

subtracting S(t10) from S(t9). 

(14) Turn-off peak collector voltage Vpeak [37] 

The turn-off peak collector voltage Vpeak cannot be extracted 

by veE directly without Vdc knowledge. The typical half-bridge 

circuit with inductive load considering parasitic inductors is 

depicted in Fig.7. The sum of the stray inductances Ls1, Ls2 and 

Ls3 can be conveniently called Lloop, whereas the parasitic 

module inductance is called LeE. 

At the beginning of ∆t4, an overshoot ∆vce is induced on the 

collector voltage by the changing rate of collector current dic/dt. 

Therefore, the collector voltage during ∆t4 can be expressed as 

TABLE I 
VEE-BASED TSEP CANDIDATES AND RELATED EXTRACTION METHODS FOR 

IGBT AND DIODE 

Description Identifier Key parameters Category 

Turn-off delay time tdoff ∆t1+∆t2+∆t3 

Time-based 

d-TSEPs 

Current fall time tif ∆t4
 

Turn-off time toff ∆t1+∆t2+∆t3+∆t4 

Turn-on delay time tdon
 ∆t5+∆t6 

Voltage fall time tvf ∆t7+∆t8 

Turn-on time ton ∆t5+∆t6+∆t7 

Maximum turn-off 

dic/dt 
dic/dt(max_off) veE(t4) 

Voltage-based 

d-TSEPs 

Maximum turn-on 

dic/dt 
dic/dt(max_on) veE(t9) 

Diode reverse 
recovery did/dt 

did/dt(max) veE(t11) 

IGBT forward 

storage charge 
QrrI S(t4) and ∆t4 

Charge-based 

d-TSEPs Diode recovery 
storage charge 

QrrD S(t10) and ∆t8 
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Fig. 7.  Half-bridge circuit with inductive load. 
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Fig. 5.  Collector current estimation using integration of 
veE (Vdc=1800V, IL=600A and Tj=25°C) [34]. 

 

Fig. 6.  Waveforms of turn-on ic and related induced veE. 
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( ) ( ) c
ce dc ce dc loop kE

di
v t V v V L L

dt
                  (9). 

Since dic/dt on the parasitic inductances is the same: 

c eE ce

kE kE loop

di v v

dt L L L


  


                         (10). 

The overshoot ∆veE during ∆t4 can be expressed as 

3 5( ) ( ) ,( )
kE loop

ce dc eE
kE

L L
v t V v t t t t

L


              (11). 

Since the value of Lloop and LkE can be determined in advance, 

the turn-off peak voltage Vpeak can be obtained as: 

4( )
kE loop

peak dc eE
kE

L L
V V v t

L


                    (12). 

Based on the foregoing analysis, 14 measurable dynamic 

TSEPs are summarized in Table I and classified according to 

the above categories. Remarkably, the diode related TSEPs are 

related to the commutation IGBT characteristics. In terms of 

the calibration procedure, once the commutation IGBT 

temperature and related electrical parameters are measured, the 

corresponding diode Tj can be derived from the 

multi-dimensional database. 

IV. EXPERIMENTAL VALIDATION AND PERFORMANCE 

COMPARISON 

In order to validate the effectiveness of the discussed 

dynamic veE-based TSEP candidates, a high-power double 

pulse test platform was used, whose picture is reported in Fig.8 

(a), and whose specifications are detailed in [38]. The devices 

under test (DUT) and the related specification of IGBT and gate 

driver are listed in Table II. Typical double pulse test 

waveforms obtained from the experimental setup are reported 

in Fig.8 (b), whose shapes have been comprehensively 

discussed in the previous sections (see Fig. 4). The relations 

among d-TSEPs, parasitic parameters and working conditions 

can be determined by these calibration tests [39]. For higher 

accuracy of TSEP-based methods during operation, the 

parasitic parameter LeE can be monitored to make sure it 

remains approximately constant during measurements. In the 

following paragraphs the experimental verification and 

performance comparison is presented separately for time-, veE 

voltage- and charge-based d-TSEPs. 

 

(a) 

 

(b) 

Fig. 8.  High-power double pulse test platform. (a) Photograph of test 
platform; (b) Key test waveforms at Vdc=1800 V, IL=500 A and Tj=25°C. 

TABLE II 
SPECIFICATION OF IGBT AND GATE DRIVER 

Parameters Value Parameters Value 

2 x IGBT 

modules (leg 
connection) 

Fuji 

1MBI800UG
-330 

Gate driver 

Voltage (vge) 

+15V on/ 

-10V off 

Bus voltage 

(Vdc) 

1400V~ 

1800V 

Turn-on/off gate 

river resistor 
(Ron/Roff) 

2.4Ω 

/3.75Ω 

Bus capacitor 
(Cdc) 

1000µF P-i-N diode Tj 
25oC to 
125oC 

Load current 

(IL) 
200A~700A 

Stray inductance 

(LkE) 
≈ 6nH 

Load 

inductance 
(Lload) 

400µH 
Parasitic 

inductor (Lloop) 
≈ 265nH 

(1) Time-based d-TSEPs 

In Fig.9, the experimental results concerning the six different 

time-based TSEPs are plotted. Even though a look-up table can 

be used in the presented methods, it is worth to point out that 

the achieved linearity is quite evident. However, the sensitivity 

of such methods widely varies from one to another. In Table III, 

the sensitivity comparison among the six time-based TSEPs is 

reported. From the experimental results in Fig.9 (b), it can be 

seen that tif based-TSEP was impractical due to too low 

sensitivity. In fact, because of the current tail during turn-off 

transitions, the current derivative becomes very small, hence 

the related induced veE is not easily detectable. Regarding tdoff- 

and toff-based TSEPs, both linearity and sensitivity are high. 

Besides, the sensitivity under high current conditions is a bit 

lower than that at low current. However, their sensitivity is 

strongly influenced by the junction temperature at fixed bus 

voltage. For example, in high temperature region such as 

125 °C, the sensitivity is higher than that in low temperature 

region. On the other hand, tdon-based TSEP is characterized by 

fixed sensitivity in a wide Tj range. Concerning tvf- and 

ton-based methods, both of them have high linearity but lower 

sensitivity. It is worth noting that tvf and ton-based TSEP 

methods are also characterized by the approximate fixed 

sensitivity, like tdon-based TSEP. The medium and approximate 

fixed sensitivity make tdon, tvf and ton-based TSEP methods 

practical and easy to implement. 
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(a) Turn-off delay time                     (b) Current fall time 

  
(c) Turn-off time                            (d) Turn-on delay time 

  
(e) Voltage fall time                        (f) Turn-on time 

Fig. 9.  Comparisons of six Time-based TSEPs under different load 
currents at fixed Vdc=1800 V. (a) turn-off delay time tdoff; (b) current fall 
time tif; (c) turn-off time toff; (d) turn-on delay time tdon; (e) voltage fall time 
tvf; (f) turn-on time ton. 

TABLE III 
SENSITIVITY COMPARISON AMONG TIME-BASED TSEPs 

Identifier Key Parameters IL impact Maximum sensitivity 

tdoff Δt1+Δt2+Δt3 Strong 8 ns/℃ 

toff Δt1+Δt2+Δt3+Δt4 Strong 9 ns/℃ 

tif Δt4 Not applicable Not applicable 

tdon Δt5+Δt6 No effect 2 ns/℃ 

tvf Δt7+Δt8 Weak 2.5 ns/℃ 

ton Δt5+Δt6+Δt7 Weak 4.5 ns/℃ 

(2) Experimental results and performance comparison of veE 

voltage-based d-TSEPs 

There are three voltage-based TSEPs: a) the veE peak value 

induced by the maximum turn-off dic/dt; b) the maximum 

turn-on dic/dt and c) the negative peak voltage during turn-on 

transition. In particular, the latter one is related to the maximum 

reverse recovery current of the diode, which can be usefully 

adopted for the diode Tj estimation. In Fig.10 (a) and (b) the 

induced veE waveforms at different IGBT junction temperatures 

are illustrated for the following conditions: Vdc=1800 V and 

IL=700 A. The diode temperature is purposely kept at Tj=25 °C, 

to make measurements independent from it. In Fig.10 (a), the 

negative peak amplitude of veE shows a negative dependence on 

IGBT Tj. The induced negative peak veE is increasing from -6.2 

V at 25 °C to -4.9 V at 125 °C, whose sensitivity is +13 mV/°C. 

A basic explanation is that the carrier lifetime increases with 

temperature, therefore the switching speed becomes lower at 

increasing Tj. The turn-on veE waveforms at different 

temperatures are depicted in Fig.10 (b). The positive peak veE 

also shows a negative trend. The induced peak value of veE is 

decreasing from 8 V at 25 °C to 5.5 V at 125 °C. The calculated 

sensitivity is -25 mV/°C. 

 
(a) 

 
(b) 

Fig. 10.  Experimental veE waveforms under different IGBT Tj (Vdc=1800 
V, IL=700 A and diode Tj=25 °C). (a) Turn-off veE waveform comparison. 
(b) Turn-on veE waveform comparison. 

In voltage source converters, the reverse recovery current 

did/dt is related to the switching speed of the IGBT, hence the 

IGBT junction temperature has been kept at Tj=25 °C. Fig.11 

(a) shows the turn-on veE waveforms at different diode junction 

temperatures ranging from 50 °C to 125 °C, for the same 

working conditions as before: Vdc=1800 V, IL=700 A. 

Accordingly, the temperature sensitivity is around +68 mV/°C. 

Because of the fixed IGBT Tj, the positive peak values of veE are 

the same, as they are related to the maximum turn-on dic/dt of 

IGBT, as discussed before. The negative peak value of veE 

decreases with diode Tj. In Fig.11 (b), the turn-on veE 

waveforms at different load currents under the working 

conditions of Vdc=1800 V, diode Tj=125 °C and IGBT Tj=25 °C 

have been reported. At increasing load currents, the negative 

peak amplitude decreases from 11.7 V to 8.9 V. 

 
(a) 

 
(b) 

Fig. 11.  Experimental veE waveforms comparison under different 
working conditions with fixed Vdc=1800 V. (a) Turn-off veE comparisons 
under different diode Tj. (b) Turn-on veE comparisons under different IL. 
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In Table IV, the sensitivity comparisons among the veE-based 

d-TSEPs under Vdc=1800 V and IL=700 A are listed. For the 

veE-based approach, the sensitivity ratio of the peak value is 

several tens of millivolts per degree (mV/°C). Moreover, the 

maximum turn-off dic/dt and did/dt exhibit positive sensitivity 

coefficient, while the maximum turn-on dic/dt shows the 

negative sensitivity coefficient. The effects of positive and 

negative sensitivity should be taken into account in the peak 

value detector design. 
TABLE IV 

SENSITIVITY COMPARISON AMONG VEE-BASED TSEPS 

Identifier 
Key 

Parameters 
Maximum 
Sensitivity 

dic/dt(max_off) veE(t4) +13 mV/°C  

dic/dt(max_on) veE(t9) -25 mV/°C 

did/dt(max) veE(t11) +68 mV/°C  

In [33], the dependence between diode Tj and the maximum 

recovery did/dt under different working conditions is analyzed 

in detail. An experimental mesh plot of the induced negative 

peak veE versus diode Tj and IL at two bus voltages, namely 

Vdc=1600 V and Vdc=1200 V is shown in Fig. 12 (a). It is worth 

to make a comparison of the presented method and the 

well-established method of forward voltage drop at high 

current VF [40]. The comparison between VF-based method and 

negative peak veE-based method on the same device is 

demonstrated in Fig.12 (b). On the one hand, the maximum 

sensitivity of negative peak veE-based method is about 40 times 

higher than the value of VF-based TSEP. Furthermore, the 

proposed method exhibits positive temperature coefficient, 

which is more convenient from the physical implementation 

point of view. On the other hand, VF-based TSEP is 

independent of Vdc. 

 
(a) 

 
(b) 

Fig. 12.  Experimental results and comparison between VF-based 
method and veE_NP based method. (a) Mesh plot of negative peak veE at 
different working conditions [33]. (b) Sensitivity comparison between 
VF-based method and veE_NP-based method. 

(3) Charge-based d-TSEPs 

The turn-off induced veE waveforms at different Tj ranging 

from 25 °C to 125 °C at Vdc=1800 V and IL=700 A are depicted 

in Fig.13 (a). For the sake of clarity, though, they have not been 

superimposed. The swept-out charge during turn-off transition 

has been calculated with (5) and plotted together with a fitting 

curve in Fig.13 (b). At 25 °C, the charge is about 95 µC. As the 

junction temperature increases to 125 °C, the charge decreases 

to 75 µC. Hence, the sensitivity for IGBT QrrI in Fig. 13(b) is 

around -0.2 µC/°C. According to theory of semiconductor 

physics, the stored charge increases with Tj due to the increase 

in carrier lifetime [41]. However, because the switching speed 

becomes slower at increasing Tj, more stored charge 

recombines in the base region, ending up in a reduction in the 

swept-out charge. 

 
(a) 

 
(b) 

Fig. 13.  Turn-off induced veE waveforms at different IGBT Tj range from 
25°C to 125°C and calculated swept-out charge. (a) Turn-off veE 

waveform comparisons. (b) Calculated swept-out charge using 
veE-based approach. 

Regarding the diode related QrrD, the relations among the 

extracted charge during the reverse recovery falling, bus 

voltage, load current and junction temperature have been 

discussed and experimentally verified in [36]. For the same 

module Fuji-1MBI800UG-330, the maximum sensitivity for 

diode related QrrD is around -0.17 µC/°C at Vdc=1600 V, IL=500 

A. As a result, the sensitivity ratio of charge-based d-TSEPs is a 

few tenths of microcoulomb per degree (µC/°C) with the 

negative sensitivity coefficient. 

V. CHALLENGES AND PERSPECTIVES OF PROPOSED 

METHODS 

Since the switching characteristics depend on gate driver 

parameters, the proposed dynamic TSEPs are affected by the 

gate resistances. The experimental comparison between two 

different gate resistance combinations (1: Ron=2.4 Ω / Roff= 3.75 

Ω and 2: Ron= 6.8 Ω / Roff=6.8 Ω) at Vdc=1600 V, IL=500 A and 

Tj=25 °C are shown in Fig.14 (a) and (b). Because of the 

increased gate resistance, both the turn-on and turn-off 
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switching speeds get lower. Hence, the maximum turn-off 

dic/dt of combination 2 is lower than that of combination 1, as 

depicted in Fig.14 (a). At the same time, the turn-off time at 

higher gate resistance toff1 is longer than toff2. On the contrary, 

the current fall time at higher gate resistance is shorter than that 

of lower gate resistance. In Fig.14 (b), the turn-on veE waveform 

comparison is depicted. Due to the slow switching speed, the 

voltage-oriented TSEPs tend to lower the values. Besides, 

time-oriented TSEPs become larger at larger gate resistances. 

Generally speaking, the selection of gate resistance has an 

impact on the dynamic TSEPs. Since the power module and 

external circuit parameters are usually fixed after the hardware 

design, the gate driver parameters can be treated as fixed values 

for the assembled converters. As a consequence, the calibration 

process can be carried out after the determined circuit 

parameters. 

 
(a) 

 
(b) 

Fig. 14.  Experimental waveform comparisons of induced veE between 
different gate resistance combinations (Vdc=1600 V, IL=500 A, Tj=25 °C) 
(a) Ron=2.4 Ω / Roff=3.75 Ω. (b) Ron=6.8 Ω / Roff=6.8 Ω. 

In terms of generality, it is worth to point out that 

gate-related dynamic TSEPs only apply to active power devices. 

Compared with the proposed veE-based dynamic TSEP methods, 

they are not applicable to diodes. Indeed, there is no universal 

solution for particular IGBT modules. Since the operation Tj 

vary with working conditions, the most suitable TSEP method 

should be selected from the aforementioned TSEPs with 

different properties. Compared with the static TSEPs and 

published dynamic TSEPs without veE-based approaches, 

veE-based approach provides a unified evaluation system for 

various types of dynamic TSEPs. According to the 

classification of veE-based approach, the appropriate TSEP 

candidate can be reasonably selected for a given module. 

VI. A CASE STUDY FOR ON-LINE TJ ESTIMATION 

A. Measurement circuit for tdoff 

In this section, tdoff-based TSEP method is taken as a case 

study for the on-line Tj variation investigation. The block 

diagram of the tdoff measurement circuit and related circuit 

appearance are shown in Fig.15. The proposed tdoff 

measurement circuit is mainly composed of operational 

amplifiers (AM, TL072BCD), high-speed comparators (CM, 

LM393), inverting Schmitt triggers (INV, 74HC14D), latch 

unit (SN74HCT573AD) and exclusive-or gate (CD4070B). 

Besides, the supply voltages for operational amplifies are ±12V, 

and +5V for the comparators and logic circuits. 

 
(a) 

 
(b) 

Fig. 15.  (a) Turn-off delay time measurement circuit schematic. (b) 
Measurement circuit appearance. 

The key waveforms for the tdoff start point Sp capture are 

depicted in Fig.16 (a). Firstly, Sp pulse is generated from the 

turn-off gate voltage vge [42]. By means of the resistor voltage 

divider, one-third vge is fed to the comparator CM1 through the 

voltage follower AM1. Notably, to dampen oscillations at the 

beginning of turn-off related to the fast voltage transient, a filter 

capacitor C1 (18 pF) is inserted into the circuit. The filtered 

voltage vgea is then compared with the detection threshold levels 

Vref_ge (+4V). Finally, a positive Sp pulse is obtained via the 

inverting trigger INV1. 

Concerning the end point detection, the second veE voltage 

spike induced by dic/dt is used (see Fig.16 (b)). Firstly, to 

eliminate the signal interference, Zener diode D1 and resistor R1 

are used to bypass the first voltage spike of veE. Another use of 

+12 V breakdown voltage for Zener diode D1 is to protect the 

amplifier AM2. Then, the AM2 output vEea is compared with 

the threshold voltage Vref_Ee (+1 V). Then, through an inverter 

INV2, a negative pulse is generated. It is worth noting that 

INV2 output negative pulse length varies with the dic/dt 

duration ∆t4, which represents the collector current fall time. 

Considering the tdoff end point, only the first falling edge of 
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negative pulse is useful to determine Ep. In order to latch the 

first falling edge signal, the latch unit output signal (Q) is 

connected to the latch enable terminal (LE). As a result, the 

output low-voltage state can be latched and kept after the first 

falling edge signal, and this latched pulse represents tdoff end 

point. Finally, a positive pulse is generated by INV3, and this 

pulse is in accordance with the induced voltage vEe. Importantly, 

after the detection of the first falling edge signal, a reset signal 

is required to reset the latch unit for the next tdoff detection. 

 
(a) 

 
(b) 

Fig. 16.  Experimental tests of turn-off delay time measurement circuit. 
(a) Start point pulse detection for turn-off delay time. (b) Ending point 
pulse detection for turn-off delay time. 

As a result, by using an exclusive-or gate, a positive pulse 

related to the turn-off delay time can be extracted. In Fig.17, the 

key turn-off waveforms and extracted tdoff pulse under double 

pulse test platform are depicted. The extracted tdoff is around 

2.94 µs, which is consistent with the test results plotted in Fig.9 

(a). In practice, the pulse length represents the turn-off delay 

time and can be applied to the look-up table. 

 
Fig. 17.  Experimental turn-off waveforms and extracted turn-off delay 
time pulse (Fuji 1MBI800UG-330, Vdc=1800 V, IL=700 A and Tj=25 °C). 

B. Online Tj variation estimation 

In order to verify the effectiveness of the proposed d-TSEP 

method through inductance LeE for the online Tj estimation, an 

H-bridge based high-power converter has been used to 

investigate the high-power IGBT modules rated at 1700 

V/1000 A. The appearance of H-bridge converter is shown in 

Fig.18. 

 
Fig. 18.  Appearance of high-power H-bridge converter. 

Accordingly, the associated experimental parameters and the 

platform specifications are given in Table V. The IGBT 

modules under test are from Infineon (FF1000R17IE4) [29]. 

Being the module under test used in wind power converters, the 

bus voltage Vbus is controlled at around 1050 V level [43]. 

Hence, in this study, the bus voltage is fixed at 1050 V by 

means of a high voltage regulator. At the beginning of tests, a 

calibration for the given IGBT modules should be carried out 

on the platform. Then, the turn-off delay time tdoff using induced 

veE is selected as a d-TSEP candidate for the following on-line 

Tj estimation. During the turn-off transition, a measurable 

voltage veE on parasitic inductance LeE is induced by the 

variation of gate and collector current. According to the 

definition of turn-off delay time tdoff, the 

temperature-dependent tdoff can be extracted by the 

synchronous voltage spike on veE. 

TABLE V 

SPECIFICATIONS AND PLATFORM TEST CONDITIONS 

Parameters Value Parameters Value 

IGBT modules FF1000R17IE4 
Gate driver 
Voltage vge 

+15V 
on/-10V off 

Bus voltage Vdc ≈ 1050V 
Gate resistances 

Ron/ Roff 
2 Ω/ 3.75 Ω 

Bus 
capacitance 

12 mF 
Switch 

frequency 
2.5 kHz 

Lload 320 µH 
Fundamental 

frequency 
50 Hz 

Rth_IGBT 10.5 °C/kW 
Initial case 
temperature 

50 °C 

In terms of tdoff-based TSEP, a mesh plot is built on the basis 

of calibration test and depicted in Fig.19. The experimental 

results are consistent with the theoretical analysis in [23]. By 

taking the advantage of the good linear dependency between 

tdoff and the working conditions, the real-time IGBT Tj can be 

estimated by the fitting polynomial 
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              (13). 

In Tj estimation procedure, the instantaneous veE is needed to 

be recorded along with the load current. In this work, the 

instantaneous veE is recorded by means of oscilloscope 

(Tektronix MDO3034) and the related tdoff is extracted in 

MATLAB. Then, the real-time Tj variation can be calculated by 

(13). 

 
Fig. 19.  Mesh plot of tdoff-based TSEP at different load current and 

junction temperature under Vdc≈ 1050V. 

Before the test, IGBT modules are heated and maintained at 

50 °C to emulate the maximum ambient temperature and then 

the converter is run for 2 seconds. The collector voltage vce of 

the lower IGBT in the inverter leg and the related output load 

current IL for the last two sinusoidal periods are demonstrated 

in Fig.20 (a).The root-mean-square of load current IL is around 

533 A. The turn-off peak collector voltage vce is proportional to 

the load current. The maximum turn-off peak vce reaches 1250V 

due to the parasitic loop inductances. Correspondingly, the 

extracted tdoff and the estimated Tj variations are estimated by 

the mesh plot and depicted in Fig.20 (b). The maximum Tj 

reaches 120 °C while the average junction temperature is 

around 100 °C. The estimated Tj variation is in the range of 79 

°C to 120 °C (∆Tj≈ 41°C). More importantly, the estimated Tj 

variation is consistent with the output sinusoidal load current. 

Additionally, the simulated junction temperature variation 

curve in PLECS environment is also plotted in Fig.20 (b). With 

the aid of 1-D thermal model [43], the relationship between the 

normal operation and junction temperature of inspected IGBT 

modules can be simulated. In this work, the thermal impedance 

parameters and conduction power losses are collected from the 

IGBT datasheet. Moreover, the practical switching power 

losses are measured by the calibration tests. According to the 

simulated Tj variation, the simulation delta Tj is around 39°C, 

which is in consistent with the results from tdoff-based method. 

It is worth noting that there is temperature difference between 

estimation and simulation results after the peak Tj. Besides, 

since there is no switching operation during the cooling stage, 

the practical IGBT Tj variation cannot be obtained by mean of 

tdoff-based method. Finally, the sensitivity and accuracy of 

TSEP-based methods will be carried out in the future work. 

 
(a) 

 
(b) 

Fig. 20.  (a) Key experimental waveforms for on-line Tj estimation in 
condition of IL≈ 533 A, power factor PF=-1 and fs=2.5 kHz. (b) On-line 
extracted turn-off delay time variation and related estimated Tj 
variations. 

VII. CONCLUSION 

This paper has presented an extraction approach of junction 

temperature for high-power IGBT modules. By means of the 

inherent stray inductance LeE, a family of d-TSEP candidates 

has been extracted and most of them have been proved to be 

profitably exploited for on-line junction temperature extraction. 

The advantage of proposed veE-based extraction approach is 

that it is intrinsically noninvasive. Another relevant advantage 

is that measurements on the high-voltage side can be performed 

at the low-voltage side, which is beneficial both from the cost 

and simplicity standpoints. The proposed d-TSEP based 

methods can be applied to IGBT modules and diodes by means 

of look-up tables or linear functions. A high-power IGBT 

double pulse test platform has been built to verify the 

effectiveness of the proposed d-TSEP extraction methods. As a 

case-study, with the aid of an H-bridge high-power converter, 

the on-line Tj variation has been extracted and estimated by the 

turn-off delay based d-TSEP method. Experimental results 

confirmed that the found d-TSEP based methods are very 

promising in non-invasive junction temperature estimation for 

IGBTs and diodes. 
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