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 

Abstract—From the perspective of industrial production, the 

design and optimization of electrical machines are application 

oriented, including maximizing production quality and 

minimizing production cost in terms of different manufacturing 

conditions. To achieve these goals, this work presents an efficient 

application-oriented robust design optimization method for 

permanent magnet (PM) motors. The method consists of two main 

contributions. The first one is the development of an overall 

optimization strategy including qualitative and quantitative 

analyses to provide possible options for an application. 

Multi-physics analysis, uncertainty analysis, production cost and 

optimization models need to be investigated. The second one 

proposes a multilevel optimization method for the 

high-dimensional robust design problem of each option. To 

illustrate the advantages of the proposed method, PM motors with 

soft magnetic composite cores are investigated for domestic 

applications. The design optimization is conducted in terms of 

three motor options and three batch production volumes for both 

conventional deterministic and robust approaches, and it consists 

of eighteen high-dimensional multi-physics optimization problems 

in total. Main optimization results are presented and discussed. 

Experimental and simulation results are presented to validate the 

effectiveness of the proposed models and methods. 

Index Terms— Application-oriented design optimization, 

permanent magnet motors, production cost, robust optimization.  

I. INTRODUCTION 

LECTRICAL machines are the heart in many modern

appliances, as well as industry equipment and systems. In a 

global market and in the context of sustainability, they must 

fulfill various requirements physically and technologically. To 

satisfy these requirements, optimization is of great significance 

for electrical machine design, and many optimization methods 

have been developed. Optimization methods mainly include (i) 

direct optimization of analysis models, such as analytical model, 

magnetic equivalent circuit model and finite element model 

(FEM), and (ii) indirect optimization of approximation models 

(surrogate models of FEM), by using different kinds of 

optimization algorithms including intelligent algorithms. Some 

popular intelligent algorithms are genetic algorithm (GA), 

differential evolution algorithm (DEA) and particle swarm 

optimization (PSO) algorithm. Surrogate models mainly 

include the parametric models, such as response surface model 

(RSM) and radial basis function (RBF) model, semi-parametric 

model, e.g., Kriging model, and non-parametric models, such 

as artificial neural network model and support vector machine 

model [1]-[8].  

On the other hand, with the fast development of CAD/CAE 

software, new and advanced materials, flexible machinery 

technology and intelligent optimization methods, it is possible 

to design and manufacture a motor to meet the special 

requirements of an application. Thus, the design optimization is 

application oriented. This approach is of great significance for 

both designers and manufacturers. However, there are three 

main challenges for the efficient implementation of this 

approach to electrical machines, which can be illustrated in 

terms of the following three perspectives. 

Firstly, from the perspective of design, to obtain a good 

motor to meet the requirements, the most possible options 

and/or combinations including motor types, topologies, 

materials and dimensions should be investigated in the design 

optimization process. This idea is not novel but the key is the 

efficiency, i.e., how to handle the huge computation burden 

required in the implementation as many options should be 

optimized and each one is usually a high-dimensional 

multi-physics problem [1], [9], [10]. 

Secondly, from the point of view of manufacturing, the final 

quality of a motor in production depends highly on the 

manufacturing technology employed and can be greatly 

affected by essential manufacturing tolerances and unavoidable 

material and assembling uncertainties [11]-[16]. Table I lists 

some general factors for permanent magnet (PM) motors. The 

effects of manufacturing tolerances and assembly variations 

were studied in reducing the cogging torque and harmonics of 

PM motors recently [13], [16].  

Fig. 1 shows an example to address the issue why 

manufacturing quality is required to be investigated in the 

design optimization stage of motors. As shown, a 

multi-objective optimization is proposed aiming for low 

material cost, high output power for a given volume (power 

density), and high manufacturing quality in terms of sigma 

level of a PM transverse flux motor. The sigma (σ) rating has 

been commonly used by industry to describe the maturity of a 

manufacturing process to indicate its yield or the percentage of 

defect-free products it creates. For the long-term quality 

control, a 6σ process is actually one in which 99.99966% of all 

opportunities are expected to be free of defects, i.e. 3.4 defects 

per million opportunities (DPMO). As a comparison, 4σ is 

equivalent to 6,200 DPMO [1], [17].  

The motor is firstly optimized with the material cost and 

output power as the objectives, and the optimal Pareto solutions 

are plotted as the black circles on the 2D plane of material cost 

versus output power. The motor is then optimized again with 

the manufacturing quality as the third objective with the 

investigation of manufacturing tolerances of PM and winding. 
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The resultant optimal Pareto solutions are plotted as red squares 

in the 3D space with the green points as the projections in the 

2D plane of material cost versus manufacturing quality. As 

shown, the optimal Pareto solutions can be divided into two 

subsets: low and high-quality optimums. Aggressive designs of 

high output power (above 750 W in this case) will result in low 

manufacturing quality with 4σ at the best. In most cases, the 

designs of moderate material cost and output power (around 

AUD32 and 730–750 W in this case) would be chosen. As 

shown by the cylinder in Fig. 1, some of the moderate designs 

have low manufacturing quality (less than 4σ). Only those on 

the top end of cylinder meet the target of all three objectives 

[17]. Thus, an aggressively optimized design obtained by the 

deterministic optimization (conventional method, without 

consideration of manufacturing uncertainties) may be difficult 

to mass produce and it may end up with high manufacturing 

cost and/or high rejection rates. Therefore, the robust approach 

is necessary for design optimization of motors from the 

perspective of industrial applications [1], [17].  
 

TABLE I 
MANUFACTURING AND MATERIAL VARIATIONS IN PM MOTORS 

Description Ideal Variation 

Magnet dimension Nominal Nominal ± ΔTol 

Magnet strength Nominal Nominal ± 5% 

Magnet disposition 0 deg 1.0 deg 

Magnetization offset 0 deg 1.0 deg 

Skew error Nominal Nominal + 0.67 deg 

Copper diameter Nominal Nominal ± ΔTol 

Eccentricity 0 mm 0.35 mm 

ΔTol stands for manufacturing tolerance 
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Fig. 1. Illustration of design optimization for 6σ manufacturing quality. 

 

Thirdly, from the perspective of market, the production cost 

is a critical issue for successful design and application of an 

electrical machine. The manufacturing or production cost 

estimation has long been a difficult task for electric machine 

designers. For the practical production, different manufacturers 

have different manufacturing facilities and production volumes, 

which would result in different design optimums [18]. 

Therefore, the robust design optimization should be 

implemented separately in terms of production volumes/ 

manufacturers, and this is a new problem. Thus, not only the 

motor performance but also the production cost and quality are 

very important for both manufacturers and customers.  

To attempt these challenges, this work presents an effort to 

develop an application-oriented robust design optimization 

method for electrical machines with the focus on PM motors. It 

is organized as follows. Section II presents the proposed 

method. Section III describes an integrated product and process 

development model for estimation of production cost of PM 

motors. Section IV introduces the multilevel robust optimiz 

ation method. Section V presents an example study for design 

optimization of PM motors with soft magnetic composite 

(SMC) cores for domestic applications with detailed steps and 

results. Experimental and simulation results are provided in 

Section VI, followed by the conclusion section. 

II. APPLICATION-ORIENTED ROBUST DESIGN OPTIMIZATION 

METHOD FOR PM MOTORS 

Fig. 2 shows a framework for the proposed application- 

oriented robust design optimization method for PM motors. It 

mainly includes the following five steps. 

Step 1: Define the specifications or requirements of the 

designed motors in terms of specific applications, such as 

refrigerators and hybrid electric vehicles (HEVs), including the 

rated speed, output power and volume. Meanwhile, 

manufacturing quality target including reliability should be 

determined in this step. 

Step 2: Determine the potential design options, such as motor 

types, topologies and materials. Even when the motor type is 

chosen, there could be various options.  

The electric vehicles, either battery powered or plug-in 

HEVs, are good examples, which are attracting great attentions 

from governments and public around the world because of the 

worldwide energy sustainability and environment protection. 

To meet the challenging requirements, many kinds of PM 

motors have been investigated to improve the drive 

performance of EVs, such as interior PM motor and 

flux-switching PM machines (FSPMMs). Taking the FSPMM 

as a further investigation, many topologies can be selected as 

design options, such as radially and axially laminated steel 

sheets for the stator core, various winding configurations, and 

different combinations of stator/rotor poles [19]-[21].  

Another example could be the PM-SMC motors. SMC 

material is a relatively new soft magnetic material that is 

composed of surface electrically insulated iron powder 

particles, which results in low eddy current loss, and magnetic 

and thermal isotropy, making PM-SMC motors good 

candidates for many applications [22]-[28]. In terms of 

domestic applications, such as compressor drives in 

refrigerators and air-conditioners, some popular design options 

are transverse flux machine (TFM), claw pole machine (CPM) 

and axial flux machine [1], [24], [27]-[30].  

As discussed, different materials can be employed to design 

the stator cores of PM motors, such as silicon steel sheet and 

SMCs. For PMs, the rare-earth and ferrite magnets are two 

popular options. All these factors are directly related to the 

output performance and safe operation of the designed 

machines, such as torque and temperature rise. 

Step 3: Establish initial design for each option. This design 

should consist of multi-disciplinary analysis model, production 

cost estimation model and robust analysis. This step also 
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includes the determination of initial dimension and 

performance evaluation for each motor option, such as torque, 

efficiency and temperature rise. The analysis model can be 

analytical model or FEM.  

It should be noted that the manufacturing method and 

production process must be investigated in this step. For 

example, by using the powder metallurgical technology, the 

PM motors with SMC cores can be manufactured in a 

convenient and economical way. By using this manufacturing 

method, motors with SMC cores have very low material waste 

(less than 5%) during the manufacturing process. It also has the 

merits of the net shape, smooth surface and good tolerances for 

the electrical machines [26]. The robust analysis includes the 

determination of material variations and manufacturing 

tolerances or distribution parameters. Then its optimization 

model can be defined by using the design for six sigma (DFSS) 

technique. 

Step 4: Develop a uniform optimization model for all options 

and optimize each option to acquire its optimal design 

parameters and performance by using the optimization methods, 

such as GA, PSO, and RSM and Kriging model. It should be 

noted that, multilevel optimization strategy can be employed 

here to improve the optimization efficiency for this kind of 

high-dimensional design problems [1], [31]. 

Step 5: Compare the optimal results of all options, and output 

the best one as the final optimal solution for that specific 

application. 
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Fig. 2. Flowchart of application oriented robust design optimization method. 

III. INTEGRATED PRODUCT AND PROCESS DEVELOPMENT 

MODEL FOR PM MOTORS 

For different production volumes, the production cost of the 

same design may vary significantly, since it can be influenced 

by production technologies and management. Thus, it is hard to 

conclude that one optimal design is suitable for various 

production conditions. And it is of great significance if the 

production cost rather than material cost can be considered 

when handling with electrical machine design optimization. To 

achieve an estimation method for the production cost of PM 

motors, an integrated product and process development model 

is introduced in this section and will be employed in the 

following design optimization [18]. The proposed model 

mainly includes the following two aspects for PM motors. 

A. Determination of the process chain 

Generally, the process chain consists of housing, stacks/disks, 

rotor, stator, shaft and final assembly for production of PM 

motors. Each step in the chain may include several tasks, for 

example, winding and slot isolation are normal tasks for a stator 

construction. In some cases, PMs are placed in the stator (e.g., 

FSPMM), and then magnetizing the PMs is a critical task. For 

the final assembly, normal tasks are the adjustment, sensor 

placement and joining of rotor, stator and housing. Fig. 3 shows 

a typical process chain of PM-SMC motors. As shown, there 

are four major tasks in the stator step as the stator is made of 

SMC material and this kind of material has new manufacturing 

method. The manufacturing of shaft and housing is based on the 

industrially mastered standard procedures. 
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Fig. 3.  Illustration of process chain for PM-SMC motor production. 

B. Production cost model/function 

Production cost is normally composed of fixed costs (such as 

building and depreciation for machines) and variable costs 

(such as wages, energy, material and maintenance). In general, 

small volumes imply low fixed costs (produced on machinery 

with low investment cost), and higher variable costs (higher 

share of manual work). For high volumes, the production costs 

can be decreased by using expensive machinery that allows 

automation and thus decreasing the variable costs. Hence, 

different technologies or machine sizes offer diverse 

production volumes [18], [32]. 

Theoretically, the production cost can be expressed as a 

function of production volume (pv) and the design parameters 

(x) including material and dimension. It mainly consists of five 

parts, machinery cost, material cost, buying-parts cost, capital 

cost and personnel cost. The material cost can be calculated by  

           ,matcC pv Mu Mp pv Mu sr sp pv    x x x x
  

(1) 

where Mu is the material usage, Mp is the material price, sr is 

the scrap portion, and sp the price for scrap part. For the buying 

parts, its cost can be estimated by  

   
1

, ,
np

partc p p

i

C pv P pv N


x x                     (2) 

where Pp and Np are the price and number of the buying parts. 

Estimation models/methods of other parts are available in some 

research works or industrial projects/reports [32].  
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IV. MULTILEVEL ROBUST DESIGN OPTIMIZATION METHOD  

   A typical optimization model with respect to an objective f(x) 

and m constraints g(x) has the form as 

,                            (3) 

where xl and xu are the boundaries of the design parameter x.  

   This model can be taken as a deterministic model as x is 

deterministic and does not contain any manufacturing and 

material uncertainties as shown in Table I. To solve this 

problem, (3) can be converted into a robust design optimization 

model based on a technique called design for Six-Sigma 

(DFSS). In the DFSS, all design parameters (including material 

and dimension) are assumed to follow normal distributions 

with different means (μ) and standard deviations (σ), thus to 

reflect the manufacturing and material variations. From this 

prospective, the robust model has the from as 

   

   

min : [ , ]

s.t. : [ , ] 0,  1,...,

LSL USL

f f

f f

l u

f f

F

g i m

n n

n

 

 

  

 

 

   

  

x x x

x x

x x

x x
,                (4) 

where LSL and USL are the specification limits, and n is the 

sigma level, which is equivalent to a probability in terms of a 

standard normal distribution as shown in Table II. For example, 

4σ is equivalent to a reliability of 99.9937%, or 63 DPMO. It 

seems good enough for manufacturing. However, this is true 

only in terms of statistics or short-term quality control. For the 

long-term quality control, an 1.5σ shift in the mean has been 

observed by many enterprises. As a result, 4σ is equivalent to 

6,200 DPMO, which is quite large. Thus, 6σ has been adopted 

by many companies nowadays as it yields 3.4 DPMO only.  

   Meanwhile, to estimate μ and σ in (4), Monte Carlo analysis 

(MCA) is usually required. MCA is a classic statistical analysis 

technique for characterizing the uncertainty based on repeated 

random sampling. The sample size is usually big, for example, 

10,000, which will result in huge computation burden in the 

implementation of (4).  

   In general, there are two strategies for the optimization of the 

model (4), single-level and multilevel methods. Single-level 

method optimizes all parameters at the same time, resulting in 

huge computation cost. The multilevel robust optimization 

method as shown in Fig. 4 is introduced to overcome this 

problem. As shown, it consists of four main steps. 

   Step 1: Determination of the sigma level in terms of design 

requirements and available manufacturing conditions. 

   Step 2: Dividing the initial space into 3 subspaces (X1, X2 

and X3) according to the sensitivity of parameters.  

   Step 3: Optimizing subspaces sequentially. The parameters in 

the other two subspaces are fixed when the optimization is 

applied to one subspace. In the implementation, as the 

dimension of each subspace is much smaller than that of the 

initial design space, the approximation model, e.g., Kriging 

model, can be employed to improve the optimization efficiency 

[33]. This model can be used for MCA estimation. Therefore, 

the computation burden can be decreased greatly. The inputs 

for each level include fixed and optimization parameters, and 

their uncertainties. The outputs of each level mainly include 

motor performances and MCA data. Detailed steps can be 

found in the left hand side of Fig. 4. 

   Step 4: Updating process. If the optimized results do not 

satisfy requirements, update X2 and X3 and go to step 3 again 

until all requirements are met. 
 

TABLE II 
MANUFACTURING DPMO IN TERMS OF SIGMA LEVEL 

Sigma 

level 
 Percentage 

DPMO 

(short term) 

DPMO 

(long term) 

 1σ   68.26 317,400 697,700 

 2σ   95.46 45,400 308,733 

  3σ   99.73 2,700 66,803 

  4σ   99.9937 63 6,200 

  5σ   99.999943 0.57 233 

  6σ   99.9999998 0.002 3.4 
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Fig. 4.  Flowchart of the multilevel robust design optimization method. 

V. AN APPLICATION EXAMPLE FOR PM-SMC MOTORS 

A. Application requirements/specifications 

In this example, a PM-SMC motor is designed for a 

refrigerator with specifications as listed in Table III.  

B. Motor options 

Three motor topologies, CPM, TFM and axial flux machine 

have been widely discussed in the previous work. From a recent 

comparative study, the CPM and TFM have advantages over 

the axial flux one [27]. Thus, CPM and TFM will be 

investigated in this work. Table IV lists some design and 

performance parameters for CPM and TFM based on two 

prototypes developed in the previous work [1], [15]. As shown, 

CPM is better than TFM in terms of flux concentrating ability 

and PM usage. 

Moreover, the good flux concentrating ability of the CPM 

offers the possibility for replacing the rare-earth PM by ferrite 

PM. Compared with rare earth PM, ferrite PM usually has 

lower magnetic energy product and density, but its cost is much 

cheaper than the rare earth PM. Therefore, it is worthwhile to 

investigate the feasibility of ferrite CPM for the proposed 

application under its specific requirement. In total, three motor 

min :     ( )

s.t.       ( ) 0,  1,...,

            

i

l u

f

g i m 

 

x

x

x x x
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options are determined for the given application, and they are 

CPM with rare earth PM, CPM with ferrite PM and TFM with 

rare earth PM. Fig. 5 shows the 3D design structure and 

structural parameters for the CPM, which applies for both rare 

earth PM and ferrite PM options. Fig. 6 shows the 3D design 

structure and structural parameters for the TFM. 
 

TABLE III 
SPECIFICATIONS OF THE TARGET MOTOR 

Requirement Unit Value Requirement Unit Value 

Rated speed rpm 1800 Outer radius mm 55 

Rated power W 675 Axial length mm 100 

Rated efficiency % ≥80 Supply voltage V 230 

 
TABLE IV 

SEVERAL DESIGN AND PERFORMANCE PARAMETERS 

Parameter Unit CPM TFM 

Effective stator axial length mm 93 93 

Rotor outer radius mm 47 47 

Turns of coil - 75 125 

PM piece - 60 120 

Motor back EMF constant V/rpm 0.0271 0.0252 

Flux of one turn mWb 0.488 0.272 

Rated power W 500 640 

 

C. Initial designs with multi-physics analysis model, 

production model and robust analysis 

   (a) Multi-physics analysis model 

   Multi-physics analysis model of PM-SMC motors mainly 

includes electromagnetic, thermal and modal analyses, which 

has been discussed in the previous work. Fig. 7 shows an 

illustration of the magnetic field for the TFM. Due to the 3D 

flux nature, 3D FEM is required for the analysis and 

optimization of these SMC motors. Other models related to the 

thermal and model analyses can be found in [1]. Fig. 8 shows a 

3D thermal network model for the middle stack of the studied 

PM-SMC TFM. Rsy, Rsd, Rcu, Rst, Rg, Rpm, Rrt, Rry and Rsf  are 

equivalent thermal resistances of stator yoke, stator side disk, 

coils, stator teeth, air gap, PMs, rotor radial part, rotor axial part 

and shaft, respectively. The heat sources in this model include 

the stator core loss (PFes1), rotor core loss (PFer1), copper loss 

(Pcu1), and mechanical loss (Pmech1) [30]. 

(b) Production cost estimation model 

   As discussed above, the production cost is determined by the 

design parameters and the manufacturing processes under the 

production condition for specific production volume. The 

process chain of PM-SMC motors can be derived with the 

structure as shown in Fig. 2. For example, Fig. 9 shows the 

process chain for the TFM with rare earth PM. To produce this 

motor, special considerations should be given to the SMC stator 

as the molding technique is required. Three cost parts are 

investigated in this work for PM-SMC motors, which are the 

machinery, material and buying-parts costs. Based on previous 

experience, SMC core is critical for the motor performance and 

production cost as it can be manufactured by molding 

technology instead of lamination stacking. Thus, special efforts 

are provided for SMC core in this part.  

   Fig. 10 shows the manufacturing cost and productivity for 

SMC cores. As shown, the cost is directly proportional to the 

press size (press force) while the productivity is inversely 

proportional to that. For example, an 100-ton press can deliver 

500 SMC core disks per hour with cost AUD100 (AUD 

0.2/disk); while a 500-ton press can only produce 100 core 

disks per hour with cost AUD500 (AUD5/disk). This is a big 

difference in mass production. Meanwhile, the press size with 

the design parameters also determines the core density, which 

influences the B-H characteristic (see Fig. 13) as well as motor 

performance. For the other parts of SMC motor, the 

manufacturing process is normal. Fig. 11 shows the material 

price and assembly costs in terms of three production volumes, 

where SV, MV and LV stand for small volume (3,000 

motors/year), medium volume (30,000 motors/year), and large 

volume (150,000 motors/year), respectively. These data will be 

used in the following optimization.  

(c) Robust analysis 

   For the PM-SMC motors, the robust analysis includes the 

variation analysis of both structural and material parameters. 

SMC core density and PM property and their variations affect 

the performance of the PM-SMC motors significantly. As 

examples, Fig. 12 shows an example of the pressed SMC core 

disk by a mold. Fig. 13(a) depicts the measured core densities 

of 18 SMC cores used for heat treatment analysis generated by 

orthogonal experimental design. Obviously, there are big 

variations, which will result in big differences in their B-H 

curves according to the relationship between core density and 

magnetic characteristics as shown in Fig. 13(b).  

For PMs, the manufacturing quality of PM is crucial to the 

performance of PM motors [12]-[14]. Among several PM 

property parameters, the remanent flux density (Br) and 

dimension affect the motor performance significantly. Several 

batches of PMs in terms of different rates (such as N30M, 

N38M and N50M) have been measured in the experiments. As 

an example, Fig. 14 shows the measured distribution of Br and 

thickness (magnetization direction) of more than 100 pieces of 

N38M randomly selected from a batch. Big variations can be 

found for both cases, which will result in big performance 

variations. The obtained means and standard deviations will be 

employed to develop the robust optimization model. 
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Fig. 5.  3D design structure and parameters of the CPM. 
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Fig. 6.  3D design structure and parameters of the TFM. 
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Fig. 7. FEM analysis region (left) and magnetic field distribution (Unit: T) 

 

 

Fig. 8.  3D thermal network model of the PM TFM with SMC core. 
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Fig. 9.  Process chain of PM TFM with SMC. 

 
Fig. 10.  Manufacturing cost and productivity for SMC cores. 

 

 
Fig. 11.  Assembly (left) and material (right) cost for SMC motors.  
 

        
Fig. 12.  A pressed SMC core disk (left) and the employed mold (right).  

 

 
       (a)                                                (b) 

Fig. 13.  (a) SMC core density variation, (b) B-H curves for cores. 

 

  
Fig. 14. Measured remanence and thickness distributions of a batch of PMs 

D. Optimization models and methods 

The optimization objectives are to minimize the product cost 

and maximize the efficiency (η), while keeping the basic 

requirement. Sixteen parameters as listed in Table V for CPM 

(14 parameters for TFM) are included in the optimization. The 

deterministic optimization model can be defined as 

1 2

3 4

5

min : ( ) / /
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               (5) 

where subscript initial stands for the values obtained from the 

initial design as shown in Table V. Pout and sf are the output 

power and slot fill factor, respectively, Vm and Vspec are the 

optimized volume and that given in the specification. Tcoil is 

temperature rise in the winding, and 3D thermal network model 

is used for its calculation. Then for the robust optimization, the 

model has the form 
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TABLE V 
INITIAL DESIGNS OF THE TWO CPMS WITH NDFEB AND FERRITE PMS 

Par.  Description Unit NdFeB Ferrite 

 Lsy   Length of stator yoke mm 12 13 

Lsp Length of stator plate mm 10  13 

  Lrot   Length of tooth root mm 5 5 

  Lhd   Length of tooth head mm 5 5 

  Lgap   Length of air gap mm 1 1 

Lpm Length of PM mm 3 6 

Wst Tooth circumferential width mm 10 10 

Wpm PM circumferential width deg. 12 14 

Hsy Height of stator yoke mm 31 31 

Hsp Height of stator plate mm 8 9 

Hst Height of tooth mm 14 15.7 

Hpm Height of PM mm 8 24 

ρ Core density g/cm3 7.32 7.32 

Br Remanence T 1.15 0.4 

D  Diameter of copper wire mm 1.1 1.1 

N Turns of coil - 70 85 

 

min : (x)

(x) 6 (x) 0,  1,...,5
. .

6 6 , 1,...,16

i i

j j j

f

g g

lj x x uj x

i
s t

x x j



 

  

  


    

            (6) 

To compare the product’s reliability by using different 

design approaches, a criterion called as probability of failure 

(POF) has been used in many works. Assuming that all 

constraints in (5) or (6) are independent events, and then 

according to the Multiplication Theorem of Probability, the 

POF of the motor has the form as  

1
POF 1 ( 0)

m

ii
P g


   .                         (7) 

For the robust optimization of (6), the multilevel 

optimization method shown in Section IV is employed. Taking 

the motor option of CPM with ferrite PMs under production 

option of small volume as an example, the main robust 

optimization steps are briefed as follows.  

    Step 1: Conduct local sensitivity analysis to obtain the 

sensitivity values for all parameters as shown in Fig. 5. Table 

VI lists the analysis data. As shown, (ρ, Lpm, Hsy, Lsp, Lsy) are 

highly sensitive to the objective, so they are grouped into X1. 

Similarly, (Wpm, Hpm, Wst, Lhd, Br) can be placed into group X2 

based on their sensitivities. The others will be grouped into X3. 

Step 2: Apply multilevel optimization method. The detailed 

optimization flowchart can be seen in Fig. 4. In each level, for 

example, X1, Kriging surrogate model will be constructed 

based on some FEM samples first. Then, the samples in MCA 

are randomly generated by assuming that each parameter 

follows a normal distribution with mean as the initial/optimal 

value and standard deviation as the 1/3 of its manufacturing 

tolerance or the maximum material diversity. Finally, DEA is 

applied to optimize the obtained Kriging model. The μ and σ 

values are estimated based on the Kriging model as well.  

Step 3: Estimate the motor performance and POF based on 

the MCA analysis for the optimal results obtained in Step 2. 

E. Optimization results and comparison 

Tables VI to X list the optimization results for the three 

motor options in terms of two optimization approaches 

(deterministic and robust) and three production volumes, SV, 

MV and LV, respectively. In the tables, Rm and Lm stand for the 

outer radius and axial length of the optimized motor, which can 

determine the motor volume. The results can be compared in 

terms of the following three aspects.  

   (1) Sensitivity analysis data in terms of production volumes 

   Conventional method does not include production cost and 

conditions in the sensitivity analysis. In this work, it is found 

that the sensitivity values and order of the design parameters 

highly depend on the production conditions. As an example, 

Table VI lists the sensitivity order of design parameters in X1 

(highly significant factor subspace) and X2 (significant factor 

subspace) for the CPM with ferrite PM. Compared with the 

conventional method, the sensitivity of each parameter 

(material or dimension) is not fixed but varies under different 

production volumes, because the production costs assigned to 

these design parameters are different.  

(2) Comparison of performance and cost for all optimal 

motor designs and the initial designs from Tables VII-IX 

Firstly, for the motor type, CPMs with both rare-earth and 

ferrite PMs are better than TFM as they have better 

performance (higher Pout and η) and lower production cost. 

Secondly, for the CPM, compared with ferrite PM CPM, the 

rare-earth CPM has higher power density (power/volume) but 

higher production cost. Thus, the ferrite PM CPM has the 

smallest production cost among these three options while the 

rare-earth PM CPM has the highest power density for all 

production volumes. 

Thirdly, compared to the initial designs, the optimal designs 

for all motor options can provide better performance. For 

examples, Figs. 15 and 16 show the cost breakdowns of the 

ferrite CPM under three production volumes with initial and 

robust optimal designs, respectively. As shown, the cost has 

been decreased by 21.50% for large volume, 20.50% for 

medium volume and 20.84% for small volume productions, 

with an average of around 20%. This is of great significance for 

industrial manufacturing and production.  

(3) Comparison of sigma levels and POFs for deterministic 

and robust optimization approaches. 

After optimization and MCA, the POFs and sigma levels for 

all constraints and motors can be obtained and compared. As an 

example, Table X lists the probability and sigma levels for all 

constraints and whole CPM with ferrite magnet with optimal 

designs from deterministic and robust approaches. As shown, 

the POFs of optimal deterministic design are higher than those 

of optimal robust designs. The sigma levels of some constraints 

are even less than 1 for deterministic approach. These are not 

acceptable in terms of industrial applications. There are several 

reasons for this high POF, and two important ones are the 

temperature rise and output power. As shown, the first (output 

power) and last (temperature rise) constrains of deterministic 

approach are quite low, resulting in 40.78% POF for the motor 

in production. Figs. 17 and 18 show the distributions of 

temperature rise and output power for these two optimums, 

respectively. As shown, MCA samples (motor samples in 

production) of robust optimum meet all constraints, while 

deterministic optimum violates both constraints, i.e., the 

temperature rise exceeds the limit 75 ºC and the output power is 

lower than the specification of 675 W. Therefore, robust design 
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is very important for industry of electrical machines. 
 

TABLE VI 

SENSITIVITY ORDER OF PARAMETERS IN X1 AND X2 OF CPM WITH FERRITE 

Vol. 1 2 3 4 5 6 7 8 9 10 

SV ρ Lpm Hsy Lsp Lsy Wpm Hpm Wst Lhd Br 

MV ρ Lpm Wpm Hpm Lsp Lsy Hsy D Wst Lhd 

LV Lpm ρ Wpm Hpm Lsy Lsp D Hsy Wst Lhd 

 

 TABLE VII 
OPTIMIZATION RESULTS OF THE CPM WITH RARE EARTH PMS 

Par. Unit 
Deterministic Robust 

SV MV LV SV MV LV 

η    0.859  0.857  0.853  0.859  0.857  0.862 

Cost   AUD  40  29.5  23.2   49.2  36.6  29.5 

Pout W  679 677 675  737  738  734 

Tcoil ºC  74.40  74.75  74.50  72.1  72.5 72.7 

Rm mm 44.45 44.2 44.55 48.54 48.21 49.0 

Lm mm 89.22   88.95  92.22 89.94 92.46 90.6 

 

  TABLE VIII 
OPTIMIZATION RESULTS OF THE CPM WITH FERRITE PM 

Par. Unit 
Deterministic Robust 

SV MV LV SV MV LV 

η   0.850 0.858    0.851  0.854  0.847  0.854 

Cost   AUD 34.6 23.2   17.6 37.2  26.9   19.5 

Pout W 679 675 675 718 712 713 

Tcoil ºC 74.92 74.85 74.86 71.8 72.0 72.1 

Rm mm 49.05 49.76 49.64 53.54 53.75 52.26 

Lm mm 92.49  87.81  91.14  93.66  93.45 93.75 

 

TABLE IX 
OPTIMIZATION RESULTS OF TFM WITH RARE EARTH PMS 

Par. Unit 
Deterministic Robust 

SV MV LV SV MV LV 

η    0.817  0.818  0.818  0.814  0.813  0.812 

Cost   AUD  45.1 36.7  28.5   51.3  40.1  34 

Pout W  675 675 675  723  720  724 

Tcoil ºC  74.2  74.1  73.9  72.1  72.5 72.7 

Rm mm 44.38 44.22 44.15 47.04 46.77 47.78 

Lm mm 88.55   88.77  88.77 90.12 91.29  92.64  

 

TABLE X 

RELIABILITY (p) AND ROBUST LEVEL (σ) OF THE CPM IN LV CASE 

Constraint 
Deterministic Robust 

p σ p σ 

g1 0.6596 0.95 1 >6 

g2 -g4 1 >6 1 >6 

g5 0.8978 1.63 1 >6 

Motor POF 40.78% ~0.0% 

VI. VALIDATION OF OPTIMIZATION RESULTS 

Theoretically, it is a big challenge to validate the robust 

optimal results experimentally as the production environment 

should be developed, instead of laboratory prototype 

environment, for the mean, standard deviation and POF 

information. An alternative way is to validate all multi-physics 

analysis models and uncertainty data related to material 

diversity and manufacturing tolerances employed in the 

optimization. The optimal results should be reliable if all of 

these can be validated. 

 

 
Fig. 15.  Cost breakdown for ferrite PM CPM with initial design. 

 

 
Fig. 16.  Cost breakdown for ferrite PM CPM with robust optimal design. 

 

 
Fig. 17.  Distributions for temperature rise and output power for ferrite PM 

CPM with deterministic optimum for large scale production. 

 

 
Fig. 18.  Distributions for temperature rise and output power for ferrite PM 

CPM with robust optimum for large scale production. 
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Fig. 19.  Test platforms of a CPM (left) and a TFM (right) with SMC stators 

 

       
                                 (a)                                                       (b) 

Fig. 20.  Measured input, output powers and motor efficiency in terms of 

torques for (a) CPM, and (b) TFM for initial designs. 

 

Firstly, regarding the multi-physics analysis model of the 

investigated PM-SMC motors, the validation can be conducted 

in terms of five aspects, namely back-EMF, cogging torque, 

core loss, inductance and thermal analysis. 

Fig. 19 shows the two prototypes for CPM (rated 500 W) and 

TFM (rated 640 W) in experiments. Fig. 20 shows the 

measured efficiency, input and output powers for them. Figs. 

21-23 show the comparisons of back EMF, cogging torque and 

core loss for calculated and experimental results. As shown, 

good alignments are observed for back-EMF and cogging 

torque curves. As the core loss is critical for the performance of 

SMC motors, more details are presented below.  

For the accurate calculation of core loss in the PM-SMC 

motors, both alternating and rotational core losses should be 

included, due to the 3D nature of the magnetic fields in the 

PM-SMC motors. Fig. 23 (a) plots a 3D flux density locus (red) 

and its projections in different planes in a typical element in a 

stator tooth (point B in Fig. 7), showing that the flux density 

vector in the tooth is rotating elliptically in the 3D space. It is 

found that all the calculations are within 5% error as shown in 

Fig. 23(b). For example, at the rated speed of 1800 rpm (300 

Hz), the core loss for CPM prototype has been computed as 

59.2 W, which is very close to the measured value of 61.0 W. 

Secondly, Table XI compares several motor parameters, 

average flux and phase inductance (calculated by FEM), and 

temperature rise in winding (calculated by 3D thermal network 

model), with their measured values. Good alignments can be 

seen as well. Therefore, all models are of good accuracy and the 

optimization results should be reliable.  

   Thirdly, all the uncertainty data related to material diversity 

and manufacturing tolerances are obtained by experiments as 

well, such as the core density and PM characteristic data.  

   Therefore, all models and data used in the optimization have 

been validated by experiments. Consequently, the obtained 

optimization results should be reliable. 

   To have a further check of the optimal designs after 

optimization, Fig. 24 shows the back EMF and cogging torque 

curves for the optimal designs obtained from robust 

optimization in the case of large production volume of CPM 

with rare-earth (NdFeB) and ferrite PMs, respectively. As 

shown, good sine waves of EMF are observed and small 

cogging torque are obtained, particularly for the ferrite case. 

Finally, Fig. 24 shows the efficiency maps for those two 

optimal designed motors. As shown, the efficiency is relatively 

high for the region of rated speed at 1800 rev/min. 

 

 
Fig. 21.  Calculated and measured performances for the CPM, (a) back EMF, 

and (b) cogging torque. 

 

 
Fig. 22.  Calculated and measured performances for the TFM, (a) back EMF, 
and (b) cogging torque. 

 

 
Fig. 23.  3D flux density locus and core loss data for the SMC CPM.  

 

  TABLE XI 
MEASURED AND CALCULATED PARAMETERS FOR CPM AND TFM 

 

Parameter Unit 
CPM TFM 

Cal. Mea. Cal. Mea. 

Average flux mWb 0.487 0.488 0.280 0.272 

Phase inductance mH 5.35 5.78 6.68 6.53 

Temperature rise in coil ℃ 74 71 68 66 

 
 

 
Fig. 24.  (a) Cogging torque, and (b) back emf curves for the optimal CPM with 
Ferrite PM or NdFeB PM. 
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Fig. 25. Efficiency maps of CPMs with (a) NdFeB PM, (b) Ferrite PM. 

VII. CONCLUSION 

An application-oriented robust design optimization method 

is presented for PM motors to improve both motor performance 

and manufacturing quality, and to reduce cost in the production 

environment in this work. A design example with PM-SMC 

motors is presented to show the effectiveness of the proposed 

method. In the implementation, three motor options with 

different materials and manufacturing methods are investigated 

under three production volumes. Then nine deterministic and 

nine robust optimizations (with 14-16 optimization parameters) 

are conducted separately to provide a fair comparison. Due to 

the huge computation cost, a multilevel robust optimization 

method is applied to improve the optimization efficiency. As 

shown, the optimal results vary in terms of motor type and 

production volume. The proposed method will benefit 

designers and manufacturers for achieving the optimal motor 

performance, high production reliability as well as minimal 

production cost. The proposed method can be applied to other 

kinds of electrical machines as well. 
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