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Abstract—Hysteresis nonlinearity of piezoelectric 
actuators degrades the positioning accuracy of 
micro-/nano-positioning systems. To overcome this 
problem, an innovative hysteresis compensator based on 
least squares support vector machine (LSSVM) is 
proposed in this paper. First, the LSSVM hysteresis 
modeling is presented using Nonlinear Auto Regressive 
eXogenous (NARX) structure. To compensate for the 
hysteresis behavior, two feedforward control schemes 
according to different inputs of NARX model are proposed 
and analyzed separately. Then, a hybrid feedforward 
controller combining both the control schemes is put 
forward to revise the model input. To further improve the 
tracking performance, the hybrid feedforward control 
combined with the feedback control is realized. The 
comparative study reveals the superior tracking 
performance of feedforward-feedback control scheme over 
hybrid feedforward control or feedback control. Moreover, 
the hybrid feedforward-feedback control scheme is 
capable of tracking different testing waveforms with 
negligible errors, which confirms the effectiveness and 
generalization ability of the proposed approach.  

 
Index Terms—Feedforward-feedback, hysteresis 

compensation, piezoelectric actuator. 

 

I. INTRODUCTION 

iezoelectric actuators (PZAs) are widely used in 

micro-/nano-positioning systems due to the merits of small 

size, high positioning resolution, rapid response speed, and 

large driving force Error! Reference source not found., [2]. 

However, the inherent hysteresis of PZA can produce an 

open-loop positioning error as much as 10–15% of the motion 

range [3]. Therefore, the hysteresis of PZAs should be 

suppressed to improve the positioning precision and dynamic 

performance. 

Although electrical charge control can attenuate the 

hysteresis using linear relationship between the charge and 

displacement [4], [5], it is not practical due to the complexity of 

the implementation and the reduction in the operating range. 

Thus, the voltage driving control is widely adopted and the 

hysteresis modeling is the key point of this method.  

Since the characteristic of the piezoelectric hysteresis 

depends not only on the amplitude but also on the frequency of 

input voltage signals, traditional rate-independent hysteresis 

 
 

models could yield errors subject to dynamic inputs with 

different frequencies [6]–[12]. To characterize the 

rate-dependent hysteresis, some models were put forward, such 

as the improved Preisach model [13], [14], improved 

Prandtl–Ishlinskii model [15], [16], and time series similarity 

model [17]–[19]. However, these models have a lot of 

parameters to be determined, which complicate the modeling 

process. In contrast, the support vector machine (SVM), based 

on statistical theory and structural risk minimization principle 

[20], outperforms the artificial neural network (ANN) in terms 

of global optimization and generalization capability [21]–[23] 

and it shows good performance in hysteresis modeling [24], 

[25]. As an extension of SVM, the least squares support vector 

machine (LSSVM) overcomes the defect of slow training speed 

in SVM by solving a linear equation set rather than a quadratic 

optimization problem [26]. Also, LSSVM has fewer parameters 

to be tuned [27], which means it can achieve accurate 

regression more easily. The hyperparameters in LSSVM are 

usually optimized by intelligent optimization algorithms to 

improve the regression accuracy [28]–[30]. Particle swarm 

optimization (PSO), as one of intelligent optimization 

algorithms, is widely used in the field of parameters 

optimization because of its easy operation and excellent 

convergence ability [31], [32]. 

The feedforward control method with an inverse hysteresis 

model is an effective way for hysteresis compensation 

[33]–[35]. However, LSSVM can only model one-to-one 

mapping, whereas the hysteresis nonlinearity is a multivalued 

mapping. A practical way is to employ the Nonlinear Auto 

Regressive eXogenous (NARX) model, which represents an 

input-output recursive model [36]. NARX model is widely 

employed for nonlinear system identification [37]–[39], where 

the current output is predicted by the current and previous 

inputs and previous outputs. For the nonlinear system control, 

however, the previous desired outputs and the previous 

measured outputs can both be taken as the input of the NARX 

model. Some literatures take the previous desired outputs into 

the NARX model [25], [40], whereas it still needs more 

research to determine the optimal structure of the feedforward 

controller. 

In this paper, two feedforward control schemes based on 

different sources of NARX model inputs are proposed and 

analyzed separately. Then, a hybrid feedforward control 

scheme combining these two methods in a certain ratio is 

developed. And the ratio selection is discussed to achieve the 
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optimal positioning accuracy. To further suppress the tracking 

errors, the combination of hybrid feedforward control with 

feedback control is adopted. Finally, to assess the performance 

of the proposed control schemes, control experiments of a PZA 

are undertaken. The explicit comparative studies are conducted 

with the traditional PID feedback control to validate the 

effectiveness of the proposed compensators. 

The rest of this paper is organized as follows. Section Ⅱ 

provides a brief review of LSSVM and describes the 

hyperparameters optimization procedure based on PSO. 

Section Ⅲ presents the experiment results for hysteresis 

modeling. In section Ⅳ, controllers are proposed and verified 

for hysteresis compensation. Conclusions are finally provided 

in section Ⅴ. 

II. LSSVM AND PARAMETER OPTIMIZATION 

A. LSSVM for Hysteresis Modeling 

In order to convert the hysteresis multivalued mapping into 

an one-to-one mapping, the nonlinear regression model is 

established based on NARX model. That is 

  k k ky f  x  (1) 

with 

  1 1k k k k n k k mu u u y y   x  (2) 

where 
ku  and 

ky  denote the input voltage and output 

displacement of the system at time instance k, 
k  is the 

prediction error,  f   represents the nonlinear regression 

model, and m and n define the system orders. It is found that as 

the system orders increase, the training error gradually 

decreases, while the testing error first decreases and then 

increases [25] and the computational cost increases. To make a 

compromise, m and n are both set to 3. 

The LSSVM is employed to model the piezoelectric 

hysteresis and the model  f   takes the form 

    Ty b x ω x  (3) 

where a nonlinear function   x  maps the input space into a 

high-dimensional space.  
1

,
N

k k k
y


x  is given as the training set, 

where N is the sample size. ω and b are the parameters which 

can be determined by solving the following optimization 

problem 
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where C represents the regularization factor which balances the 

training error and model complexity. The Lagrangian function 

of problem (4) is then expressed as 
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where 
k  are the Lagrangian multipliers. The optimal 

solutions meet the following conditions 
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Eliminating ω and ξ, the solutions are given by the following 

linear equations 
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where  1 1;1; ;1N e , 
1 2; ;[ ]; N   α , 

 1 2; ; ; Ny y y Y , IN is an identity matrix, 

     T ,i i jjj iΩ K   x x x x . K is the kernel function and 

the radial basis function kernel is used in this paper 

   2
2, exp / 2i j i jK   x x x x  

where σ is the kernel width parameter. 

After obtaining b and α from (7), the regression model of 

LSSVM becomes 
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B. Hyperparameters Optimization Based on PSO 

 The selection of hyperparameters C and σ is significant for 

achieving an accurate LSSVM model. In this section, PSO is 

adopted to optimize the hyperparameters due to its fast 

convergence and robustness. 

PSO algorithm simulates the birds flock’s behavior of 

preying on food and searching for the optimal position. PSO 

consists of a swarm of interacting particles searching in an 

L-dimensional search space of the problem’s solutions (L is the 

size of hyperparameters). Each particle can be described by its 

current position and velocity. For instance, the position and 

velocity of particle i at iteration t can be expressed as 

 1 2, ,t t t t

i i i iLp p pp  and  1 2, ,t t t t

i i i iLv v vv . Each particle 

updates its speed and location by tracking individual best 

known position pbesti and swarm’s best position gbest. The 

velocity and position of particle i are updated according to the 

following two formulas 
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where η denotes the inertia weight, c1 and c2 are the learning 

factors, and r1 and r2 are random numbers between 0 and 1. 

The performance of each particle is evaluated by the 

prediction error using cross-validation. That is 
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where 
ky  and ˆ

ky  are the kth actual output and predicting 

output, and Ntest is the size of test samples. 

Thus, the algorithm steps of hyperparameters selection using 

PSO are provided as follows: 

1) Establish the PSO with a group of particles with random 

positions and velocities. 

2) For each particle i, build the regression model and predict 

the outputs for test samples, and evaluate the particle’s 

performance using (10). 

3) Replace pbesti with the particle i if the latter is superior. 

Replace gbest with the best particle of the population if the 

latter is superior. 

4) Update the velocity and position of each particle based on 

(9). 

5) Repeat steps 2–4 until the stop criteria are satisfied. 

III. EXPERIMENTS FOR HYSTERESIS MODELING 

A. Experimental Setup 

The experiments are carried out on a piezoelectric actuator 

MPT-1JRL002 (withstand-voltage range: -30 to 150 V and 

displacement resolution: 0.01 μm). Fig. 1 shows the system 

devices. The hardware-in-the-loop simulation system produces 

an analogy voltage output, which is then amplified by a power 

amplifier to drive the PZA. The output displacement of PZA is 

measured by a resistance strain gauge sensor, which is installed 

within the PZA as a micrometer and then transmitted back to 

the hardware-in-the-loop simulation system.  

 
Fig. 1.  Piezoelectric actuator experiment devices. 

 

B. LSSVM Model Training and Testing 

Considering the rate-dependent behavior of piezoelectric 

hysteresis, the training data must excite as many states of 

piezoelectric actuator as possible. Thus, the random sinusoidal 

input voltage shown in Fig. 2(a) is used for training and the 

corresponding output displacement is shown in Fig. 2(b). 

 
Fig. 2.  Training data set: (a) input voltage, (b) output displacement. 

Given the training data set, the hyperparameters are set as C 

= 1.38×105
 and σ = 1.76 by PSO. Then two sets of random 

input waveforms are employed to test the performance of the 

regression model. As described in Fig. 3, the results show that 

the proposed algorithm can achieve accurate regression for the 

PZA hysteresis under random input excitation. 

 
Fig. 3.  Hysteresis modeling results under random input excitation: (a) test 

input 1, (b) test input 2. 

Furthermore, the root mean squared error (RMSE) is 

employed to evaluate the accuracy of regression model, which 

is expressed as 
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where 
ky  and ˆ

ky  are true value and predicted value 

respectively. 

The regression model produces RMSEs of 0.00504 μm and 

0.00543 μm respectively for the two testing samples, 

accounting for 0.0315% and 0.0339% of the motion range. By 

comparison, the Preisach model produces RMSEs of 3.98% 

and 3.64% as shown in Fig. 4. Therefore, it can be concluded 

that the LSSVM can identify the hysteresis nonlinearity of 

piezoelectric actuators far more accurate than the traditional 

Preisach model. 



 

 
Fig. 4.  Hysteresis modeling results of Preisach model under random input 

excitation: (a) test input 1, (b) test input 2. 

IV. HYSTERESIS COMPENSATION 

In this section, controllers are designed and discussed based 

on LSSVM hysteresis inverse model to compensate the 

hysteresis nonlinearity. Experiment results verify the 

effectiveness of the proposed control scheme. 

A. Feedforward Controller 

Although the hysteresis phenomenon limits the positioning 

accuracy of piezoelectric actuators, the feedforward control 

method with an inverse hysteresis model is an effective way for 

hysteresis compensation. 

To build the LSSVM inverse model, a similar method as 

shown in section Ⅱ can be taken by selecting the current and 

previous output displacements and previous input voltage as 

exogenous inputs to predict the current input voltage. The 

hysteresis inverse model can be expressed as 

  k k ku f  x   (12) 

with 

  1 1... ...k k k k n k k my y y u u   x   (13) 

where m and n are both set to 3. 

Once trained offline, the hysteresis inverse model is utilized 

for online feedforward control. As for the control scheme, the 

previous desired outputs and the previous measured outputs can 

both be taken as the previous displacements of input into the 

hysteresis inverse model. Therefore, according to different 

source of the model input, two different feedforward control 

schemes are proposed and studied. The control diagrams are 

shown in Fig. 5 and Fig. 6. The first method appears like a 

feedback controller but the measured displacement is only 

employed for inverse model calculation; the second method is 

actually an open-loop controller. 

 
Fig. 5.  Block diagram of feedforward control method 1. 

 

 
Fig. 6.  Block diagram of feedforward control method 2. 

The small amount of noise in the output displacement could 

affect the accuracy of inverse model. Thus, the training data is 

smoothed first using moving average before model training. 

Two sets of test samples were employed to analyze the 

performance of two control methods. As shown in Fig. 7, the 

test results reveal that the output displacement does not track 

the given displacement well for the first method. The output 

oscillates intensely and deviates from the desired displacement 

with RMSEs of 3.49 μm and 2.42 μm. It is due to the fact that 

the previous displacement and the current displacement are 

close to each other in the training sample. If the real-time output 

deviates from the given outputs, however, the input state of the 

inverse model is not reflected in the training samples, and 

therefore the output displacement deviates from the expected 

output. For the second method, the output displacement can 

roughly track the given displacement with RMSEs of 0.49 μm 

and 0.37 μm, because the inverse modeling error in the output 

of the inverse model is transferred to the input side, resulting in 

a large deviation in the model output. 

 
Fig. 7.  (a) and (b) Tracking results of the first control schemes tested by two 

testing samples. (c) and (d) Tracking results of the second control schemes 

tested by two testing samples. 

B. Hybrid Feedforward Controller 

It seems that the open-loop controller (i.e. the second 

method) has the relatively superior performance. To revise the 



 

previous displacement input of the model for the open-loop 

controller, some measured displacement is added, which can be 

considered as a correction. Thus, a hybrid feedforward control 

scheme that combines the two methods are proposed, where the 

previous displacement input is composed of the measured 

displacement and the desired displacement in a certain ratio. 

The control block diagram is shown in Fig. 8, in which p is the 

ratio of the desired displacement. Specifically, it represents the 

feedforward control method 1 when p = 0 and the feedforward 

control method 2 when p = 1. 

 
Fig. 8.  Block diagram of hybrid feedforward control scheme. 

The selection of the parameter p has a great influence on the 

accuracy of the system. To select the appropriate value, p is 

evenly divided between 0 and 1 and the system performance is 

analyzed by two sets of test data. The testing errors are depicted 

in Fig. 9. It is found that the system performs the best when p = 

0.7 and the RMSEs for two data sets are 0.05214 μm and 

0.03186 μm, accounting for 0.326% and 0.199% of the motion 

range respectively. Therefore, p is set to 0.7 and the 

corresponding tracking results are shown in Fig. 10. It is 

observed that the output displacement can track the desired 

displacement accurately, except for the non-negligible 

deviations at extreme points. 

The performance of the hybrid feedforward controller is far 

superior to those of the two feedforward controllers when p is 

around 0.7. In general, the optimal value of p should be 

determined with enumeration method for different actuators or 

different model parameters. 

 
Fig. 9.  Effects of p value on the performance of the hybrid feedforward 

control system. 

 

 
Fig. 10.  Tracking results of the hybrid feedforward control system when p = 

0.7: (a) test data 1, (b) test data 2. 

C. Hybrid Feedforward-Feedback Controller 

To further improve the tracking accuracy, the hybrid 

feedforward control combined with the feedback control 

strategy is realized. Fig. 11 shows the control scheme. The 

incremental PID algorithm is employed as the feedback 

controller, and the input signal of piezoelectric actuator can be 

expressed as follows 
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 (14) 

where vc represents the control voltage, vf is the model output 

voltage, vb is the feedback control voltage, e denotes the 

tracking error, and Kp, Ki and Kd are PID controller parameters. 

 
Fig. 11.  Block diagram of the hybrid feedforward-feedback controller. 

 



 

 
Fig. 12.  The effects of p value on the performance of the hybrid 

feedforward-feedback controller. 

Two data sets are employed to test the effect of p value on the 

model performance. As shown in Fig. 12, the test results show 

that the tracking error rises slowly with the increase of p, 

although the ascending trend is not obvious. RMSEs of the two 

data sets range from 0.004 μm up to 0.005 μm when p increases 

from 0 to 0.5. Specifically, the tracking performance of the 

system is optimal when p = 0, which means that the previous 

displacement of the input into the hysteresis inverse model 

comes entirely from the actual output. The optimal RMSEs of 

the two test samples are 0.00434 μm and 0.00443 μm 

respectively, accounting for 0.0277% and 0.0271% of the 

motion range. The tracking results of the control system are 

shown in Fig. 13. 

The introduction of the feedback controller makes the 

feedforward method 1 more accurate since the inverse model is 

flexible to output the required voltage with fast response, while 

the output of the inverse model for method 2 produces fixed 

error. Thus, the controller gradually transmits from the method 

1 to method 2 with the increase of p from 0 to 1 and the 

corresponding RMSE rises slowly as shown in Fig. 12. 

 
Fig. 13.  Tracking results of the hybrid feedforward-feedback controller 

when p = 0: (a) test data 1, (b) test data 2. 

D. Controller comparison and generalization 

For better comparison, the tracking results of PID feedback 

controller and Preisach feedforward controller are shown in 

Fig. 14 and Fig. 15. The tracking RMSEs of different control 

scheme are summarized in TABLE I. The Preisach feedforward 

controller yields the worst RMSEs of 2.4% and 2.24%. The 

hybrid feedforward control produces RMSEs of 0.326% and 

0.199% for two data sets, which are slightly improved by 

21.6% and 43.1% as compared with the feedback control. 

Furthermore, the hybrid feedforward-feedback control 

enhances the tracking accuracy by more than 11 times and 7 

times in comparison with the hybrid feedforward control.  

 
Fig. 14.  Tracking results of the PID feedback controller: (a) test data 1, (b) 

test data 2. 

 
Fig. 15.  Tracking results of the Preisach feedforward controller: (a) test data 

1, (b) test data 2. 

TABLE I 

TRACKING RMSES (%) OF DIFFERENT CONTROL SCHEMES 

TESTED BY TWO SAMPLES. 

Data set 
Preisach 

feedforward 

PID 

Feedback 

Hybrid 

Feedforward 

 (p = 0.7) 

Feedforward- 

feedback (p = 

0) 

Test data 1 2.40 0.416 0.326 0.0277 

Test data 2 2.24 0.350 0.199 0.0271 

A good generalization capacity of the hybrid 

feedforward-feedback controller is evident from the 

experimental results shown in Fig. 16. It is found that the 



 

controller is able to track waveforms quite different from the 

training data accurately, such as the random triangular wave 

and the trapezoidal wave, with RMSEs of 0.0631% and 

0.0632% respectively.  

 
Fig. 16.  Tracking performance of the hybrid feedforward-feedback 

controller for different waveforms: (a) triangular wave, (b) trapezoidal wave. 

 

V. CONCLUSION 

In this paper, the NARX-based LSSVM is demonstrated to 

be effective to model and compensate for the hysteresis of 

piezoelectric actuators. The hybrid feedforward controller 

combining the desired outputs and the measured outputs as the 

input of NARX model is first proposed for hysteresis 

compensation, where the tracking performance heavily 

depends on the combination ratio. It is found that the controller 

performs the best when the desired outputs account for 70%. 

The experimental results reveal the superior performance of the 

hybrid feedforward controller over the PID feedback controller. 

To further improve the tracking performance, the hybrid 

feedforward control combined with the feedback control is 

realized, which outperforms the stand-alone feedback or 

feedforward controller significantly. The optimal performance 

of the feedforward-feedback controller can be obtained when 

the input of NARX model comes entirely from the actual 

outputs. Moreover, due to the excellent generalization 

performance, the feedforward-feedback control scheme can be 

easily extended to track different types of input waveforms with 

high accuracy. In the future, some pruning algorithms will be 

studied to reduce the sample size and speed up the computing 

performance. 
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