
 
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 

1 

 

Abstract—Proper monitoring of quality-related variables in 

industrial processes is nowadays one of the main worldwide 

challenges with significant safety and efficiency implications. 

Variational Bayesian mixture of Canonical correlation analysis 

(VBMCCA)-based process monitoring method was proposed in 

this paper to predict and diagnose these hard-to-measure 

quality-related variables simultaneously. Use of Student’s 

t-distribution, rather than Gaussian distribution, in the VBMCCA 

model makes the proposed process monitoring scheme insensitive 

to disturbances, measurement noises and model discrepancies. A 

sequential perturbation method together with derived parameter 

distribution of VBMCCA is employed to approach the 

uncertainty levels, which is able to provide confidence interval 

around the predicted values and give additional control line, 

rather than just a certain absolute control limit, for process 

monitoring. The proposed process monitoring framework has 

been validated in a Wastewater Treatment Plant (WWTP) 

simulated by Benchmark Simulation Model (BSM) with abrupt 

changes imposing on a sensor and a real WWTP with filamentous 

sludge bulking. The results show that the proposed methodology 

is capable of detecting sensor faults and process faults with 

satisfactory accuracy. 

 
Index Terms—Canonical correlation analysis; Process 

monitoring; Soft-sensor; Wastewater; Uncertainty  

 

Nomenclature 
 

N         The number of samples for the process data, 𝑘 = 1, ⋯ 𝑁 

𝑑1       The number of variables for the input data 

𝑑2       The number of variables for the response data 

𝑑         Sum of 𝑑1 𝑎𝑛𝑑 𝑑2 

𝑋1       Input data matrix (process variables) 𝑋1 ∈ ℝ𝑑1×𝑁 

𝑋2       Response data matrix (quality variables) 𝑋2 ∈ ℝ𝑑2×𝑁 

U         Left singular matrix 

V         Right singular matrix 

𝑤         The singular vectors of U 

𝑣          The singular vectors of V 
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Λ          Matrix of eigenvalues 

l           the number of nonzero eigenvalues 

Λ𝑙         Matrix of nonzero eigenvalues 

I           Identity matrix 

𝑥2,𝑛𝑒𝑤   New coming response values  

𝑥̂2,𝑛𝑒𝑤   The predicted new coming response values  

Ψ𝑖         Precision matrices of 𝑋𝑖, i=1,2 

t            The latent variables 

W𝑖        The projection matrices of 𝑋𝑖, i=1,2 

𝜇𝑖         mean values for the matrix 𝑋𝑖, i=1,2 

g           gamma distribution 

𝕎        Wishart distribution 

     Gaussian distribution 

S       The number of CCA models 

𝜇𝑡𝑠
     mean values of the 𝑡𝑠 (s-th t, 𝑠 = 1,2, ⋯ , 𝑆) 

Σ𝑡𝑠
     Covariance matrix of the 𝑡𝑠 

𝜇𝜇𝑖
𝑠     mean values of the 𝜇𝑖

𝑠 (s-th t, 𝑠 = 1,2, ⋯ , 𝑆) 

Σ𝜇𝑖
𝑠     Covariance matrix of the 𝜇𝑖

𝑠 

𝜇𝑊𝑖
𝑠     mean values of the 𝑊𝑖

𝑠 (s-th t, 𝑠 = 1,2, ⋯ , 𝑆) 

Σ𝑊𝑖
𝑠     Covariance matrix of the 𝑊𝑖

𝑠 

𝛾𝑖
𝑠       Wishart distribution parameter for the i-th  X and  

             s-th CCA model 

Φ𝑖
𝑠     Wishart distribution parameter for the i-th  X and  

            s-th CCA model 

𝛼1,𝑖
𝑠        Parameter to translate S distribution to Normal    

distribution for the i-th  X and s-th CCA model 

𝑎𝑖
𝑠      Gamma distribution parameter for 𝛼1,𝑖

𝑠  related to  

         the i-th  X and s-th CCA model 

𝑏𝑖
𝑠    Gamma distribution parameter for 𝛼1,𝑖

𝑠  related to  

          the i-th  X and s-th CCA model 

𝑢𝑛      Scale vector to translate Student 

           distribution to Normal distribution 

𝛼2      Gamma distribution parameter for 𝑢𝑛 related to  

           the i-th  X and s-th CCA model 

𝛼3      Significance level 

𝛽        Gamma distribution parameter for 𝑢𝑛 related to  

            the i-th  X and s-th CCA model 

(∙)+     Upper uncertainty level with respect to (∙) 

(∙)−     Lower uncertainty level with respect to (∙) 

𝐾(∙)    Kernel function 

h          Bandwidth of kernel function 

𝛿𝑥       The uncertainty level with respect to variable x (such as t  

           , W and so on) 

𝑈𝑇2     Total  standard variance with respect to T2 uncertainty 

𝑈𝑆𝑃𝐸     Total  standard variance with respect to SPE uncertainty 
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I. INTRODUCTION 

 uring recent decades, industrial process monitoring has 

gained significant attentions in industries and academia 

due to the increased awareness to ensure safer operation 

and better product qualities [1]. Multivariate statistical process 

monitoring (MSPM) is one of most commonly used strategies 

to deal with these issues [2-3]. These methods tend to explore 

the data by building an empirical model, which in turn acts as a 

reference to justify the desired process behavior of the new data 

by Hotelling's T2 or squared predicted errors (SPE). Among the 

approaches, Principal Component Analysis (PCA) and Factor 

Analysis (FA) are investigated typically and applied intensively 

[4]. However, they focus only on the process variables (X1) 

without any information about the quality variables (X2), 

therefore always leading to false alarms. By comparison, 

Partial Least Squares (PLS) is able to decompose a data set into 

two subspaces by maximizing the covariance between X1 and 

X2. Nonetheless, PLS components may contain useless 

information to predict X2 due to variations orthogonal to X2. 

Moreover, maximum covariance criterion of PLS to extract 

principal components usually makes the residuals of X1 or X2 

not necessarily small. This further results in the residual space 

monitoring with SPE statistic inappropriate. In contrast, 

Canonical correlation analysis (CCA) maximizes the 

correlation between X1 and X2, thus being able to correct 

within-set covariance prior to the decomposition [5-7]. 

CCA-based process monitoring methods, however, adhere to 

the assumption that quality variables are on-line measurable or 

measurable without a large time delay. To the best of the 

authors’ knowledge, quality-based process monitoring is still 

far from sufficient investigation.  

  A further complicated characteristic of industrial process 

observations is that the data may be nonlinear in the time 

domain or may involve nonlinear interactions between 

variables. To handle the nonlinearity of process data, several 

nonlinear PCA approaches have been developed [8]. Kernel 

PCA (KPCA) is able to deal with a wide range of nonlinearities 

using different kernels without resorting to nonlinear 

optimization necessarily [9]. Also, a nonlinear approach can be 

obtained by postulating a finite mixture of linear sub-models 

for the Gaussian distribution of the full observation vector, 

yielding the so-called mixture of statistical models, such as 

mixture of PCA, mixture of CCA and mixture of Factor 

Analysis (FA) [10-12]. In general, these methods premise the 

assumption that the process is nonlinear with the operation 

mode being separable. Also, mixture-based models commonly 

suffer from model parameter estimation instability adversely 

resulting from outliers in the training data, therefore leading to 

unreliable model-based diagnosis systems. Student's 

t-distribution has been proposed recently against parameter 

estimation instability due to its bell-shaped distribution with 

heavier tails compared with  the normal distribution [13]. 

Additionally, few papers devoted to a mixture of CCA for 

nonlinear process monitoring [14].  

  In this paper, we exploit a robust mixture of CCA (MCCA) 

model with latent variables and errors adhering to multivariate 

Student's t-distributions. Generally, maximum likelihood 

estimation for MCCA can be achieved by expectation 

maximization (EM)  algorithm [15], and then, the estimated 

models can be cross-validated to choose an appropriate model. 

However, the task of model estimation and validation for 

various combinations of cardinality and local dimensionality 

could be tedious. Bayesian estimation can simplify the task as it 

penalizes complex models and allows for model selection 

without cross-validation [16-17]. However, a complete 

Bayesian analysis for MCCA may be infeasible. For finite 

mixture models, Variational Bayesian algorithm is a 

deterministic alternative to Markov chain Monte Carlo 

(MCMC) algorithms for Bayesian inference [18], with better 

scalability in terms of computational cost, thereby avoiding the 

singularity and over-fitting problems of maximum-likelihood 

approaches. Even though Variational Bayesian algorithm has 

been extended to Independent Component Analysis (ICA), 

PCA, Mixture of PCA and mixture of FA [19-20], few papers 

devoted them to process monitoring. Variational Bayesian 

algorithm is used to learn the parameters and model structure of 

mixture of CCA (VBMCCA) in this paper. The derived 

VBMCCA model in this paper further serves as the process 

monitoring model for abnormal process conditions 

identification. Due to use of Student's t-distribution in 

VBMCCA, the process monitoring scheme is more robust, 

implying that the trained model favors the trained pattern 

(normal condition) and is insensitive to dissimilar patterns 

(disturbances, noises or outliers). Since the residuals of process 

monitoring are generated by subtracting the predicted values 

from the true values, insensitive prediction values will make 

residual more obvious and process monitoring strategy more 

sensitive to the faults. Also, different from the assumption that 

hard-to-measure quality variables can be derived on-line 

directly in the typical process monitoring methods, VBMCCA 

is able to predict multiple hard-to-measure quality variables 

simultaneously, thus resulting in off-line measurement for 

process monitoring conveniently. 

  Along with the standard routes in the process monitoring, a 

process monitoring model is typically obtained by selecting the 

proper structure and then estimating the unknown parameters 

with available historical data or on-line monitored information 

[21]. With respect to uncertainty construction, two sources of 

information are necessary in the present standard identification 

process: the priori information on model structure, and the 

posteriori information (the data). Model structure can resort to 

the true system structure. The process and measurement 

uncertainty from data are typically assumed to be Gaussian. 

The mean and covariance for a Gaussian distribution can be 

inferred from historical data by statistical methods. However, 

few researches are devoted to analyzing the prediction 

accuracy. The uncertainty of industrial processes (such as lack 

of knowledge of behaviors) and unstable model parameters add 

further complexity for uncertainty description. A practical way 

of assigning the accuracy is to provide a confidence interval 

around the predicted value, to which the future output is 

guaranteed to belong with a certain probability. In this paper, 

we proposed to use a sequential perturbation method together 

with derived parameter distribution of VBMCCA to approach 

the uncertainty levels of the predicted results, therefore 

providing a confidence interval around the predicted value and 

giving additional control lines for fault detection, rather than 

just certain absolute values, for process monitoring. 
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The remainder of this paper is organized as follows. Section 

II gives some basic theories on the CCA-based process 

monitoring. Section III discusses the implementation of 

proposed VBMCCA-based process monitoring strategy. The 

corresponding uncertainty levels from the SP method is 

described in Section IV. Section V presents the performance of 

the proposed methodology through case studies of wastewater 

treatment processes. Finally, the work ends with a discusion 

section.  

II. PRELIMINARIES 

A. Canonical correlation analysis (CCA) 

Canonical correlation analysis is a method to find linear 

combinations of two vectors by 

maximizing correlations among them [7]. Suppose that N 

samples of the process data are collected, and 𝑋1  and 𝑋2 

represent input variables and response variables, respectively, 

where 𝑋1 ∈ ℝ𝑑1×𝑁  and 𝑋2 ∈ ℝ𝑑2×𝑁 , 𝑑 = 𝑑1 + 𝑑2. Let 𝑋1 and 

𝑋2 be centered by mean, then 

[
ΣX1X1

ΣX1X2

ΣX2X1
ΣX2X2

] ≈
1

𝑁
[
X1X1

T X1X2
T

X2X1
T X2X2

T]              (1) 

Let the matrix 
T

  

ΣT = ΣX1X1

−1/2
ΣX1X2

ΣX2X2

−1/2
                         (2)                   

By performing the singular value decomposition (SVD) on the 

matrix,  

 ΣT = UΛVT                               (3) 

where 
1

1
( , , )

d
U   , 

2
1

( , , )
d

V v v  and 

 
0

0 0

l 
   

 

                                  (4) 

where Λ𝑙 = 𝑑𝑖𝑎𝑔(𝜆1, ⋯ , 𝜆𝑙) ,  𝜆1 ≥ 𝜆2 ⋯ ≥ 𝜆𝑙 > 0  are the 

singular values. 𝑤𝑖  and 𝑣𝑗 represent the corresponding singular 

vectors, where 𝑖 = 1, ⋯ 𝑑1   and 𝑗 = 1, ⋯ 𝑑2 . Two canonical 

correlation vectors or weighted matrixes with respect to X1 and 

X2 can be defined as 𝐽 = Σ𝑋1𝑋1

−1/2
𝑈(: ,1: 𝑙)  and 𝐿 =

Σ𝑋2𝑋2

−1/2
𝑉(: ,1: 𝑙), where 𝑙 ≤ 𝑚𝑖𝑛(𝑑1, 𝑑2).  

 

B.  CCA-based process monitoring 

It is reasonable to define the residual vectors as follows [6]: 

 
2 1

( ) ( ) ( )
T T

l
e k L X k J X k                         (5) 

According to a quadratic form with the k-th sample, the T2 

statistic of CCA is derived as follows:  

   2 2 1
( 1) ( )( ) ( )

T

l
T N e k I e k


                      (6) 

Also, SPE can be defined accordingly:  

( ) ( )
T

SPE e k e k                                  (7) 

Based on [4], 

𝑆𝑃𝐸lim = ςχ1−α3
2 (τ)                            (8) 

where ς = ΣSPE/2μSPE, τ = 2𝜇SPE
2 /ΣSPE, ΣSPE and 𝜇SPE are 

estimated as     

2

1 1

1 1
( ), ( ( ) )

1

N N

j j

SPE SPE SPE
SPE j SPE j

N N
 

 

   


   

and the control limit of T2 can be defined as  

3

2

2

lim

( 1)
( , )

( )
T

d N
F d N d

N N d








                   (9) 

Given the new sample 𝑥1,𝑛𝑒𝑤 , the predicted values can be 

derived as follows: 

            
1 1 1 2

1 -1

2, 1, 1, X X
ˆ ( ) ) ( ) Σ( =T T T T

new new l new X Xx x J L LL x     (10)           

where 
2,

ˆ
newx denotes the predicted values of responses 

2,new
x

[22]. 

III. VBMCCA-BASED PROCESS MONITORING 

In the present work, a VBMCCA-based process monitoring 

strategy is proposed. The detailed procedures to implement 

VBMCCA for process monitoring and prediction is presented  

in Fig.1. This will perform as follows: (1) For the first stage as 

illustrated in Fig.1, VBMCCA model is trained and learned by 

Variational Bayesian learning. (2) At the arrival of a new 

sample, the local prediction values, local prediction 

uncertainties, local T2 and local SPE are derived by the local 

CCA; (3) the local prediction values and local prediction 

uncertainties are combined to derive the global quantities; (4) 

local T2 and local SPE are integrated for global process 

monitoring. In the fault detection procedure, once the upper 

uncertainty values of SSPE and ST2 reach control limits, the 

system will trigger pre-caution to find and remove the 

assignable causes. If SSPE or ST2 exceeds their control limit, 

inspection and replacement of faulty components are necessary. 

 

Fig.1 Schematic diagram to implement VBMCCA for process monitoring and 

prediction 

https://en.wikipedia.org/wiki/Correlation
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A. VBMCCA 

To alleviate a strict assumption of Gaussian noise in the 

Bayesian MCCA model [23], which is sensitive to outliers, 

both the Gaussian noise and the Gaussian latent variables were 

replaced with Student’s t-distribution. Generally, the Student's 

t-distribution is a bell-shaped with heavier tails but with one 

more parameter, degree of freedom (DOF), compared to 

Gaussian distribution, therefore leading to a more robust 

approach to deal with aforementioned issues [13]. For efficient 

inference, we exploit the latent infinite scale-mixture 

formulation of the t-distribution using Variational Bayesian 

learning, leading to a robust Bayesian CCA. Using this 

formulation, we can further write the robust Bayesian CCA 

model by adding an extra level of hierarchy 

 
2( | , )n nu g u                                (11) 

 | ( | , )n t n tt u t u                         (12) 

   
1 1 1 1 1| ( | , )nX t X Wt u                    (13) 

2 2 2 2 2| ( | , )nX t X W t u                   (14) 

where Ψ𝑖  denotes the precision matrices of the normal 

distribution. The latent variables t encodes the low-dimensional 

statistically dependent part while the projection matrices W𝑖  

specify how this dependency is manifested in each data source. 

𝜇𝑖 represents the mean values, i=1,2.  

  Remark 1: Due to the convenience and equality between the 

Normal distribution and Student's t-distribution, Student's 

t-distribution of X can be transformed to Normal distribution 

accordingly, which is proved by reference [24].  

  Fig.2 further illustrates the relationship between the variables: 

 
Fig.2 Schematic diagram of VBMCCA 

where g(∙)  is the gamma distribution, 𝕎(∙)  denotes the 

Wishart distribution and ℕ(∙)  represents the Gaussian 

distribution. In this work, we introduce a probabilistic mixture 

of the aforementioned robust Bayesian CCA models, letting 

each mixture cluster to model different kinds of dependencies 

between the signals by replacing it with piecewise stationarity. 

The robust mixture CCA model is therefore obtained by adding 

the latent variable 𝑧 ∼ Multinomial(𝑧|𝑟) , where r is the 

parameter of Multinomial distribution. The core of the 

inference process lies in learning the posterior distribution 

𝑃(𝐻|𝑋1, 𝑋2, Θ)  of both the latent variables and the model 

parameters, denoted collectively as 𝐻 = {z, un, t, W1, W2, μ1, μ2 

, Ψ1, Ψ2}, Θ = {ai
s, bi

s, γi
s, Φi

s, α2, β2, β1}.  

  Remark 2: Usually, the ad hoc values for hyper-parameters 

treated under a Variational Bayes' framework are chosen such 

that broad prior distributions are derived. Therefore, a good 

selection for the hyper-parameters of the priors on Ψ1, Ψ2. 𝛾𝑖
𝑠 =

𝑑𝑖 + 1, Φi
s = 102I is to obtain broad distributions. We can also 

choose broad priors for the shape hyper-parameters 𝑎𝑖
𝑠, α2 and 

the inverse-scale hyper-parameter 𝑏𝑖
𝑠, β2, which can be set to 

𝑎𝑖
𝑠 = 𝑏𝑖

𝑠 = 0.1 and α2 = β2 = 1. Finally, concerning the prior 

over the mixing proportions vector, we obtain broad priors for 

the β1 being 10−3 [10].  

  The procedures of the Variational Bayesian algorithm to 

search for the model parameters are shown in the 

Supplementary Information B. Given the inferred latent 

variables and model parameters, the predictions for the 

incoming new data can be inferred using the following 

equation: 

 
2,ˆ 1

( )( )s s s
new new

S s

x new W ts
q z


   


                 (15) 

 
2 ,

1 1 2

ˆ 1
[ ( ) ( ) s

new new

S s s s s T

x new ns t
q z u W W

 


     （ （ ））]       (16) 

where 𝜇𝑥2,𝑛𝑒𝑤
 and Σ𝑥2,𝑛𝑒𝑤

−1  denote the predicted mean values 

and precision matrix, respectively; 𝑧 = {𝑧𝑠}𝑠=1
𝑆  is the set of 

label indicator vectors, with 𝑧𝑠 ∈ {0,1}. For the ith data sample, 

if 𝑥𝑖  is attributed as the s-th mixture component, 𝑧𝑖
𝑠 = 1 , 

otherwise, 𝑧𝑖
𝑠 = 0. 𝑞(𝑧𝑛𝑒𝑤

𝑠 ) represents the contribution of each 

local Bayesian CCA to the global model with respect to the 

incoming new data points. By deriving the contribution of each 

Bayesian CCA, they can be combined using average. 

 

B. VBMCCA-based process monitoring 

1) Calculation of T2 and SPE 

To perform process monitoring, monitoring statistic T2 and 

SPE are constructed as the first step. The corresponding 

monitoring statistics for the s-th local Bayesian CCA can 

be represented as follows: 

 
2 1 1

s s s s

T T

s s t s t t t
T t t  

 
                            (17) 

with  

           
22

1

1 1

(( ) )s s s
s i i ij

d
T s s

t i ij dW W W
i j

I  

 

                         

                          
2

1

( ( ) ( ))s s
s s i i

T s

t t i iW
i

x


  


                          

Similarly, the associated SPE statistic can be given as 

follows: 

 
1s T

s s s
SPE e e


                             (18) 

with  

       s s
ss tW

e x


      

where 𝑠 = 1,2, ⋯ , 𝑆. 
sl is the number of retained factors in the 

s-th local VBCCA model. As for a new coming sample data 

𝑥𝑛𝑒𝑤 , both statistics are updated as follows: 
2 1 1

, , ,s s

T T

s new s s s t new s t new
T t t  

 
                   (19) 

1

, ,

s T

new s new s s new
SPE e e


                        (20) 

where 
2

,

1

( ( ) ( ))s s
s s i i

T s

t new t i newW
i

x


  


     

, ,s s
ss new new t newW

e x


      



 
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 

5 

  Remark 3: In the case that on-line quality measurement is 

unavailable,  𝑥𝑛𝑒𝑤  is replaced by 𝜇𝑥2
. 

However, it is cumbersome to monitor the process with all 

the local monitoring charts, which also potentially frustrates the 

decision-making for process monitoring with so many 

monitoring charts. Therefore, coordination of all the local 

monitoring charts is imperative. We can combine them through 

the estimated posterior probabilities. Both of the synthetic 

monitor statistics T2 and SPE can be obtained as follows: 

 2 2

,

1

( )
S

s

new new s new

s

ST q z T


                        (21) 

1

( )
S

s s

new new new

s

SSPE q z SPE


                  (22) 

2) Control limit of CCA-based and VBMCCA-based process 

monitoring 

For the standard multivariate process monitoring, control limit 

of 𝑇2or SPE is premised on the assumption of following 𝜒2  

distribution. To relax this assumption, kernel density function 

estimation is proposed in this paper. Given N samples of 

derived SPE, the density function estimation with respect to the 

sth SPE can be defined as follows 

 

1

1ˆ ( ) ( )

s sN
i spes

i

SPE
f SPE K

Nh h






                 (23) 

where K is the kernel function and h is the bandwidth, 

respectively. 𝜇𝑠𝑝𝑒
𝑠  denotes the mean values of the s-th SPE. 

𝑆𝑃𝐸𝑖
𝑠 is the i-th component in the diagonal of the matrix and 

can be derived by Eq. (18). On the basis of the density function 

𝑓(𝑆𝑃𝐸𝑠), the control limit "𝑆𝑃𝐸𝑙𝑖𝑚𝑖𝑡
𝑠 " at a particular confidence 

level 𝛼3 is defined by  

 
lim

lim 3
ˆ( ) ( ) ( )

itSPE

it
P SPE SPE f SPE d SPE 



             (24)  

The SPElimit can be obtained by calculating the PDF 

(Probability Density Function) of Eq. (24). α3  is the 

significance level of both monitoring statistics. 

For the VBMCCA-based process monitoring strategy, it is 

necessary to combine the control limits. 𝑞(𝑧𝑠) is used to weight 

the associated SPE control limit as follows: 

 
lim lim1

( )
S s s

it its
SPE SPE q z SPE


                 (25) 

The calculation of SPE control limit can be generalized to T2 

counterpart of both the CCA-based and VBMCCA-based 

strategy.  

  Remark 4: The purpose of mixture of local Bayesian CCA is 

to combine the decisions of local models, in such way that the 

correct decisions are amplified, and the incorrect ones 

cancelled out. However, to simplify the process monitoring and 

avoid false alarms, we learn the control limit for each Bayesian 

CCA in the training set and combine them as a constant control 

limit for the testing set. Therefore, 𝑞(𝑧𝑠) is used to average the 

monitoring statistic instead of 𝑞(𝑧𝑛𝑒𝑤
𝑠 ). 

IV. UNCERTAINTY INTERVALS CALCULATION FOR 

VBMCCA-BASED PROCESS MONITORING 

In process monitoring engineering, process monitoring results 

are typically determined through a functional relationship with 

the calculated values, such as t, 𝜇 . Clearly, small errors in 

estimating these values will lead to large differences in the 

outputs. Thus, it is imperative to identify, quantify and combine 

the errors in the final results, so as to measure the 'goodness' of 

a result, which is always defined as uncertainty analysis. 

Uncertainty analysis involves determining the uncertainty in 

model predictions that results from imprecisely known 

variables or parameters. The commonly used uncertainty 

analysis methods consist of analytical methods and numerical 

methods. This paper tends to use the Sequential Perturbation 

(SP) technique as a tool to qualify the uncertainty level for 

process monitoring statistical indexes. The procedure to 

calculate uncertainties using SP is shown in the Supplementary 

Information C. 
TABLE I 

UPPER AND LOWER UNCERTAINTY LEVEL CALCULATION 

  Upper and Lower limits  

T2 𝑡𝑠 𝑡𝑠
+ = 𝑓𝑇(𝜇𝑡𝑠

+ Σ𝑡𝑠
); 

𝑡𝑠
− = 𝑓𝑇(𝜇𝑡𝑠

− Σ𝑡𝑠
) 

𝛿𝑡 =
|𝑡𝑠

+| − |𝑡𝑠
−|

2
 

SPE 𝑊𝑠 𝑊𝑠
+ = 𝑓𝑠𝑝𝑒(𝜇𝑊𝑠

+ Σ𝑊𝑠
, 𝜇𝑡𝑠

, 𝜇𝑠); 

𝑊𝑠
− = 𝑓𝑠𝑝𝑒(𝜇𝑊𝑠

− Σ𝑊𝑠
, 𝜇𝑡𝑠

, 𝜇𝑠) 
𝛿𝑊 =

|𝑊𝑠
+| − |𝑊𝑠

−|

2
 

 𝑡𝑠 𝑡𝑠
+ = 𝑓𝑠𝑝𝑒(𝜇𝑡𝑠

+ Σ𝑡𝑠
, 𝜇𝑊𝑠

, 𝜇𝑠); 

𝑡𝑠
− = 𝑓𝑠𝑝𝑒(𝜇𝑡𝑠

− Σ𝑡𝑠
, 𝜇𝑊𝑠

, 𝜇𝑠) 
𝛿𝑡 =

|𝑡𝑠
+| − |𝑡𝑠

−|

2
 

 𝜇𝑠 𝜇𝑠
+ = 𝑓𝑠𝑝𝑒(𝜇𝜇𝑠

+ Σ𝜇𝑠
, 𝜇𝑊𝑠

, 𝜇𝑡𝑠
); 

𝜇𝑠
− = 𝑓𝑠𝑝𝑒(𝜇𝜇𝑠

− Σ𝜇𝑠
, 𝜇𝑊𝑠

, 𝜇𝑡𝑠
) 

𝛿𝜇𝑠 =
|𝜇𝑠

+| − |𝜇𝑠
−|

2
 

+ is upper limit and - is the lower limit 

  SP method is a numerical approach to estimate the 

propagation of uncertainty and especially suitable for the 

situation where direct partial differentiation is too cumbersome 

or extremely complex or the number of related variables is 

large. Based on the measurements of the independent variables 

under specific operating condition, the first step is to increase 

the independent variables by their respective uncertainty and 

recalculate the result based on each of these new values, then, in 

the similar manner, decrease the independent variables by their 

respective uncertainties and recalculate the result based on each 

of these new values. Finally, all the derived uncertainties are 

aggregated by the root mean square.  

  Firstly, we let T2 function be equal to 𝑓𝑇 and SPE function be 

equal to 𝑓𝑠𝑝𝑒 , respectively. Table I summarizes the 

corresponding elements of the SP method. To avoid 

neutralization of the positive and negative differences, we sum 

the total differential by using the absolute value of each 

difference.  With the table fully filled out, we can now calculate 

the total error by summing the values of 𝛿𝑥  and taking the 

square root of the value, shown as follows:  

 
2

2

T
U t                                   (26) 

 
2 2 2

SPE s
U W t                            (27) 

where 𝑈𝑇2  and 𝑈𝑆𝑃𝐸  represent a confidence level of one 

standard deviation of T2 and SPE, respectively, equivalent to a 

probability of 68% for a normal distribution. The intervals 

defined such uncertainties at 95% and 99% probability level are 

written as 2U and 3U . 
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V. CASE STUDIES  

A. Benchmark Simulation Model (BSM) to simulate a WWTP 

operation 

1) Background 

Benchmark Simulation Model (BSM) was proposed by the 

International Water Association (IWA) Task Group, which 

offers a platform to evaluate diverse control strategies without 

necessarily resorting to a particular facility. The simulated plant 

mainly comprises of five sequentially connected reactors along 

with a 10-layer secondary settling tank, the aim of which is to 

remove nitrogen by pre-denitrification (1st and 2nd tanks not to 

be aerated) and nitrification reaction (3rd, 4th and 5th tanks to 

be aerated) (Fig. S1 in the Supplementary Information A). For 

more details, one can see reference [25]. 

This case study is to develop a VBMCCA-based process 

monitoring methodology to ensure safety operation of a 

WWTP while monitoring the hard-to-measure quality-related 

variables, such as BOD5 (Biological oxygen demand for five 

days), TN (Total nitrogen) and others (Variable 23-29 in Table 

S1 and Fig. S2 in the Supplementary Information A). Even 

though some expensive sensors are available in certain 

WWTPs, the reliability of the sensor always compromises the 

decision making for a WWTP management. In this case, all 

input variables for model construction are sampled every 15 

min and tabulated in Table S1 in Supplementary Information A. 

A plant under dry weather over 14 days was simulated in the 

BSM1 platform. In this case study, 1344 samples were 

collected. 700 samples were used for model training, while the 

remaining was for testing. 

  To demonstrate the effectiveness of the proposed method, 

we conducted comparison experiments with existing 

CCA-based and PLS-based schemes. By crossing validation, 

the dimension of t was set up as 5, 6 and 6 for CCA, PLS and 

KPCA, respectively. The 'Gaussian' kernel was selected for 

KPCA. For VBMCCA, we fixed the hyper-parameters of 

VBMCCA corresponding to broad priors as Remark 2 and 

consequently let the data determine the model parameters. By 

performing the crossing validation, S is equal to 2. Process 

monitoring schemes were applied to a process data set with an 

abrupt change fault (35% positive bias in SO sensor) and their 

performances were analyzed in terms of the overall error rates 

including type I error and type II error. Abrupt change one type 

of common sensor faults in the process control. The Root Mean 

Square Error (RMSE) and coefficient (R) were used to access 

the prediction performance of inferential model for each 

response. Root-Mean Sum of Squares of the Diagonal 

(RMSSD) was used as a criterion to assess multiple prediction.  

Details of these indexes are shown in Supplementary 

Information D.  

 

2) Prediction performance 

In the WWTP, the effluent variables are always 

hard-to-measure due to time delay or unavailability of 

hardware sensors.  

The proposed VBMCCA prediction model was validated and 

compared with CCA model under the SO sensor fault in the fifth 

tank. The efficiency of the proposed strategy for prediction is 

shown in Fig.3, indicating that, during normal conditions, the 

proposed soft-sensor achieved better performance with respect 

to the RMSE and R for SNO and COD compared with CCA. 

Prediction performance of other variables can be seen in Table 

S2 in the Supplementary Information A. This is mainly due to 

the nonlinear format of VBMCCA to capture the peak and 

valley of the variables. Conversely, the VBMCCA is 

insensitive to ill-situations under the faulty conditions, thus 

failing to track the state variation. However, this is in turn able 

to enlarge the discrepancy between the true and predicted 

values and further amplify the residuals for process monitoring. 

Table II further displays the summarized prediction 

performance of VBMCCA in terms of RMSSD, suggesting that 

VBMCCA can achieve the best prediction performance during 

the normal state but show the significant difference from the 

true values during abnormal state. Due to deterioration of 

predicted results of VBMCCA in the abnormal state, the 

uncertain intervals become wider accordingly to suggest the 

lower confidence for predicted results (2×standard variance, 

90%).The standard variance can be calculated by Eq. (16) and 

is able to serve the basis for the uncertainty calculation. For the 

SNO prediction, it is also perceived that VBMCCA-based 

prediction is closer to the mean values without faults influence 

than the CCA-based counterpart, demonstrating that 

VBMCCA-based model is more robust to disturbances. 

However, since the fault residuals are generated by subtracting 

SNO prediction to true values, VBMCCA-based fault detection 

strategy is more sensitive to the faults.  

 

Fig.3 Prediction results of a wastewater plant under BSM1 using CCA and 

VBMCCA in case of the So fault  

3) Process monitoring 

To validate the performance of VBMCCA-based process 

monitoring, the monitoring results of the four schemes for the 

TABLE II  

ERROR RATES (TYPE I/TYPE II) OF EACH MONITORING SCHEME IN THE BSM 

PROCESS (%) AND RMSSD 

 

Methods 

T2 SPE RMSSD 

I II I II Normal So fault 

CCA 0.6 16 16 14.4 1.4 4.1 

PLS 3 18.5 18 13.6 1.5 3.6 

KPCA 2.3 12.3 8.8 6.9 \ \ 
VBMCCA 0 4.6 5.5 2 0.74 12.5 

I is type I error and II is the Type II error  
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testing data set are summarized in Table II. The type I error rate 

was estimated by the rate of misclassified normal samples to 

entire normal samples from observation 1 to 165 and the type II 

error rate was the rate of misclassified fault samples to entire 

fault samples from observation 166 to 644. Due to the abrupt 

change fault in the SO sensor inside a closed-loop, this fault will 

propagate to the hard-to-measure quality-related variables 

(SNO) in the discharge of the WWTP, leading to regulation 

violation. As tabulated in Table II, both of the linear schemes 

(CCA and PLS) show very similar performances for T2 and 

SPE with high type I and type II error rates. On the contrary, 

VBMCCA achieved the best performance with the lowest type 

I and type II error rates. Even though KPCA can achieve better 

performance than linear models, its performance was still 

poorer than VBMCCA. The reason is mainly due to the fact that 

the VBMCCA model makes a better prediction during normal 

state, thus potentially leading to a smaller residuals and less 

false alarms on one hand. On the other, the predicted model is 

insensitive to ill-situations due to involvement of Student's 

t-distribution, which can further enlarge the residuals. 

Therefore, all the hard-to-measure quality-related variables can 

be predicted properly in the normal state, whereas significant 

deviation can be achieved from the true values.  

  Fig. 4 further profiles that VBMCCA declares the fault over 

34 steps ahead of CCA-based strategy approximately. Upper 

uncertainty bounds of VBMCCA-based methodology are 

generated from SP algorithm. This additional control limit has 

recognized the incipient variations and can provide a 

pre-caution in advance. Since the state of a potential fault is still 

less than absolute control limit before 166, the corresponding 

faults can be investigated and maintained in time at two hours 

ahead approximately.  

 

Fig.4 Monitored results of a wastewater plant under BSM1 using CCA and 

VBMCCA in case of the So fault 

B. A full-scale WWTP 

1) Background 

The present case is a full-scale WWTP (Beijing, China, 

480,000 population equivalents), designed to treat municipal 

wastewater with an Oxidation ditch (OD) process. OD process 

is an enhanced activated sludge biological treatment process, 

which aims to make solids retention time (SRT) longer to better 

nitrogen removal performance.  Filamentous bulking sludge, a 

term used to describe the excess proliferation of filamentous 

bacteria, often results in slower settlement, poorer operational 

performance and higher treatment cost [26-27]. The selected 

monitored variables for model construction are shown as Table 

S3 in the Supplementary Information. 213 data points were 

sampled from the field at day interval. Data for the first 80 days 

was used for training, while the remaining was for testing. 

From the 20th day, Filamentous bulking sludge occurred due to 

the low COD of influent. The phenomenon of bulking sludge 

lasted for about half a year.  These data was used to develop and 

validate the model in this study. 

2) Performance of process monitoring and quality-variables 

prediction 

Different from the abrupt changes fault in the first case study, 

filamentous bulking sludge is typical drifting errors, which vary 

in small magnitude and slow frequency. By cross-validation, 

the dimension of t was set up as 4, 5 and 5 for CCA, PLS and 

KPCA, respectively. The 'Gaussian' kernel was selected for 

KPCA. In the VBMCCA model, we fixed the hyper-parameters 

of VBMCCA corresponding to broad priors as Remark 2. By 

performing the crossing validation, S is equal to 4. The 

projected components of data sets were set up as 2 and 3, i.e., 

the dimension of t, for CCA and PLS, respectively.  

The prediction performance was validated firstly. Table II 

indicates that VBMCCA can achieve the best prediction 

performance in terms of RMSSD during the normal state but 

gain the worst performance during the faulty stage. Best fitting 

under the normal conditions is able to alleviate the Type I error, 

whereas poorest fitting under the faulty conditions is capable of 

enlarging the discrepancies of faulty signals and predicted 

signals, therefore decrease the Type II error. 

The monitoring performance for filamentous sludge bulking 

is summarized in Table III and Fig. S3, suggesting that 

VBMCCA-based process monitoring strategy achieved the best 

performance in terms of type I error rate and type II error rate 

for both of T2 and SPE statistics. This mainly lies in the fact that 

a probabilistic mixture of robust Bayesian CCA models can 

characterize different kinds of dependencies between the 

signals with piecewise stationarity. The piecewise stationarity 

is able to approach the nonlinear relationship between the 

variables properly. KPCA can approach nonlinear relationship, 

but it is tedious to select the kernel function. Even though a 

proper kernel can be selected, KPCA is unsuitable to deal with 

wide range of nonlinearity.  
TABLE III 

ERROR RATES (TYPE I/TYPE II) OF EACH MONITORING SCHEME IN THE 

FULL-SCALE PROCESS (%) AND RMSSD 

 
Methods 

T2 SPE RMSSD 

I II I II Normal Fault 

CCA 0 76 0 87 12 36 

PLS 0 80 0 83 11.9 38 
KPCA 0 39 18 26 / / 

VBMCCA 0 32 15 19 10.2 41 

I is type I error and II  is the Type II error  

  To further illustrate the efficiency of the proposed strategy for 

process monitoring, VBMCCA-based and CCA-based process 

monitoring schemes are shown in Fig. 5. Fig. 5 suggests that 

CCA-based strategy failed to identify the slow variations of 

filamentous sludge bulking for both of T2 and SPE until the 
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70th day. On the contrary, VBMCCA-based strategy is able to 

identify the filamentous sludge bulking from the 21th day. As 

aforementioned, due to the use of Student's t-distribution, rather 

than Gaussian, the residuals between the true and predicted 

values can be enlarged significantly and thus making the 

drifting errors more obvious herein.  

 

Fig.5 Monitored results of a wastewater plant using CCA and VBMCCA in 

case of filamentous sludge bulking 

 

  Notice that additional control limit formulated by upper 

uncertainty level is able to indicate the confidence of diagnosis 

results (90%) and further claim the fault in advance. Since the 

state of a potential fault is still less than absolute control limit, 

the corresponding faults can be investigated and maintained at 

an acceptable level at twelve days ahead approximately. 

 

VI. DISCUSSIONS 

This study develops a VBMCCA-based process monitoring 

tool for diagnosis and estimation of multiple hard-to-measure 

quality-related variables simultaneously for a simulated and a 

full-scale WWTP. Simulation study results show that the 

proposed method can achieve satisfactory process monitoring 

performance in terms of Type I and II errors and better 

unforeseen variables prediction in terms of RMSE, R and 

RMSSD. This study further illustrates that the derived 

uncertainty interval not only provides confident description of 

the process monitoring and prediction results, but also offers 

double control limits for process monitoring, thereby leading to 

less false alarms and more effective maintenance strategies.  

Different from standard mixture of models, the MCCA is 

learned by the Variational Bayesian methods which allows for 

optimization by using the entire training set in a single pass, 

rather than cross-validation as the case of maximum-likelihood 

approaches. Also, the standard Gaussian distribution is 

replaced by the Student’s t- distribution, which results in a more 

robust model. Consequently, the derived VBMCCA model can 

make a better prediction for unforeseen variables during the 

normal state, thus potentially leading to smaller residuals and 

less false alarms on one hand. On the other, the predicted model 

is insensitive to abnormal conditions due to the involvement of 

Student’s distribution, which can further enlarge the residuals 

to process monitoring significantly. However, this could in turn 

make the derived model only be adhered to the trained patterns 

and be difficult to be generalized into exclusive scenarios. This 

could be solved by using the online optimization algorithm to 

enhance VBMCCA for full-scale adaptive process monitoring. 

In this paper, we derived the number of sub-CCA models by 

crossing validation. The main purpose is to simplify the 

calculation procedure and can be further addressed by 

automatic relevant determination (ARD) [10].  

In this study, we demonstrate the performance of VBMCCA 

through simulation studies. The first case study represents a 

highly instrumented WWTP system with an abrupt fault and a 

lowly instrumented system with a drifting error. Although the 

proposed methodologies achieve satisfactory performance in 

both the simulation studies, they require further verification 

through application to real WWTPs. Further, it is of importance 

to notice that the uncertainty intervals of the first case are more 

obvious than the second one. In the drifting errors, the onset of 

drifting errors is slight and recognized by the normal state 

firstly. In the present study, even though wastewater processes 

are used for validation, abrupt changes and drifting errors are 

very common in industrial processes. Especially in the 

microbial system including pharmaceutical industry and food 

systems, the online analyzer is unreliable and numerous 

variables are needed for prediction and monitoring. 
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