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Abstract—This paper introduces the Time Synchroniza-
tion Attack Rejection and Mitigation (TSARM) technique for
Time Synchronization Attacks (TSAs) over the Global Po-
sitioning System (GPS). The technique estimates the clock
bias and drift of the GPS receiver along with the possible
attack contrary to previous approaches. Having estimated
the time instants of the attack, the clock bias and drift of
the receiver are corrected. The proposed technique is com-
putationally efficient and can be easily implemented in real
time, in a fashion complementary to standard algorithms
for position, velocity, and time estimation in off-the-shelf
receivers. The performance of this technique is evaluated
on a set of collected data from a real GPS receiver. Our
method renders excellent time recovery consistent with the
application requirements. The numerical results demon-
strate that the TSARM technique outperforms competing
approaches in the literature.

Index Terms—Gilobal Positioning System, Time Synchro-
nization Attack, Spoofing Detection

. INTRODUCTION

NFRASTRUCTURES such as road tolling systems, terres-

trial digital video broadcasting, cell phone and air traffic
control towers, real-time industrial control systems, and Phasor
Measurement Units (PMUs) [1] heavily rely on synchronized
precise timing for consistent and accurate network communi-
cations to maintain records and ensure their traceability. The
Global Positioning System (GPS) provides time reference of
microsecond precision for these systems [2]-[5].

The GPS-based time-synchronization systems use the civil-
ian GPS channels, which are open to the public [6], [7]. The
unencrypted nature of these signals makes them vulnerable
to unintentional interference and intentional attacks. Thus,
unauthorized manipulation of GPS signals leads to disruption
of correct readings of GPS-based time references, and thus,
is called Time Synchronization Attack (TSA). To address the
impact of malicious attacks, for instance on PMU data, the
Electric Power Research Institute published a technical report
that recognizes the vulnerability of PMUs to GPS spoofing
under its scenario WAMPAC.12: GPS Time Signal Compro-
mise [8]. These attacks introduce erroneous time stamps which
are eventually equivalent to inducing wrong phase angle in
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the PMU measurements [9], [10]. The impact of TSAs on

generator trip control, transmission line fault detection, voltage

stability monitoring, disturbing event locationing, and power
system state estimation has been studied and evaluated both

experimentally [11] and through simulations [12]-[14].
Intentional unauthorized manipulation of GPS signals is

commonly referred to as GPS spoofing, and can be categorized

based on the spoofer mechanism as follows:

o Jamming (blocking): The spoofer sends high power signals
to jam the normal operation of the receiver by disrupting
the normal operation of the victim receiver, often referred
to as loosing lock. Then, the victim receiver may lock onto
the spoofer signal after jamming [9], [15]-[17].

o Data level spoofing: The spoofer manipulates the navigation
data such as orbital parameters (ephemerides) that are used
to compute satellite locations [13], [15], [18].

o Signal level spoofing: The spoofer synthesizes GPS-like
signals that carry the same navigation data as concurrently
broadcasted by the satellites [11].

e Record-and-replay attack: The spoofer records the authentic
GPS signals and retransmits them with selected delays at
higher power [9], [19]. Typically the spoofer starts from
low power transmission and increases its power to force
the receiver to lock onto the spoofed (delayed) signal. The
spoofer may change the transmitting signal properties such
that the victim receiver miscalculates its estimates.
Common off-the-shelf GPS receivers lack proper mecha-

nisms to detect these attacks. A group of studies have been

directed towards evaluating the requirements for successful

attacks, theoretically [16] and experimentally [11], [29]-[31].

For instance, the work in [30] has designed a real spoofer as

a Software Defined Radio (SDR) that records authentic GPS

signals and retransmits fake signals. It provides the option of

manipulating various signal properties for spoofing.

A. Spoofing Detection Techniques in the Literature

The first level of countermeasures to reduce the effect of
malicious attacks on GPS receivers typically relies on the
Receiver Autonomous Integrity Monitoring (RAIM) [4]. Oft-
the-shelf GPS receivers typically apply RAIM consistency
checks to detect the anomalies exploiting measurement redun-
dancies. For example, RAIM may evaluate the variance of
GPS solution residuals and consequently generate an alarm
if it exceeds a predetermined threshold. Similar variance
authentication techniques have been proposed in [22], [32]



TABLE |
GPS SPOOFING DETECTION TECHNIQUES: DETECTION DOMAIN AND IMPLEMENTATION ASPECTS

[ Method ] Attack Detection Domain [ Attack | Tmplementation Aspects | Relevant |
EKF GPS Navigation domain Not Estimated | Benchmark for most common GPS receivers Yes
CUSUM [20] GPS baseband signal domain Not Estimated | Applies hypothesis testing on packets of received signal No
Ref. [21] GPS baseband & power grid domains | Not Estimated gombines the statistics of carrier-to-noise ratio difference No
etween two GPS antennas
SPREE [22] GPS baseband signal domain Not Estimated | Applies auxiliary peak tracking in the correlators of receiver No
Ref. [23], [24] GPS baseband signal domain Not Estimated | Applies a position-information-aided vector tracking loop No
Ref. [25], [26] GPS navigation domain Not Estimated | Needs collaboration among multiple GPS receivers No
Ref. [27] GPS navigation domain Not Estimated | Applies an anti-spoofing particle filter Yes
Ref. [28] GPS navigation domain Not Estimated | Applies hypothesis testing on a GPS clock signature Yes
TSARM GPS navigation domain Estimated Applies a real-time optimization technique -

based on hypothesis testing on the Kalman filter innovations;
however, they are vulnerable to smarter attacks that pass RAIM
checks or the innovation hypothesis testing.

A plethora of countermeasures have been designed to
make the receivers robust against more sophisticated attacks
[9], [15], [17]-[19], [21]-[25], [27]1, [28], [33]-[35]. Vector
tracking exploits the signals from all satellites jointly and
feedbacks the predicted position, velocity, and time (PVT) to
the internal lock loops [23], [24], [33]. If an attack occurs, the
lock loops become unstable which is an indication of attack.
Cooperative GPS receivers can perfrom authentication check
by analyzing the integrity of measurements through peer-to-
peer communications [24], [25], [34], [35]. Also, a quick
sanity check for stationary time synchronization devices is to
monitor the estimated location. As the true location can be
known a priori, any large shift that exceeds the maximum
allowable position estimation error can be an indication of
attack [28]. The receiver carrier-to-noise receiver can be used
as an indicator of spoofing attack [17]. In [21], the difference
between the carrier-to-noise ratios of two GPS antennas has
been proposed as a metric of PMU trustworthiness. In addi-
tion, some approaches compare the receiver’s clock behavior
against its statistics in normal operation [19], [28], [33].

B. Existing Literature Gaps

As discussed above, prior research studies addressed a
breadth of problems related to GPS spoofing. However, there
are certain gaps that should still be addressed: 1) Most of the
works do not provide analytical models for different types of
spoofing attacks. The possible attacking procedure models are
crucial for designing the countermeasures against the spoofing
attacks. 2) Although some countermeasures might be effective
for a certain type of attack, a comprehensive countermeasure
development is still lacking for defending the GPS receiver.
This is practically needed as the receiver cannot predict the
type of attack. 3) The main effort in the literature is in
detection of possible spoofing attacks. However, even with
the spoofing detection, the GPS receiver cannot resume its
normal operation, especially in PMU applications where the
network’s normal operation cannot be interrupted. So, the
spoofing countermeasures should not only detect the attacks
but also mitigate their effects so that the network can resume
its normal operation. 4) There is a need for simpler solutions
which can be integrated with current systems.

C. Contributions of This Work

This work addresses the previously mentioned gaps for
stationary time synchronization systems. To the best of our
knowledge, this is the first work that provides the following
major contributions: 1) The new method is not a mere spoofing
detector; it also estimates the spoofing attack. 2) The spoofed
signatures, i.e., clock bias and drift, are corrected using the
estimated attack. 3) The new method detects the smartest
attacks that maintain the consistency in the measurement set.
A descriptive comparison between our solution and represen-
tative works in the literature is provided in Table 1. A review
of the spoofing detection domain shows that most of the prior
art operates at the baseband signal processing domain, which
necessitates manipulation of the receiver circuitry. Hence, the
approach in the present paper is compared only to those works
whose detection methodology lies in navigation domain.

The proposed TSA detection and mitigation approach in
this paper consists of two parts. First, a dynamical model
is introduced which analytically models the attacks in the
receiver’s clock bias and drift. Through a proposed novel Time
Synchronization Attack Rejection and Mitigation (TSARM)
approach, the clock bias and drift are estimated along with
the attack. Secondly, the estimated clock bias and drift are
modified based on the estimated attacks so that the receiver
would be able to continue its normal operation with corrected
timing for the application. The proposed method detects and
mitigates the effects of the smartest and most consistent
reported attacks in which the position of the victim receiver is
not altered and the attacks on the pseudoranges are consistent
with the attacks on pseudorange rates.

Different from outlier detection approaches in [36], [37],
the proposed method detects the anomalous behavior of the
spoofer even if the measurement integrity is preserved. The
spoofing mitigation scheme has the following desirable at-
tributes: 1) It solves a small quadratic program, which makes
it applicable to commonly used devices. 2) It can be easily in-
tegrated into existing systems without changing the receiver’s
circuitry or necessitating mulitple GPS receivers as opposed
to [21]-[24], [33], [34]. 3) It can run in parallel with current
systems and provide an alert if spoofing has occurred. 4)
Without halting the normal operation of the system, corrected
timing estimates can be computed.

The proposed anti-spoofing technique has been evaluated



using a commercial GPS receiver with open-source measure-
ments access [38]. These measurements have been perturbed
with spoofing attacks specific to PMU operation. Applying the
proposed anti-spoofing technique shows that the clock bias of
the receiver can be corrected within the maximum allowable
error in the PMU IEEE C37.118 standard [39].

Paper Organization: A brief description of the GPS is
described in Section II. Then, we provide the models for
possible spoofing attacks in Section III. Section IV elaborates
on the proposed solution to detect and modify the effect of
these attacks. Our solution is numerically evaluated in Section
V followed by the conclusions in Section VI.

II. GPS PVT ESTIMATION

In this section, a brief overview of the GPS Position,
Velocity, and Time (PVT) estimation is presented.

The main idea of localization and timing through GPS is
trilateration, which relies on the known location of satellites
as well as distance measurements between satellites and the
GPS receiver. In particular, the GPS signal from satellite n
contains a set of navigation data, comprising the ephemeris and
the almanac (typically updated every 2 hours and one week,
respectively), together with the signal’s time of transmission
(ty). This data is used to compute the satellite’s position
Prn = [Tn(tn), Yn(tn), 2n(t,)]T in Earth Centered Earth Fixed
(ECEF) coordinates, through a function known to the GPS
receiver. Let ¢t denote the time that the signal arrives at the
GPS receiver. The distance between the user (GPS receiver)
and satellite n can be found by multiplying the signal propa-
gation time tr — t,, by the speed of light c. This quantity is
called pseudorange: p, = c(tg —t,), n =1,..., N, where
N is the number of visible satellites. The pseudorange is not
the exact distance because the receiver and satellite clocks
are both biased with respect to the absolute GPS time. Let
the receiver and satellite clock biases be denoted by b, and
b, respectively. Therefore, the time of reception tr and ¢,
are related to their absolute values in GPS time as follows:
tr =t + by t, = tS"S +b,, n = 1,...,N. The
b,’s are computed from the received navigation data and are
considered known. However, the bias b, must be estimated
and should be subtracted from the measured tr to yield the
receiver absolute GPS time t3FS, which can be used as a time
reference used for synchronization. Synchronization systems
time stamp their readings based on the Coordinated Universal
Time (UTC) which has a known offset with the GPS time as
t9TC = 8PS — Atyre, where Atyrc is available online.!

Let py = [Ty, Yu, 2zu)? be the coordinates of the GPS
receiver, and d,, its true range to satellite n. This distance
is expressed via the locations p,, p, and the times t$FS,
tSPS as d,, = ||pn — Pull2 = c(tGFS — tS$FS). Therefore, the

n
measurement equation becomes

Pn = ||pn_pu|‘2+c(bu_bn)+€pn (D
where n = 1,...,N, and ¢, represents the noise. The

unknowns in (1) are x,, Yu, 2u, by and therefore measurements
from at least four satellites are needed to estimate them.

Ihitps://confluence.gps.nl/ginsy/en/utc-to-gps-time-correction-\
32245263.html (accessed Jan. 16, 2018).

Furthermore, the nominal carrier frequency (f. =
1575.42 MHz) of the transmitted signals from the satellite
experiences a Doppler shift at the receiver due to the relative
motion between the receiver and the satellite. Hence, in
addition to pseudoranges, pseudorange rates are estimated
from the Doppler shift and are related to the relative satellite
velocity v,, and the user velocity v, via
7 Pn — Pu

+ by +€p 2
[P — pull ’ @

P = (Vn — V)
where i)u is the clock drift.

In most cases, there are more than four visible satellites,
resulting in an overdetermined system of equations in (1)
and (2). Typical GPS receivers use nonlinear Weighted Least
Squares (WLS) to solve (1) and (2) and provide an estimate of
the location, velocity, clock bias, and clock drift of the receiver,
often referred to as PVT solution. To additionally exploit the
consecutive nature of the estimates, a dynamical model is used.
The conventional dynamical model for stationary receivers is
a random walk model [3, Chap. 9]

Tyl + 1] Zu[l]
yall + 1] Tos | O3\ | gull
zl+1] | = 0,.. 1 At zoll] | +wll] 3)
ball +1] 3001 bull]
by [l +1] . by 1]

where [ is the time index, At is the time resolution (typically
1 sec), and w is the noise. The dynamical system (3) and
measurement equations (1) and (2) are the basis for estimating
the user PVT using the Extended Kalman Filter (EKF).

Previous works have shown that simple attacks are able
to mislead the solutions of WLS or EKF. Stationary GPS-
based time synchronization systems are currently equipped
with the position-hold mode option which can potentially
detect an attack if the GPS position differs from a known
receiver location by a maximum allowed error [40]. This can
be used as the first indication of attack. But, more advanced
spoofers, such as the ones developed in [30], have the ability to
manipulate the clock bias and drift estimates of the stationary
receiver without altering its position and velocity (the latter
should be zero). So, even with EKF on the conventional
dynamical models, perturbations on the pseudoranges in (1)
and pseudorange rates in (2) can be designed so that they
directly result in clock bias and drift perturbations without
altering the position and velocity of the receiver.

[1l. MODELING TIME SYNCHRONIZATION ATTACKS

This section puts forth a general attack model that encom-
passes the attack types discussed in the literature. This model
is instrumental for designing the anti-spoofing technique dis-
cussed in the next section.

While TSAs have different physical mechanisms, they man-
ifest themselves as attacks on pseudorange and pseudorange
rates. These attacks can be modeled as direct perturbations on
(1) and (2) as

“4)
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Fig. 1. Type | attack on (a) pseudorange and (b) pseudorange rate
versus local observation time.

where s, and s, are the spoofing perturbations on pseudor-

anges and pseudorange rates, respectively; and ps and ps are

respectively the spoofed pseudorange and pseudorange rates.

A typical spoofer follows practical considerations to intro-
duce feasible attacks. These considerations can be formulated
as follows: 1) An attack is meaningful if it infringes the
maximum allowed error defined in the system specification.
For instance in PMU applications, the attack should exceed
the maximum allowable error tolerance specified by the IEEE
C37.118 Standard, which is 1% Total Variation Error (TVE),
equivalently expressed as 0.573° phase angle error, 26.65 us
clock bias error, or 7989 m of distance-equivalent bias error
[39]. On the other hand, CDMA cellular networks require
timing accuracy of 10 us.> 2) Due to the peculiarities of
the GPS receivers, the internal feedback loops may loose
lock on the spoofed signal if the spoofer’s signal properties
change rapidly [11], [29]. 3) The designed spoofers have the
ability to manipulate the clock drift (by manipulating the
Doppler frequency) and clock bias (by manipulating the code
delay) [30]. These perturbations can be applied separately,
however, the smartest attacks maintain the consistency of the
spoofer’s transmitted signal. This means that the pertubations
on pseudoranges, s,, are the integration of perturbations over
pseudorange rates, s;, in (4).

Here, distinguishing between two attack procedures is ad-
vantageous as the literature includes very few research reports
on the technical intricacies of the spoofer constraints:

o Type I: The spoofer manipulates the authentic signal so
that the bias abruptly changes in a very short time [13],
[15], [28]. Fig. 1 illustrates this attack. The attack on the
pseudoranges suddenly appears at ¢ = 30 s and perturbs
the pseudoranges by 8000 m. The equivalent attack on
pseudorange rates is a Dirac delta function.

o Type II: The spoofer gradually manipulates the authentic
signals and changes the clock bias through time [11], [17],
[19], [28], [29], [41]. This attack can be modeled by

spll] = sp[l — 1] + s, [l]At 5)

Sp[l] = Sp[l - ].] + Sp[l]At

Zhttp://www.endruntechnologies.com/cdma
2017).
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Fig. 2. Type Il attack on (a) pseudorange and (b) pseudorange rate
versus local observation time.

where s, and s, are respectively called distance equivalent
velocity and distance equivalent acceleration of the attack.
To maintain the victim receiver lock on the spoofer’s signals,
the attack should not exceed a certain distance equivalent
velocity. Two such limiting numbers are reported in the liter-
ature, namely, |s;| < 400 m/s in [29] and |s;| < 1000 m/s
in [11]. The acceleration to reach the maximum spoofing
velocity is reported to be |$,| < 5 m/s?. The spoofer accel-
eration §, can be random, which makes Type II attack quite
general. The distance equivalent velocity can be converted
to the equivalent bias change rate (in s/s) through dividing
the velocity by the speed of light. Fig. 2 illustrates this
attack. The attack on the pseudoranges starts at £ = 30 s and
perturbs the pseudoranges gradually with distance equivalent
velocity not exceeding 400 m/s and maximum distance
equivalent random acceleration satisfying |$;| < 5 m/s?.

The introduced attack models are quite general and can
mathematically capture most attacks on the victim receiver’s
measurements (pseudoranges and pseudorange rates) discussed
in Section I. In another words, Type I and Type II attacks
can be the result of data level spoofing, signal level spoofing,
record-and-replay attack, or a combination of the aformen-
tioned attacks. The main difference between Type I and Type
Il attacks is the spoofing speed. The speed of the attack
depends on the capabilities of the spoofer with respect to
manipulating various features of the GPS signals. Indeed,
attacks of different speeds have been reported in the literature
provided earlier in the present section. This work does not
deal with jamming, which disrupts the navigation functionality
completely whereas spoofing misleads it.

In the next section, a dynamical model for the clock bias
and drift is introduced which incorporates these attacks. Based
on this dynamical model, an optimization problem to estimate
these attacks along with the clock bias and drift is proposed.

IV. TSA-AWARE DYNAMICAL MODEL, TSA REJECTION
AND MITIGATION

This section introduces a dynamical model to accommodate
the spoofing attack and a method to estimate the attack.
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Afterwards, a procedure for approximately nullifing the effects
of the attack on the clock bias and drift is introduced.

A. Novel TSA-aware Dynamical Model

Modeling of the attack on pseudoranges and pseudorange
rates is motivated by the attack types discussed in the previous
section. These attacks do not alter the position or velocity,
but only the clock bias and clock drift. Our model does
not follow the conventional dynamical model for stationary
receivers which allows the position of the receiver to follow
a random walk model (3). Instead, the known position and
velocity of the victim receiver are exploited jointly. The state
vector contains the clock bias and clock drift, and the attacks
are explicitly modeled on these components, leading to the
following dynamical model:

(i = (6 (i) + (i + Gy
o ¥ %X s

where s, and s; are the attacks on clock bias and clock
drift and w; and w;, are colored Gaussian noise samples with
covariance function defined in [3, Chap. 9]. Here, both sides
are multiplied with ¢, which is a typically adopted convention.
The state noise covariance matrix, Q;, is particular to the
crystal oscillator of the device.

Similarly, define p[l] = [pi[l],...,pn[l]]* and p[I] =

[p111],- - -, pn[l]]T. The measurement equation can be as
P\ _ (Inx1 Onx1) [cbull] I
olll) 7 \Onx1 1nx: cbull]
—— ——
yi H Xq
[p1[l] = pulll cbr [1] ep [1]
Ipx[] - pall)| T
(valll =vall)"- Ri=petty | 7| ehildl | 7| enll
(vall] = vall]) " pRadi=Eell chnl] conll]

(] €l

(7

Explicit modeling of p, and v, in c; indicates that the
dynamical model benefits from using the stationary victim
receiver’s known position and velocity (the latter is zero). The
measurement noise covariance matrix, R;, is obtained through
the measurements in the receiver. Detailed explanation of how
to obtain the state and measurement covariance matrices, Q;
and Ry, is provided in Section V. It should be noted that
the state covariance Q; only depends on the victim receiver’s
clock behavior and does not change under spoofing. However,
the measurement covariance matrix, R;, experiences contrac-
tion. The reason is that to ensure that the victim receiver
maintains lock to the fake signals, the spoofer typically applies
a power advantage over the real incoming GPS signals at the
victim receiver’s front end [17].

Comparing (5), (6) and (7), TSAs which do not alter the
position and velocity transfer the attack on pseudoranges and
pseudorange rates directly to clock bias and clock drift. Thus,
it holds that s, = cs, and 5, = cs;,.

B. Attack Detection

Letl =k,...,k+ L — 1 define the time index within the
observation window of length L, where £ is the running time
index. The solution to the dynamical model of (6) and (7) is
obtained through stacking L measurements and forming the
following optimization problem:

k+L—1
(5(7 é) = argmin {2 Z ||yl - HX[ — Cl”i{,rl
%8 1=k '
| FELot k+L—1 ®)
t3 > I — Fxi —silf? ot > >\|DSl|1}
I=k I=k
where ||x||3; = xTMx, X = [X1,...,%1]T are the estimated

states, 8 = [81,...,87]7 are the estimated attacks, \ is a
regularization coefficient, and D is an L x 2L total variation
matrix which forms the variation of the signal over time as [42]

-1 0 1 o ... 0
0 -1 0 1 ... 0

D= . . . . . - )
o ... 0 -1 0 1

The first term is the weighted residuals in the measurement
equation, and the second term is the weighted residuals of the
state equation. The last regularization term promotes sparsity
over the total variation of the estimated attack.

In (8), the clock bias and clock drift are estimated jointly
with the attack. Here, the model of the two introduced attacks
should be considered. In Type I attack, a step attack is
applied over the pseudoranges. The solution to the clock bias
equivalently exgeriences a step at the attack time. The term
IDsilly = S [solt] = solt = 1|+ [s5l1] — s — 1]
indicates a rise as it tracks the significant differences between
two subsequent time instants. If the magnitude of the estimated
attack in two adjacent times does not change significantly, the
total variation of the attack is close to zero. Otherwise, in the
presence of an attack, the total variation of the attack includes
a spike at the attack time.

In Type II attack, the total variation of the attack does not
show significant changes as the attack magnitude is small at
the beginning and the sparsity is not evident initially. Although
we explained why it is meaningful to expect only few nonzero
entries in the total variation of the attacks in general, this is not
a necessary condition for capturing the attacks during initial
small total variation magnitudes. This means that explicit
modeling of the attacks in (6) and estimation through (8) does
not require the attacks to exhibit sparsity over the total varia-
tion. Furthermore, when the bias and bias drift are corrected
using the estimated attack (we will provide one mechanism
in Section IV-C), sparsity over the total variation appears for
subsequent time instants. In these time instants, the attack
appears to be more prominent, and in effect, the low dynamic
behavior of the attack is magnified, a fact that facilitates the
attack detection and will also be verified numerically. This
effect is a direct consequence of (8) and the correction scheme
discussed in the next section.

The optimization problem of (8) boils down to solving a
simple quadratic program. Specifically, the epigraph trick in
convex optimization can be used to transform the ¢;-norm into



linear constraints [43]. The observation window L slides for
a lag time Tj,g < L, which can be set to Tj,; = 1 for real-
time operation. The next section details the sliding window
operation of the algorithm, and elaborates on how to use the
solution of (8) in order to provide corrected bias and drift.

C. State Correction

In observation window of length L, the estimated attack §
is used to compensate the impact of the attack on the clock
bias, clock drift, and measurements.

Revisiting the attack model in (6), the bias at time [ + 1
depends on the clock bias and clock drift at time {. This depen-
dence successively traces back to the initial time. Therefore,
any attack on the bias that occurred in the past is accumulated
through time. A similar observation is valid for the clock
drift. The clock bias at time [ is therefore contaminated by
the cumulative effect of the attack on both the clock bias and
clock drift in the previous times. The correction method takes
into account the previously mentioned effect and modifies the
bias and drift by subtracting the cumulative outcome of the
clock bias and drift attacks asl follows: -

cbull]\ _ [cbul] . sy
(i)[l] ) - (pm ) - (Z Bl = ZS”““) !

U=k U=k

e _ (bl _ (S g1
(ﬁw]) <p[n> <Z b“)l

where by, and b, are respectively the corrected clock bias and
clock drift, p and p are respectively the corrected pseudorange
and pseudorange rates, and 1 is an all one vector of length
N+1.In (10), 1 =1,..., L for the first observation window
(k=1 and k+ L —T,, <1< k+L—1 for the observation
windows afterwards. This ensures that the measurements and
states are not doubly corrected. The corrected measurements
are used for solving (8) for the next observation window.

The overall attack detection and modification procedure
is illustrated in Algorithm 1. After the receiver collects L
measurements, problem (8) is solved. Based on the estimated
attack, the clock bias and clock drift are cleaned using (10).
This process is repeated for a sliding window and only the
clock bias and drift of the time instants that have not been
cleaned previously are corrected. In another words, there is
no duplication of modification over the states.

The proposed technique boils down to solving a simple
quadratic program with only few variables and can thus be
performed in real time. For example, efficient implementations
of quadratic programming solvers are readily available in low-
level programming languages. The implementation of this
technique in GPS receivers and electronic devices is thus
straightforward and does not necessitate creating new libraries.

(10)

V. NUMERICAL RESULTS

We first describe the data collection device and then assess
three representative detection schemes in the literature that fail
to detect the TSA attacks. These attacks mislead the clock bias
and clock drift, while maintaining correct location and velocity
estimates. The performance of our detection and modification
technique over these attacks is illustrated afterwards.

Algorithm 1 : TSA Rejection and Mitigation (TSARM)
1: Setk=1
2: while True do
3 Batchy, Vi=k,...,k+ L —1
4: Construct H,¢;,F Vi=k,...,k+ L -1
5
6
7

Compute Q; and R; (details provided in Section V)
Estimate X, § via (8)

Assign cby[l] = %[m],m = 2l — 1 and céu[l} =
x[ml,m=2 Vi=k, .. k+L—1
8: Assign 8p[l] = 8[m],m = 2l—1and 5;[l] = 8[m], m =

20 Vi=k,...,k+L -1

9. Modify bu[l], bu[l]. pll] and p[]] via (10) VI =
1,...,L for the first window and k + L — Tjpe < | <
k + L — 1 for the windows afterwards

pll]

10: Setyl_(p[l]> vz_k7...,lj;+L 1

11: Output t%TC[l] = t}gm — by [l} — Atyre VI =
k,...,k+ L —1 to the user for time stamping

12: Slide the observation window by setting k = k + i,

13: end while

A. GPS Data Collection Device

A set of real GPS signals has been recorded with a Google
Nexus 9 Tablet at the University of Texas at San Antonio on
June, 1, 2017.3 The ground truth of the position is obtained
through taking the median of the WLS position estimates for
a stationary device. This device has been recently equipped
with a GPS chipset that provides raw GPS measurements. An
android application, called GNSS Logger, has been released
along with the post-processing MATLAB codes by the Google
Android location team [38].

Of interest here are the two classes of the
Android.location package. The GnssClock* provides the
GPS receiver clock properties and the GnssMeasurement?

provides the measurements from the GPS signals
both with sub-nanosecond accuracies. To obtain the
pseudorange measurements, the transmission time is

subtracted from the time of reception. The function
getReceivedSvTIimeNanos () provides the transmission
time of the signal which is with respect to the current GPS
week (Saturday-Sunday midnight). The signal reception
time is available using the function getTimeNanos (). To
translate the receiver’s time to the GPS time (and GPS
time of week), the package provides the difference between
the device clock time and GPS time through the function
getFullBiasNanos ().

The receiver clock’s covariance matrix, Q, is dependent
on the statistics of the device clock oscillator. The following

3Qur data is available at: https:/github.com/Alikhalaj2006/UTSA_
GPS_DATA.git

“https://developer.android.com/reference/android/location/
GnssClock.html (accessed Feb. 20, 2017).

Shttps://developer.android.com/reference/android/location/
GnssMeasurement.html (accessed Feb. 20, 2017).


https://github.com/Alikhalaj2006/UTSA_GPS_DATA.git
https://github.com/Alikhalaj2006/UTSA_GPS_DATA.git
https://developer.android.com/reference/android/location/GnssClock.html
https://developer.android.com/reference/android/location/GnssClock.html
https://developer.android.com/reference/android/location/GnssMeasurement.html
https://developer.android.com/reference/android/location/GnssMeasurement.html
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Fig. 3. The effect of Type Il attack on the EKF and the anti-spoofing
particle filter [27] on (a) clock bias and (b) clock drift. The attack started
at ¢ = 30 s. Panel (b) does not include the drift.
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Fig. 4. Performance of hypothesis testing based on statistic (V-B) [28]
under Type | attack for different false alarm probabilities: (a) No attack,
(b) inconsistent attack, (c) consistent attack.

model is typically adopted:

3 2
Q <c2agAt+c2agA; oAl ) an
= 2
2 2 AL 2 2
oy S c JbAt
where o} = % and 01-72 = 27%h_o; and we select hg =

8x 107 and h_y = 2 x 10720 [44, Chap. 9]. For calculating
the measurement covariance matrix, R;, the uncertainty of the
pseuodrange and pseudorange rates are used. These uncertain-
ties are available from the device together with the respective
measurements.” In the experiments, we set A = 5 X 1010,
because the distance magnitudes are in tens of thousands of
meters. The estimated clock bias and drift through EKF in
normal operation is considered as the ground truth for the
subsequent analysis. In what follows, reported times are local.

B. Failure of Prior Work in Detecting Consistent Attacks

This section demonstrates that three relevant approaches
from Table I may fail to detect consistent attacks, that is,
attacks where s, is the integral of s; in (4).

The performance of the EKF and the anti-spoofing particle
filter of [27] subject to a Type II attack is reported first. The
perturbations over GPS measurements are the same as in Fig. 2
and are used as input to the EKF and the particle filter. The
attack starts at ¢ = 30 s. Fig. 3 depicts the effect of attack on
the clock bias and drift. The EKF on the dynamical model in
(6) and (7) blindly follows the attack after a short settling time.
The anti-spoofing particle filter only estimates the clock bias
and assumes the clock drift is known from WLS. Similarly to
the EKF, the particle filter is not able to detect the consistent
spoofing attack. The maximum difference between the receiver
estimated position obtained from the EKF on (3) under Type
IT attack and under normal operation is xq;g = 67 m, Yqir =
112 m, and zgig = 71 m. The position estimate has thus not
been considerably altered by the attack.

The third approach to be evaluated has been proposed
in [28] and monitors the statistics of the receiver clock,
as a typical spoofing detection technique [33]. Consid-
ering that off-the-shelf GPS receivers compute the bias
at regular At intervals, a particular approach is to es-
timate the GPS time after & time epochs, and con-
firm that the time elapsed is indeed kAt [28]. To this
end, the following statistic can be formulated: D(k) =

tGPS (k) — t§PS (1) — (k — )AL — Sk, b[k']At} c. The
test statistic D is normally distributed with mean zero when
there is no attack and may have nonzero mean depending on
the attack, as will be demonstrated shortly. Its variance needs
to be estimated from a few samples under normal operation.
The detection procedure relies on statistical hypothesis testing.
For this, a false alarm probability, Pr 4, is defined. Each Pr 4
corresponds to a threshold ~ to which D(k) is compared
against [45, Chap. 6]. If |D(k)| > ~, the receiver is considered
to be under attack.

The result of this method is shown in Fig. 4 for different
false alarm probabilities. Fig. 4 (a) depicts D(k) when the
system is not under attack. The time signature lies between
the thresholds only for low false alarm probabilities. The
system can detect the attack in case of an inconsistent Type I
attack, in which s,, is not the integration of perturbations over
pseudorange rates, s, and only pseudoranges are attacked.
Fig. 4 (b) shows that the attack is detected right away.
However, for smart attacks, where the spoofer maintains the
consistency between the pseudorange and pseudorange rates,
Fig. 4 (c) illustrates that the signature D(k) fails to detect the
attack. This example shows that the statistical behavior of the
clock can remain untouched under smart spoofing attacks. In
addition, even if an attack is detected, the previous methods
cannot provide an estimate of the attack.

C. Spoofing Detection on Type | Attack

Fig. 5 shows the result of solving (8) using the GPS
measurements perturbed by the Type I attack of Fig. 1. The
spoofer has the capability to attack the signal in a very short
time so that the clock bias experiences a jump at t = 30 s. The
estimated total variation of bias attack renders a spike right at
the attack time. The modification procedure of (10) corrects
the clock bias using the estimated attack.
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Fig. 6. Comparison of (a) normal pseudorange change (p(k) — p(1))
and spoofed pseudoranges change (ps(k) — ps(1)), and (b) normal
pseudorange rates (p) and spoofed pseudorange rates (ps) under Type
Il attack for some of the visible satellites. The attack started at t = 30 s.

D. Spoofing Detection on Type Il Attack

The impact of Type II attack on the pseudoranges and
pseuodrange rates is shown in Fig. 6. Specifically, Fig. 6
(a) illustrates the normal and spoofed pseudorange changes
with respect to their initial value at ¢ = 0 s for some of the
visible satellites in the receiver’s view. Fig. 6 (b) depicts the
corresponding pseudorange rates. The tag at the end of each
line indicates the satellite ID and whether the pseudorange
(or pseudorange rate) corresponds to normal operation or
operation under attack. The spoofed pseudoranges diverge
quadratically starting at £ = 30 s following the Type II attack.

For the Type II attack, Algorithm 1 is implemented for an
sliding window with L = 50 s with Tj,; = 10 s. Fig. 7
shows the attacked clock bias starting at ¢ = 30 s. Since
the attack magnitude is small at initial times of the spoofing,
neither the estimated attack S; nor the total variation do not

— 10000 T T T T
£ k- Attack started
) 0% —= Bias Spoofed boddbooddddddddd
i%j —o BiasNormal | )} T T TEEREEEERH aae
-10000 ! L L L L L 1 I |
1 5 10 15 20 25 30 35 40 45 50
= (a)
£ 200 T T T T T T
'2 0 o? 9 %, N 09-99 k- Attack started
» [ (D(blw [ o0 wéé¢¢¢°&¢ééé¢ééééé¢
% -200 L L L L ! I I I
1 5 10 15 20 25 30 35 40 45 50
@ (b)
€ 1 , . : ‘
= [ Attack started
S 9e?face 5060006090004
[
£ -1 L I I I I I I I
= 15 10 15 20 25 30 35 40 45 50
(c)
€ 5000 T T ; . .
> = Bias Modified k- Attack started
0¢ i ifi
s @uwmuuuuu..&.&.;,4,4,4,4,4,&“&““"!‘“
= -5000 : : ‘ : L s s s
1 5 10 15 20 25 30 35 40 45 50

(d)
Time (s)

Fig. 7. The result of attack detection and modification over Type Il attack
for t = 1 s through ¢ = 50 s. The attack started at ¢ = 30 s. From
top to bottom: (a) Normal clock bias (blue) and spoofed bias (red), (b)
estimated bias attack sy, (c) total variation of the estimated bias attack,
and (d) true bias (blue) and modified bias (magenta).
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Fig. 8. The result of attack detection and modification over Type I
attack for t = 11 s through t = 60 s. From top to bottom: (a) Normal
clock bias (blue) and spoofed bias (red), (b) estimated bias attack sy, (c)
total variation of the estimated bias attack, and (d) true bias (blue) and
modified bias (magenta).

show significant values. The procedure of sliding window is
to correct the current clock bias and clock drift for all the
times that have not been modified previously. Hence, at the
first run the estimates of the whole window are modified.
Fig. 8 shows the estimated attack and its corresponding total
variation after one Tj,,. As is obvious from the figure, the
modification of the previous clock biases transforms the low
dynamic behavior of the spoofer to a large jump at t = 50 s
which facilitates the detection of attack through the total
variation component in (8). The clock bias and drift have been
modified for the previous time instants and need to be cleaned
only for £ = 50 s — 60 s.
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E. Analysis of the Results

Let K be the total length of the observation time (in this
experiment, ' = 386). The root mean square error (RMSE)
is introduced: RMSE = %\/ fzfol(gu[k‘] — by [K])2, which
shows the average error between the clock bias that is output
from the spoofing detection technique, Eu, and the estimated
clock bias from EKF under normal operation, Bu, which is
considered as the ground truth. Comparing the results of the
estimated spoofed bias from the EKF and the normal bias
shows that RMSEgkr = 3882 m. This error for the anti-
spoofing particle filter is RMSEpr = 3785 m. Having applied
TSARM, the clock bias has been modified with a maximum
error of RMSErgarm = 258 m. Fig. 9 illustrates the RMSE
of TSARM for a range of values for the window size, L,
and the lag time, Tj,,. When the observation window is
smaller, fewer measurements are used for state estimation.
On the other hand, when L exceeds 40 s, the number of
states to be estimated grows although more measurements
are employed for estimation. The numerical results illustrate
that (6) models the clock bias and drift attacks effectively,
which are subsequently estimated using (8) and corrected
through (10).

VI. CONCLUDING REMARKS AND FUTURE WORK

This work discussed the research issue of time synchro-
nization attacks on devices that rely on GPS for time tag-
ging their measurements. Two principal types of attacks are
discussed and a dynamical model that specifically models
these attacks is introduced. The attack detection technique
solves an optimization problem to estimate the attacks on
the clock bias and clock drift. The spoofer manipulated clock
bias and drift are corrected using the estimated attacks. The
proposed method detects the behavior of spoofer even if the
measurements integrity is preserved. The numerical results
demonstrate that the attack can be largely rejected, and the
bias can be estimated within 0.86 us of its true value, which
lies within the standardized accuracy in PMU and CDMA
applications. The proposed method can be implemented for
real-time operation.

In the present work, the set of GPS signals are obtained from
an actual GPS receiver in a real environment, but the attacks
are simulated based on the characteristics of real spoofers
reported in the literature. Experimentation on the behavior
of the proposed detection and mitigation approach under real
spoofing scenarios is the subject of future research.
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