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Abstract—Manufacturing of workpieces with CNC ma-
chines requires computing machine tool trajectories that
fast and accurately track the desired workpiece contour.
This paper presents a novel B-spline trajectory generation
method for machine tools. The method solves an optimal
control problem to minimize the motion time of the tool,
while taking into account the velocity, acceleration and jerk
limits of the tool axes. Furthermore, it directly includes
the allowed workpiece tolerance, by constraining the tra-
jectory to lie inside a tube around the nominal geometry
contour. This allows exploring the trade-off between accu-
racy and productivity, while computing near-optimal trajec-
tories. The presented method creates fluent connections
between segments that build up the contour by simulta-
neously optimizing trajectories for multiple segments. On
the other hand, limiting the amount of simultaneously op-
timized segments and using an efficient problem formula-
tion keeps the computation time acceptable. The trajectory
generation method is validated in simulation by compar-
ison with industrial benchmarks, showing a reduction in
machining time of more than 10%. The comparison to a
state-of-the-art corner smoothing approach shows that the
presented method obtains similar or slightly faster trajec-
tories, at a computation time that is up to 45 times lower. In
addition, the method is validated experimentally on a 3-axis
micro-milling machine. To easily generate trajectories for
different workpieces and machines, the method is included
in a user-friendly open-source software toolbox.

Index Terms—CNC machine tools, optimal control,
splines, trajectory generation

I. INTRODUCTION

MODERN manufacturing industry heavily relies on
Computerized Numerical Control (CNC) machines for

the production of various kinds of workpieces. Applications
contain laser cutting of sheet metal parts, milling and lathing
of machine parts, and water jet cutting of marble.
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Workpieces are typically created in a Computer Aided
Design (CAD) program, and converted to a GCode file by
a Computer Aided Manufacturing (CAM) system. This file
represents the contour of the workpiece as a set of G-
commands, using for example straight lines (G01), circle arcs
(G02 and G03) or more complicated shapes, represented as
splines (G05). In order to machine the workpiece, the machine
tool needs to follow this contour accurately. To this end,
the contour needs to be converted into trajectories for the
different machine axes. These trajectories form a time domain
representation of the contour, describing the position for all
axes at every time instant.

When machining a workpiece, it is generally desired to
maximize the productivity. Hence, the goal is to create the
piece as fast as possible, while taking into account machine
limits like the maximum velocity, acceleration and jerk, and
process limits like the maximum allowed feed rate. In addition,
there are also quality requirements, which translate into a
certain tolerance on the workpiece. This tolerance is equal to
the maximum contouring error, and creates a tube around the
given contour, inside which the tool has to stay. The problem
formulation above naturally translates into an Optimal Control
Problem (OCP), which is challenging to solve, since it is non-
convex and has a large time horizon.

In general, there are various approaches to solve OCPs, in-
cluding dynamic programming, indirect methods which trans-
late the problem into a two point boundary value problem,
and direct methods which transform the OCP into a finite di-
mensional nonlinear programming problem. Direct approaches
such as single shooting and multiple shooting, e.g. imple-
mented in [1], or pseudospectral methods, e.g. implemented
in [2], are a popular choice to formulate the OCPs at hand [3].
However, an important drawback of these methods is that
they handle constraints that need to hold over the complete
time horizon by using time gridding. In this approach, the
time domain is discretized and constraints are only imposed at
specific points in time. As a consequence, constraint violations
may occur between sample points, such that a very fine grid
is required to reduce the amount of violations. However, a
finer grid leads to more constraints, and therefore a more
complicated problem.

On the other hand, there are also tailored methods to
handle CNC trajectory generation OCPs. Methods that solve
these challenging OCPs in a single step are called coupled
approaches. However, most methods are decoupled and solve
the problem approximately [4], separating contour re-shaping
from feed rate generation. Within the decoupled approaches
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there are two classes. The first class purely focuses on feed
rate planning and does not change the provided contour.
Feed rate planning methods are often based on optimization,
and include the machine and process limits as constraints.
When only constraints up to axis acceleration are taken into
account, the trajectory generation problem for following a path
exactly can be written in a convex form, allowing to find
the global optimum [5]. However, a discontinuity in the axis
acceleration can lead to vibrations in the machine tool [6].
To avoid vibrations, the authors of [7] formulate a jerk-
constrained nonlinear optimization problem. The downside
of these methods is that they require following the contour
exactly. This means that complete standstill is necessary at
corners, which leads to high machining times. The second
class of decoupled approaches solves this issue by first re-
shaping the contour, such that it can afterwards be followed
at a higher feed rate. The authors of [8] propose a discrete
geometry optimization using B-splines, written as a quadratic
program. Afterwards, a feed rate planning method, using e.g. a
particle swarm optimization approach [9], a discrete minimum
time OCP formulation [6], or an analytic approach [10], can
convert the re-shaped path into trajectories.

Because decoupled approaches do not treat the complete
problem in one step, they do, in general, not lead to a time-
optimal movement [8]. Coupled approaches, on the other
hand, combine contour re-shaping and feed rate planning into
a single problem, allowing the computation of an optimal
solution. These methods use the provided contour only as
a guideline. The approach of [11] rounds the corners in the
original contour and assigns a feed rate for every corner, using
an iterative procedure to ensure that the required tolerance is
met. In [12] the authors fit a minimum jerk spline through the
provided contour. The method aims at minimizing the tracking
error and it is not possible to constrain it to a specific value.
The authors of [13] propose a nonlinear model predictive
path following method that uses a spatial reformulation to
obtain simple geometric constraints. While this method allows
explicitly constraining the tracking error, the corresponding
optimization problem is strongly non-convex and very hard to
solve. In [14], a coupled path generation method is presented
that obtains a very low solving time by making a convex
approximation of the optimization problem at hand, and us-
ing down-sampling to reduce the dimension of the resulting
quadratic program. By solving the problem online, with a
receding horizon, uncertainties can be taken into account with
a state observer. However, specific tuning is required to reach
a solving time that makes the method real-time applicable.
In [15], the authors propose a corner-smoothing approach that
finds the trajectory that smoothly traverses a corner in a time
optimal way, while taking into account the required tolerance
and the kinematic constraints. The solution is obtained by
transforming the problem into a couple of two point boundary
value problems. However, the method can only handle corners,
and is not suited to compute trajectories for circle segments. In
addition, a certain minimum length of the segments that build
up the corner is required, and the solution times to smooth
a corner are high, ranging from 0.5 to 1.4 s. Finally, in [16],
the authors solve an OCP that includes an explicit tolerance

constraint on the workpiece, allowing a significant reduction in
machining time. However, the downside is that the tool center
position is forced to move through the segment connection
points, reducing the optimality of the trajectory.

In order to mitigate the drawbacks mentioned above, the
current paper presents a novel B-spline based trajectory gen-
eration method for CNC machines. It is a coupled direct ap-
proach that parameterizes the tool trajectory as a B-spline and
exploits spline properties to formulate the trajectory generation
problem as a small-scale optimization problem, allowing a
low solving time. In addition, these spline properties allow
obtaining guaranteed constraint satisfaction at all time instants
and avoid using time gridding. Limits on the axes velocity,
acceleration and jerk are easily imposed. In addition, the
tracking error is explicitly constrained in the optimization
problem. This requires non-convex state constraints, but leaves
the trajectory freedom to move inside a tube around the
nominal contour. This freedom allows reducing the machining
time, while the desired quality of the workpiece is still guar-
anteed. To obtain efficient contouring constraints, a separate
B-spline is associated to each GCode segment that builds up
the contour. Fluent transitions between subsequent splines are
obtained by adding continuity conditions in their connection
points. However, in order to keep the resulting OCP tractable,
not all segments are optimized at once. Using a moving
horizon approach, only the first few segments are optimized si-
multaneously. Afterwards, the trajectories for the first segment
are saved, and the window is shifted forward one segment. In
combination with an efficient problem formulation, the moving
horizon approach leads to OCPs that have an acceptable
solving time. Finally, as opposed to [16], it is not required that
the trajectory passes exactly through the connection points of
subsequent segments, allowing an increase in optimality.

The presented method is compared to an industrial trajec-
tory generator from Siemens [17], and shows a reduction in
machining time of 11% for a simple benchmark and 38% for a
benchmark consisting of plenty of short segments. In addition,
a comparison to the state-of-the-art method presented in [15]
shows that the presented method computes similar or slightly
faster trajectories, while the required computation times are
up to 45 times lower. To prove its practical applicability, the
method is experimentally validated on a 3-axis micro-milling
machine. To facilitate generating trajectories for various work-
pieces, the presented method is embodied in OMG-tools, a
user-friendly open-source Python toolbox [18].

Section II describes the general OCP and the moving hori-
zon approach. Section III explains the spline-based trajectory
generation in detail and shows how to keep the optimization
problems small-scale by using a spline parameterization. Af-
terwards, Section IV and V validate the presented method by
showing numerical simulation examples and an experimental
validation. Finally, Section VI concludes the paper.

II. PROBLEM FORMULATION

The presented trajectory generation method aims at com-
puting the machine tool trajectories that trace the provided
contour as fast as possible, while satisfying the velocity,
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acceleration and jerk limits of the tool axes, and staying inside
the desired tolerance band around the workpiece contour. This
problem formulation naturally translates into an OCP, that is
described more in detail below.

For the sake of clarity, the paper only discusses contours
consisting of straight segments (G01) and circle arcs (G02
and G03), but the designed method also allows trajectory
generation for spline contour segments (G05). For the moment,
the method is only explained and implemented in 2D, while
it is conceptually expandable to 3D. The considered GCode
describes the workpiece contour for the tool center point. In
the case of operations such as milling, where the machine tool
has a certain diameter, this may require a preprocessing step
to convert the provided workpiece contour to a GCode path
for the tool center point.

First, Section II-A formulates the OCP that computes the
trajectory for a single segment. Afterwards, Section II-B ex-
plains how to improve this formulation and set up an OCP that
simultaneously optimizes trajectories for multiple segments.

A. Trajectory generation for a single segment
When formulating the trajectory generation problem for a

single segment, the motion trajectories for the tool center point
are given by:

q(t) =

[
x(t)
y(t)

]
, (1)

in which x(t) and y(t) describe the axes positions as a function
of time. The axes velocities, accelerations and jerks are given
by the corresponding derivatives of q(t).

The computed trajectory must steer the tool from the start
of the segment qo to the end qg. In addition, the tool starts
from, and ends in standstill, requiring the following boundary
conditions:

q(0) = qo q(T ) = qg,

q̇(0) = 0 q̇(T ) = 0,

q̈(0) = 0 q̈(T ) = 0,

(2)

in which T represents the total motion time that is required
to machine the segment.

Furthermore, the axes velocities, accelerations and jerks are
constrained within their allowed bounds, at all time instants:

vmin ≤ q̇(t) ≤ vmax, ∀t ∈ [0, T ],

amin ≤ q̈(t) ≤ amax, ∀t ∈ [0, T ],

jmin ≤ ...
q (t) ≤ jmax, ∀t ∈ [0, T ].

(3)

Hence, sufficiently smooth motion trajectories are required. In
this formulation, the bounds are vectors, such that different
limit values are allowed for both axes within q(t).

The machine dynamics are not explicitly accounted for
in the problem formulation. However, the kinematic con-
straints (3) will have a large influence on the dynamic behavior
of the machine, e.g. tightening the jerk constraints will lower
the vibrations in the machine [6]. Therefore, constraints (3)
can be seen as kinodynamic constraints.

During machining, the allowed feed rate is typically con-
strained to fmax, in order to obtain sufficient surface quality
of the workpiece:

‖q̇(t)‖22 ≤ f2max ∀t ∈ [0, T ]. (4)
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Fig. 1: Tolerances for a straight segment and a circle segment

In addition, contouring tolerance constraints are required to
reach the desired accuracy. When formulated for the complete
workpiece at once, these constraints become very complicated.
However, they are greatly simplified when considering only
a single GCode segment. For a straight segment, connecting
A and B, adding a tolerance turns it into a rectangle, as
shown in Figure 1a. The following constraint expresses that
the perpendicular distance from the line through A and B to
the tool center has to be smaller than the desired tolerance at
all time instants:

−ε ≤ a> · q(t)− b ≤ ε ∀t ∈ [0, T ], (5)

in which ε is the provided contouring tolerance, a is the
normalized normal vector of the segment, and b is the signed
distance between the segment and the origin. On the other
hand, adding a tolerance to a circle arc turns it into a ring
segment, as shown in Figure 1b. The following constraint
expresses that the tool has to stay inside the ring at all time
instants:

(r − ε)2 ≤ ‖q(t)− C‖22 ≤ (r + ε)2 ∀t ∈ [0, T ], (6)

in which C is the center of the ring and r is its nominal
radius. Note that constraints (5) and (6) consider the infinite
versions of the segment. Equation (5) forces the tool to stay
within a distance ε from the infinitely long line through A and
B, instead of inside the rectangle shown in Figure 1a. On the
other hand, (6) keeps the tool inside the complete ring, instead
of inside the ring segment. Section II-B explains how to deal
with the consequences of this approximation.

Finally, the goal is to obtain time-optimal trajectories. To
be able to optimize the motion time T , the problem is
reformulated using a dimensionless time τ = T

t .
Assembling constraints (2)-(6) and using T as objective

gives the OCP that computes time-optimal trajectories for a
single segment. However, this formulation requires the tool
to come to standstill at the end of each segment, in order
to connect any subsequent segment in a smooth way. Only
for exact path following (when ε is zero), these decoupled
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trajectories form the optimal solution. When there is a nonzero
tolerance, decoupling between segments is always suboptimal.
Moreover, the suboptimality rises as the tolerance increases.
The following section explains how to avoid decoupled trajec-
tories.

B. Trajectory generation for multiple segments
By simultaneously optimizing the trajectories for a sequence

of N segments, decoupling between subsequent segments
can be avoided. In this approach, a separate trajectory qj(t)
is assigned to each segment j, together with its own time
horizon Tj . In addition, each segment gets its own contouring
constraints, which therefore keep the simple form of (5)
and (6). In this formulation, it is possible to specify a different
tolerance for each segment in the contour.

In order to obtain a fluent connection between the tra-
jectories that traverse subsequent segments, the following
continuity constraints are added:

qj(1) = qj+1(0),

q̇j(1) · Tj+1 = q̇j+1(0) · Tj ,
q̈j(1) · T 2

j+1 = q̈j+1(0) · T 2
j .

(7)

These constraints express that the position, velocity and accel-
eration at the end of the trajectory associated with segment j
have to be equal to the corresponding values at the beginning
of the trajectory traversing segment j + 1.

Assembling all elements from Section II-A, adapting them
to account for multiple segments and adding (7), leads to the
final OCP:

min
qj(·),Tj

N∑
j=1

Tj

s. t. q0(0) = qo, qN (1) = qg,

q̇0(0) = 0, q̇N (1) = 0,

q̈0(0) = 0, q̈N (1) = 0,

vmin · Tj ≤ q̇j(·) ≤ vmax · Tj ∀j ∈ {1, N},
amin · T 2

j ≤ q̈j(·) ≤ amax · T 2
j ∀j ∈ {1, N},

jmin · T 3
j ≤

...
q j(·) ≤ jmax · T 3

j ∀j ∈ {1, N},
‖q̇j(·)‖22 ≤ f2max · T 2

j ∀j ∈ {1, N},
− ε ≤ a>j · qj(·)− bj ≤ ε ∀j ∈ JG01

,

(rj − ε)2 ≤ ‖qj(·)− Cj‖22 ∀j ∈ JG02,G03
,

‖qj(·)− Cj‖22 ≤ (rj + ε)2 ∀j ∈ JG02,G03
,

qj(1) = qj+1(0) ∀j ∈ {1, N − 1},
q̇j(1) · Tj+1 = q̇j+1(0) · Tj ∀j ∈ {1, N − 1},
q̈j(1) · T 2

j+1 = q̈j+1(0) · T 2
j ∀j ∈ {1, N − 1}.

(8)
In this formulation, q(·) is equivalent to q(τ),∀τ ∈ [0, 1]. JG01

and JG02,G03 represent the set of straight and ring segments
respectively, such that JG01

∪ JG02,G03
= {1, N}.

When solving (8) for blocks of N segments, there is still
a decoupling between segment N and N + 1. In addition,
the required standstill at the end of segment N influences
the previous trajectories. To solve these issues, the OCP is
inserted in a moving horizon approach. After computing the

trajectories for the first N segments, merely the trajectory for
the first segment is saved. Afterwards, the horizon is shifted:
segment one is removed from the OCP, and segment N + 1
is added. In the next step, the trajectories for segment two to
N + 1 are optimized simultaneously. Since standstill is only
required at the end of the last segment in the horizon, while
only the first trajectory is saved, decoupling is avoided: all
obtained trajectories fluently connect subsequent segments. In
addition, using the solution from the previous step as initial
guess strongly reduces the solving time.

However, in general, the resulting optimization problem is
still challenging to solve. The following section describes how
to efficiently formulate this problem, allowing to swiftly obtain
a solution.

III. SPLINE-BASED TRAJECTORY GENERATION

This section first explains how to formulate problem (8)
efficiently by using a spline parameterization for q(τ). After-
wards, it further details the implementation of the presented
trajectory generation method.

A. Splines

In [19], the authors propose a method to transform OCPs of
the form (8) into a small-scale nonlinear optimization problem.
There are two key aspects of the method: (i) a B-spline
parameterization is adopted for the motion trajectory q(τ);
and (ii) the properties of B-splines are exploited to replace
constraints over the entire time horizon by small, finite, yet
conservative, sets of constraints.

Splines are piecewise polynomial functions, that can de-
scribe complex trajectories using only few variables. A spline
is given by a linear combination of B-spline basis func-
tions [20], as illustrated in Figure 2. Therefore, the motion
trajectory is parameterized as:

q(τ) =
n∑

i=1

cqi ·Bq
i (τ). (9)

Here Bq
i (τ) are B-spline basis functions, cqi are the spline

coefficients and n follows from the spline degree and the
number of knots. In order to obtain smooth acceleration trajec-
tories and allow including jerk constraints, splines of degree
three are used throughout this paper. When using this spline
parameterization in (8), the variables of the problem become
the coefficients cqi and motion time T . Since the motion
trajectory q(τ) is a spline, the velocities q̇(τ), accelerations
q̈(τ) and jerks

...
q (τ) are splines as well. Their coefficients cq̇i ,

cq̈i and c
...
q
i are readily verified to depend linearly on cqi , e.g.:

q̇(τ) =

n−1∑
i=1

cq̇i (c
q
i ) ·Bq̇

i (τ). (10)

The main reason for adopting the B-spline parameterization
is the corresponding convex hull property, which states that a
spline is always contained in the convex hull of its B-spline co-
efficients [20] (see Figure 2). This way, spline constraints can
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Fig. 2: A spline as a linear combination of B-spline basis functions

be enforced through constraints on the B-spline coefficients.
For instance, the semi-infinite velocity constraints

vmin ≤ q̇(τ) ≤ vmax, ∀ τ ∈ [0, 1] (11)

are guaranteed to hold if

vmin ≤ cq̇i ≤ vmax, i = 1 . . . n. (12)

Replacing semi-infinite sets of constraints of the form (11),
by the finite, yet conservative sets (12) is called a B-spline
relaxation. The major advantage is that B-spline relaxations
avoid time gridding of the constraints, while they guarantee
constraint satisfaction at all times. Since using relaxations
comes down to replacing constraints on the spline by con-
straints on the control polygon, some conservatism is intro-
duced, as shown on Figure 2 by the distance between the
control polygon and the spline itself. This conservatism can
be reduced by choosing a higher dimensional basis, at the
cost of introducing extra constraints [19]. For a more detailed
explanation, see [21].

Using a spline parameterization for the OCP, in combination
with B-spline relaxations of semi-infinite constraints, leads to a
tractable nonlinear optimization problem, which can be solved
efficiently.

B. CNC trajectory generation
The presented spline-based trajectory generation method

is implemented in OMG-tools: a user-friendly open-source
toolbox. The Github page of this toolbox contains animations
of simulations, and videos of the experimental validation [18].
OMG-tools is written in Python and uses CasADi [22] as
a symbolic framework to formulate the trajectory generation
problem, transform it into a tractable optimization problem
and pass it to the solver. The default solver for all problems
in this paper is Ipopt [23].

Regarding the specific implementation of the method in
OMG-tools two practicalities demand special attention. The
first practicality is that Ipopt is an interior point solver,
and therefore requires a feasible initial guess to guarantee
convergence to an optimal solution. In order to be feasible,
the guess, which consists of values for the coefficients of the
position splines, has to fulfill all constraints of the OCP. This
means that the initial guess of the position trajectories has to
lie inside the tolerance band. In addition, the initial guess also
has to satisfy the kinematic limits of the tool axes, which is
ensured by scaling its time axis accordingly. In a default step
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Fig. 3: Initial guess generation for a straight segment
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Fig. 4: Initial guess generation for a circle segment

of the receding horizon approach, a feasible guess for the first
N − 1 segments is readily obtained from the solution of the
previous step. However, for the added segment, an initial guess
needs to be computed separately.

For straight segments (G01), a bang-bang jerk profile is
proposed to determine the initial guess of the position spline,
by using a triple integration (see Figure 3a). As expected, this
approach gives coefficients that lie on a straight line through
the center of the tolerance band, as shown in Figure 3b.

Finding an initial guess for a circle segment (G02 and G03)
is more involved, since the spline coefficients leading to a
trajectory that lies inside the ring are not easily determined.
Placing all coefficients on the center line of the ring does not
necessarily lead to a trajectory that lies inside the tolerance
band. Instead, the guess is obtained by solving a fitting
problem that minimizes the jerk of the trajectory, while staying
inside the tolerance band, as shown in Figure 4a. It is important
to mention that B-splines cannot exactly represent a circle. As
a consequence, for a given spline basis with a certain freedom
(determined by the amount of knots and the degree), there is
a lower bound on the tolerance for which a spline inside the
ring segment exists. In practice, when using a degree three
spline with 10 knot intervals, even for a tolerance of 2.5µm
a feasible initial guess was found.

The second practicality is due to the fact that (6) actually
constrains the trajectory to lie inside the complete ring, instead
of inside the segment itself. As a consequence, for ring seg-
ments with a wide opening angle, the most optimal trajectory
may actually pass along the other side of the ring segment
(see Figure 4b). To avoid these trajectories, such wide ring
segments are split in multiple segments. In practice, segments
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TABLE I: Kinematic limits for the considered benchmarks

parameter vmax [m
s

] amax [m
s2

] jmax [m
s3

] ε [µm]

Figure 5 0.15 20 1500 1 or 500

Figure 8a 0.5 20 1420 2.5

Figure 8b 0.3 20 850 6

Figure 9 / 4 / 15

with an opening angle larger than 135◦ are split into two new
segments with equal opening angles, as shown at the top of
Figure 5.

In addition, because the continuity constraints between
subsequent segments enforce the endpoint of segment j to
lie in the overlap region between segments j and j + 1, all
trajectories stay inside their corresponding segment.

IV. NUMERICAL VALIDATION

To evaluate the performance of the presented method,
trajectories are computed for several benchmarks. For an
anchor-shaped workpiece, the influence of the amount of
simultaneously optimized segments on the obtained machining
time is studied in detail. For other benchmarks, the resulting
machining time is compared to the ones obtained by the
method of [15] or to those computed with an industrial
trajectory generator of Siemens [17]. Table I summarizes the
applied kinematic limits and the allowed tolerance for the con-
sidered benchmarks. Since this is common for CNC machines,
symmetric upper and lower kinematic limits were chosen.
For all comparisons, spline trajectories of degree three with
20 knot intervals were selected. In addition, trajectories for
three segments were optimized simultaneously in the receding
horizon approach (N = 3), unless mentioned differently. All
computations are made on a notebook with Intel Core i5-
4300M CPU @2.60GHz x 4 processor and 8GB of memory.

A. Evaluation for an anchor-shaped workpiece
Figure 5 shows the machine tool trajectories that are com-

puted for the time-optimal machining of the first benchmark:
an anchor-shaped workpiece. It is clear how the trajectories
efficiently exploit the tolerance band of 0.5mm by cutting
corners, hereby reducing the production time. For all simula-
tions concerning the anchor, an extra feed rate constraint (4)
was added, using an fmax of 150 mm

s .
To study the relationship between the tolerance (ε), the

amount of simultaneously optimized trajectories (N), the
obtained motion time (Tmot) and the required average and
maximum calculation times for each step in the receding
horizon approach (Tavg and Tmax), Table II gives an overview
of simulation results for different combinations of ε and N .
This table shows that optimizing trajectories for only one
segment at a time, thus requiring standstill at the end of
each segment, gives a significantly higher motion time. This
is because subsequent trajectories are decoupled in this case.
Even when trajectories for only two subsequent segments are
optimized simultaneously (N = 2), this decoupling effect
almost completely vanishes: the obtained Tmot when putting
N = 2 or when optimizing the trajectories for all segments

−15 −10 −5 0 5 10 15

−10
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20
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y
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]

Fig. 5: Computed trajectories for an anchor-shaped workpiece with
ε = 0.5mm

TABLE II: Effect of ε and N on the motion time (Tmot) and the
maximum (Tmax) and average (Tavg) computation time

ε = 1 µm N Tmot [s] Tavg [ms] Tmax [ms]

1 1.791 9 12

2 1.703 34 54

3 1.702 64 96

24 1.702 641 641

ε = 0.5mm N Tmot [s] Tavg [ms] Tmax [ms]

1 1.754 10 19

2 1.245 29 61

3 1.176 43 64

24 1.176 424 424

in one step (N = 24) hardly differs. On the other hand,
the required solving times increase significantly for higher
N values. This shows that optimizing trajectories for two or
three segments simultaneously makes a good trade-off between
optimality and computational cost. In addition, Table II shows
that the effect of decoupling is smaller when the tolerance
band is tighter. This is because fully decoupled trajectories
form the optimal solution when ε is zero.

In addition, for the case in which ε = 1 µm and N = 3,
the required solving time for each step in the receding horizon
is comparable with the machining time for the first segment
in this horizon. This means that, with the appropriate prepro-
cessing, the presented method is suited to use online, during
machining.

To study the effect of the tolerance on the obtainable
feed rate, the feed rate profiles for both tolerance values are
compared. Figure 6 clearly shows that a larger tolerance allows
for a more constant feed rate, while a lower tolerance often
requires slowing down to stay inside the tolerance band. The
numbers that are added to Figure 6 are linked to the equivalent
numbers in Figure 5, indicating which feed rate is obtained at
which point on the contour. In addition, Figure 7 shows the
jerk trajectories for the x- and y-axis, which correspond to the
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Fig. 6: Feed rate profiles for half of the anchor
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Fig. 7: Computed jerk trajectories for half of the anchor-shaped
workpiece with ε = 0.5mm

position trajectories of Figure 5.
Finally, additional constraints were included in the problem

formulation to force the trajectory to pass exactly through all
corner points of the contour, as is required by the method
of [16]. Adding these constraints increases the required motion
time from 1.176 s to 1.385 s, which provides a strong indica-
tion that the requirement to pass exactly through the corner
points leads to conservative trajectories.

B. Comparison to alternative approaches

In order to quantify the performance of the spline-based
trajectory generation approach, the current section compares
it to several alternative methods. The first alternative method
keeps the tolerance band, but demands exact standstill at the
end of each GCode segment (N = 1). The second method
uses an industrial trajectory generator from Siemens. The third
method is presented in [15] and solves an OCP to compute
trajectories that smoothly traverse corners in minimal time,
while taking into account the kinematic constraints and path
tolerance.

In the presented comparison, three benchmarks are consid-
ered. The first benchmark is a square with sides of 50mm,
of which the corners are rounded using circles with a radius
of 5mm, as shown in Figure 8a. The second benchmark is a
complicated workpiece that contains a wide variety of shapes
(see Figure 8b). This piece is designed to be machined by a
laser cutter, explaining the straight connections between e.g.
the different circles, on which the laser beam is turned off.
The third benchmark is taken from [15] and consists of three
corners with different opening angles, as shown in Figure 9.
For all benchmarks, the corresponding limits are given in
Table I.
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(b) Complicated benchmark

Fig. 8: Studied benchmarks

TABLE III: Comparison of the motion times of different trajectory
generation methods for the benchmarks of Figure 8

Benchmark: Figure 8a (ε = 2.5 µm) Figure 8b (ε = 6 µm)

Standstill-standstill 0.761 s 14.38 s

Siemens 0.64s 15.1 s

Spline-based 0.57 s 9.29 s

For the square-shaped benchmark, the second column of
Table III summarizes the obtained total motion time of the tool
for each method, showing that the presented method gives an
11% reduction in machining time compared to the industrial
trajectory generator. The average computation time of a step
in the receding horizon approach of the spline-based method
is 58ms, the maximum computation time is 78ms.

For the complicated benchmark, the third column of Ta-
ble III summarizes the obtained total motion time of the
tool for each method, showing that the presented method
gives a 38% reduction in machining time compared to the
industrial trajectory generator. The average computation time
of a step in the receding horizon approach is 63ms, the
maximum computation time is 156ms. Note that the difference
in motion time between both methods is more pronounced for
the complicated workpiece, since it contains more segments,
and therefore more opportunities to gain time. The GCode that
describes the anchor and the two previous benchmarks can be
found in [18].

Finally, the presented spline-based trajectory generation
method is compared to the approach presented in [15]. The au-
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thors compute trajectories that smoothly traverse three corners
with opening angles of respectively 45◦, 90◦ and 140◦. Table I
gives an overview of the kinematic limits that are selected
for this comparison. In addition, the feed rate is constrained
to 25 mm

s . Because the authors of [15] define the tolerance
as the maximum distance that is allowed between the corner
point and the trajectory, the value that is selected for ε in the
spline approach is tightened (depending on the specific angle)
to fulfill this constraint. Figure 9 shows the computed position
and corresponding velocity trajectories for the three considered
corners.

0 0.05 0.1
-0.08

-0.04

0

x[mm]

y[
m
m
]

0 4 8 12
5

10

15

20

25

time [ms]

‖q̇
(t
)‖

2
[m

m s
]

(a) 45◦ angle

0 0.05 0.1

-0.1

-0.05

0

x[mm]

y[
m
m
]

0 2 4 6 8
15

17

19

21

23

25

time [ms]

‖q̇
(t
)‖

2
[m

m s
]

(b) 90◦ angle

-0.1 0 0.1

0

0.1

0.2

x[mm]

y
[m

m
]

0 2 4 6 8

24.88

24.92

24.96

25

time [ms]

‖q̇
(t
)‖

2
[m

m s
]

(c) 140◦ angle

Fig. 9: Position and velocity spline trajectories obtained for different
corners

Table IV makes a comparison of the motion times that
are obtained with both methods for the three corners. As
a reference, the motion time for exact corner following,
requiring standstill in the corner point, is included in the first
row of the table. Except for the 45◦ corner, for which the
computed spline trajectory is 0.2% slower, trajectories that are
4% and 1% faster are obtained with the spline-based method.
In addition, Table V shows that the presented method requires
a solving time that is up to 45 times lower than the one
required by the method from [15].

V. EXPERIMENTAL VALIDATION

To demonstrate the practical value of the presented tra-
jectory generation approach, some of the discussed work-

TABLE IV: Comparison of the motion times for different corner
smoothing trajectories obtained by the method presented in [15] and
the proposed spline-based approach

Corner: 45◦ 90◦ 140◦

Standstill-standstill 13.74ms 14.66ms 13.69ms

Method [15] 11.89ms 9.56ms 7.81ms

Spline-based 11.92ms 9.21ms 7.73ms

TABLE V: Comparison of the solving times required to compute
different corner smoothing trajectories with the method presented
in [15] and the proposed spline-based approach

Corner: 45◦ 90◦ 140◦

Method [15] 1.4 s 0.5 s 0.87 s

Spline-based 31.2ms 32.8ms 20.7ms

pieces are produced on a 3-axis micro milling machine. First,
Section V-A describes the machine in detail. Afterwards,
Section V-B discusses the obtained results.

A. 3-axis micro-milling machine

Today’s machine tools for manufacturing small workpieces,
e.g. for the watch industry, are often weighting several tons
and consuming more than 20 kW. A research program of
the Applied University of Western Switzerland, under the
lead of HE-Arc, developed a new concept for a micro ma-
chine, mainly intended for High Speed Machining (HSM)
and Electrical Discharge Machining (EDM) [24]. The aspect
ratio between machine and workpiece is small (5:1), and
the power consumption is less than 2 kW, while keeping the
same manufacturing performance as conventional production
machines for small workpieces. Figure 10 shows the resulting
3-axis micro-milling machine, that is used for the experimental
validation of the proposed trajectory generation method.

Fig. 10: 3–axis micro–milling machine

The machine design uses a stacked serial Cartesian config-
uration of the axes, driven by ball screws, creating a working
space of 50×50×30 mm. A high emphasis was put on a very
light and highly rigid design: the sum of moving masses is only
10 kg, the static stiffness of the spindle holder is ≈ 5 · 107 N

m
and the first eigenfrequency is about 180Hz. The maximum
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velocity of the axes is 30 m
s , and the maximum acceleration

is 20 m
s2

. The machine is equipped with a high speed spindle
of 240W that rotates at a maximum of 80.000 rpm. For the
experimental validation explained below, a milling tool with a
diameter of 1mm was used to cut in a brass workpiece.

To steer the axes, high-end drives from Triamec are used,
allowing a sampling frequency of 100 kHz. The precalculated
reference trajectories for position, velocity and acceleration are
stored in a binary file. Afterwards, they are cut in chunks and
transmitted in real time to the drives, using a PCI card with a
large FIFO buffer, over a proprietary Trialink bus running at
10.000 samples per second. The desired setpoints are reached
using standard cascaded PID control loops with feedforward
compensations. At the same time, measurements from the
incremental encoders are stored, enabling to quantify tracking
errors for each axis.

B. Experiments

The first machined workpiece is the anchor from Figure 5,
selecting a maximum feed rate of 16 mm

s , a maximum accel-
eration of 20 m

s2
, and a maximum jerk of 1500 m

s3
. In order to

study the effect of the selected tolerance value on the obtained
trajectory and corresponding machining time, the workpiece
is machined three times, reducing the tolerance from 0.5mm
over 0.1mm to 0.01mm. Figure 11 clearly shows how the
reduced freedom in the trajectory leads to a higher machining
time.

(a) ε = 0.5mm,
T = 10.55 s

(b) ε = 0.1mm,
T = 12.15 s

(c) ε = 0.01mm,
T = 13.55 s

Fig. 11: Comparison of machined anchors for increasing accuracy

To analyze if the required tolerance for the workpiece of
Figure 11c is reached, the obtained contour is measured with
a tactile measurement machine. Because the machining tool
has a larger radius than the measurement tool, undercut occurs
in sharp corners. Therefore, it is not possible to measure the
correct distance to the nominal contour at these points, and the
measurements in this area are removed from the analysis (see
Figure 12a). However, there are still plenty of measurements
in the other corner points left in the data set. Comparing the
measured positions with the desired contour shows an average
error of 0.005mm and a maximum error of 0.038mm. Note
that while the average error is well below the tolerance, there
are several measurements that violate the tolerance constraint
of 0.01mm, as shown in Figure 12b. These violations have
two main causes: (i) the computed trajectory exploits the
tolerance band, such that its distance to the contour is equal
to the tolerance at some points, leaving no margin for any
deviation, and (ii) there are flexibilities between the motor

encoders and the tool center point. In order to reduce these
errors, the user can either reduce the allowed tolerance, or
include the machine dynamics during the trajectory generation.
The latter solution can be implemented in the proposed method
by taking into account the determined resonance frequency of
the flexibilities in the OCP.

(a) Indication of the removed
measurements (red) in regions of
undercut
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Fig. 12: Analysis of the machined anchor workpiece using tactile
measurements

The second machined workpiece is the one from Figure 8b.
Originally, this workpiece is designed to machine with a laser
cutter. During cutting, the laser beam is turned off on the
straight segments that e.g. connect the different circles and
squares. To simulate this behavior on a milling machine, the
z-axis was retracted on connection segments (see Figure 13a).
The same settings as for the anchors from Figure 11 were
selected, using a tolerance of 0.01mm. With these settings,
the required machining time becomes 52.1 s. The trajectory
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Fig. 13: Retracting the z-axis on connection segments (a) to machine
the complicated workpiece (b)

generation for retraction of the z-axis is implemented in OMG-
tools as well. In addition, this toolbox also allows generating
trajectories for workpieces that require multiple passes in the
XY-plane, each time followed by a small movement in the
z-direction. Movies of the machining of both workpieces can
be found on the website of [18].

VI. CONCLUSION

Modern industry continuously strives to maximize the pro-
ductivity of the available CNC machines. This paper presents
a spline-based trajectory generation method that immediately
takes into account the machine limits, process limits and
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required accuracy. Therefore, it can exploit the allowed tol-
erance of the workpiece to compute trajectories that move the
machine tool swiftly through corners, reducing the required
production time to a great extent. Numerical simulations that
compare the presented method to an industrial trajectory gen-
erator show an 11% reduction in machining time for a simple,
and a 38% reduction for a more complicated workpiece. The
comparison to a state-of-the-art corner smoothing approach
shows that the presented method computes trajectories that are
0.2% slower to ones that are 4% faster, at computation times
that are up to 45 times lower. An experimental validation on a
3-axis micro-milling machine proves the practical applicability
of the presented method. Generating spline-based trajectories
for a specific workpiece is facilitated by OMG-tools, a user-
friendly open-source software toolbox.
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[7] Q. Zhang, S. Li, and J. Guo, “Smooth time-optimal tool trajectory
generation for CNC manufacturing systems,” Journal of Manufacturing
Systems, vol. 31, no. 3, pp. 280–287, 2012.

[8] F. Sellmann, “Exploitation of tolerances and quasi-redundancy for set
point generation,” Ph.D. dissertation, ETH Zürich, 2014.
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