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Abstract—Low visual quality has prevented underwater
robotic vision from a wide range of applications. Although
several algorithms have been developed, real-time and
adaptive methods are deficient for real-world tasks. In this
paper, we address this difficulty based on generative adver-
sarial networks (GAN), and propose a GAN-based restora-
tion scheme (GAN-RS). In particular, we develop a multi-
branch discriminator including an adversarial branch and a
critic branch for the purpose of simultaneously preserving
image content and removing underwater noise. In addition
to adversarial learning, a novel dark channel prior loss also
promotes the generator to produce realistic vision. More
specifically, an underwater index is investigated to describe
underwater properties, and a loss function based on the
underwater index is designed to train the critic branch for
underwater noise suppression. Through extensive compar-
isons on visual quality and feature restoration, we confirm
the superiority of the proposed approach. Consequently,
the GAN-RS can adaptively improve underwater visual qual-
ity in real time and induce an overall superior restoration
performance. Finally, a real-world experiment is conducted
on the seabed for grasping marine products, and the results
are quite promising. The source code is publicly available '.

Index Terms—Underwater vision, image restoration,
Generative Adversarial Networks (GAN), machine learning.

I. INTRODUCTION

Ith the rapid development of computer vision and
convolutional networks (CNN), a multitude of under-
water vision tasks have emerged. For example, overcoming the
problem with low-contrast visualization, Chuang et al. tracked
live fish with a segmentation algorithm [1]. Additionally,
Chen et al. proposed an identity-aware detection method
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based on Single-Shot Detector (SSD) for underwater object
grasping [2], [3]. However, the underwater vision is severely
degraded [4], and thus it is imperative to elevate visual quality
for aquatic robots. To that end, some studies on underwater
image enhancement have been conducted [5]-[10]. Neverthe-
less, the visual degeneration is multifarious (see Fig. 1), and
most existing literature has difficulty when deals with a variety
of types of underwater environments using constant parameter
settings [7]. Moreover, the problem with low time efficiency
is rarely tackled, which is pivotal for robots’ autonomous
operations. Thus, it is essential to develop a real-time and
adaptive method for underwater visual restoration.

Recently, Generative Adversarial Networks (GAN) [11]
have been successfully employed in image-to-image transla-
tion tasks, e.g., style transfers and super-resolution [12]. It
is clear that image restoration can be treated as an image-
to-image translation, so we are certain that GAN is able to
restore the underwater scenes if trained with paired data (i.e.,
original underwater images and corresponding in-air versions).
Furthermore, a well-trained GAN-based method can adaptively
work for various underwater scenarios. When it comes to
underwater training data, although paired images are hard to
be obtained, synthetic in-air data based on a traditional method
can provide unambiguous visual content for training. However,
the characteristics of synthetic samples and real in-air data are
still distinct to some extent, so synthetic images can not be
employed as the ground truth. Otherwise, GAN’s results can
perform similarly but no better than the synthetic data. That is,
underwater noise that incurs color distortion, contrast decrease,
and haziness still needs to be further removed. Thereby, a new
framework is required for further enhancement.

In this paper, to adaptively restore underwater visual quality
in real time, we propose a GAN-based restoration scheme
(GAN-RS). The tasks of our generator are twofold, i.e., 1)
preserving image content and 2) removing underwater noise.
To these ends, we build a multi-branch discriminator including
an adversarial branch and a critic branch. Making image
content unambiguous, our previous work [13] provides super-
vision to train the adversarial branch in a supervised manner
for the first task. Additionally, a novel dark channel prior
(DCP) loss is developed for the same purpose. The DCP loss
promotes the pixel-level similarity, whereas the adversarial
training is responsible for high-level analogy in terms of
features. For the second task, we investigate a creative evalu-
ation criterion for underwater properties, namely, underwater
index. Subsequently, the corresponding underwater index loss
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Fig. 1. Various undersea images. Most existing algorithms restore them
with complex information estimation and high time costs, whereas we
treat this task as a computationally efficient image-to-image translation.

is designed to train the critic branch, and the combination of
the loss functions obeys a multi-stage loss strategy. Extensive
comparison experiments verify the restoration quality, time
efficiency, and adaptability of the proposed algorithm. The
contributions made in this paper are summarized as follows:

e We propose a GAN-RS to elevate underwater visual
quality. After training, the GAN-RS no longer needs any
prior knowledge that makes it work.

o A multi-branch discriminator is developed, where an
adversarial branch is leveraged for preserving image
content while a critic branch is explicitly designed for
removing underwater noise. A DCP loss, an underwater
index, and a multi-stage loss strategy are investigated to
assure effective training.

o The GAN-RS reaches 133.77 frames per second (FPS),
and achieves a superior restoration performance.

o To the best of our knowledge, this is the first time that
a visual restoration approach is practically tested on the
seabed for real-world applications.

Il. RELATED WORK
A. Traditional Underwater Image Restoration Methods

Most existing methods for restoring underwater images are
based on an image formation model IFM) [5]-[8], where the
background light and transmission map should be estimated in
advance. Peng and Cosman made a comprehensive summary
regarding image information estimation based on DCP method
[14], and a restoration method based on image blurriness
and light absorption (RBLA) was proposed [7]. Based on
the aforementioned theory, Li et al. hierarchically estimated
the background light using quad-tree subdivision, and their
method of transmission map estimation was characterized by
achieving minimum information loss [6]. For a superior color
fidelity, Chiang et al. analyzed the wavelength of underwater
light, and then compensated it to relieve color distortion [5].
Neural networks have recently been utilized for IFM estima-
tion, e.g., Shin et al. proposed a CNN architecture to estimate
the background light and transmission map synchronously
[15]. Therefore, the original object radiance can be recovered
after estimation. On the other hand, ignoring the IFM, the
approach proposed by Ancuti ef al. derived weight maps

from a degraded image, and the restoration was based on
information fusion [9].

The information estimation can potentially be a waste of
time, so we directly treat the restoration as an image-to-
image translation task. The quality of underwater vision can
be enhanced by a single-short network in the GAN-RS.

B. Image-to-Image Translation

With the development of deep learning, particularly GAN
[11], approaches to image-to-image translation have been
rapidly developed in recent years for Labels to Street scene,
Aerial photo to Map, Day to Night, Edges to Photo, and
so on. If there are paired data, GAN can be trained in a
supervised way [12], [16]-[18]. Zhu et al. used GAN to learn
the manifold of natural images, whose generator presented
the scenes or objects from the profiles [16]. Combining an
adversarial loss with the mean squared error, Ledig er al.
constructed a perceptual loss to guide the generator more
effectively [17]. Meanwhile, residual blocks were employed
to design a generative network. Isola er al. proposed a general
framework for supervised image-to-image translation prob-
lems based on conditional GAN (cGAN) [19], namely pix2pix,
and built a fully convolutional discriminator to concern image
patches [18].

In most cases, paired images are hard to obtain, so several
unsupervised methods have been developed [20]-[22]. Dong
et al. designed an unsupervised framework with three stages,
i.e., learning the shared features, learning the image encoder,
and translation [20]. Extending from the pix2pix, Zhu et al.
proposed a general unsupervised framework, namely, Cycle-
GAN, whose main idea was the minimization of reconstruction
error between two sets of training data [21]. Liu et al
proposed unsupervised image-to-image translation networks
based on shared-latent space assumption, where images could
be recovered from latent codes [22].

To preserve image content, supervised methods are more
suitable for underwater restoration. Moreover, the supervision
of GAN-RS is two-fold. That is, despite the paired training
data, the target image serves as the supervision of adversarial
branch rather than the final ground truth.

I1l. APPROACH

In this section, a filtering-based restoration scheme (FRS) is
briefed at the beginning, and the FRS generates real adversarial
samples in the GAN training process. Then, the architecture
of the proposed GAN-RS for underwater image restoration is
detailed, followed by the loss function for training.

A. Filtering-Based Restoration Scheme

In general, the training process of GAN requires real and
fake samples, so we introduce an FRS in our framework,
whose results will serve as the real adversarial samples.

We incorporate a pre-search and a filtering operation in the
FRS. According to [4], the degeneration of underwater vision
is caused by absorption, forward scattering, and backward
scattering. The wavelength A\, water depth de, and object-
to-camera distance di are related to the degeneration. We
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Fig. 2. The architecture of the GAN-RS. From top to bottom: the FRS, generator, and discriminative model. The generator is a downsample-

upsample framework with residual blocks. The multi-branch discriminator

loss, an underwater index loss, and a DCP loss are designed for training.

treat this problem using simplifying assumption, i.e., the color
distortion is produced through absorption, and the haziness
is produced from forward and backward scattering. Math-
ematically, we use [,q to denote original and degenerated
signals. For wavelength A, the absorption can be formulated
with an exponential decay, i.e. q‘;bs = e~ 4], where qabs i
the absorbed signal; e~7"% is the scalar absorption term that
multiplies with each element in a matrix; and n = (), de)
denotes absorption factor. Then, haziness can be expressed by
convolution, i.e., 5" = hxq3%*, where ¢*“****" represents
scattered signal; h = h(de, di) indicates a hazing convolution
template related to forward and backward scattering. Ambient
illumination sources are also merged into the signal transmis-
sion path during backward scattering, so the final degenerated
signal g\ = ¢5°*"*¢" 4+ n, where n = n(de, di) is noise term.
Thus, the degeneration model is formulated as follows:

qn = h* 5% + n. (1)

The dehazing is thereby converted into a deconvolution
task. In the next step, the convolution operation inspires us
to apply a Fourier transform. Hence, the above analysis can
be transferred to the Fourier domain:

Qa(u,v)

where the symbol .x denotes element-wise multiplication for
a matrix. The turbulence model proposed by Hufnagel and
Stanley [27] is used to formulate :

= H(u,v). * QL% (u,v) + N(u,v),  (2)

—k(u?40?)5/6
9,

H(u,v) =e 3)

is equipped with an adversarial branch and a critic branch. An adversarial

where u, v are frequency variables, and k is associated with
the intensity of a turbulent medium. Note that k wraps de, d,
i.e., k = k(de, di). To obtain unambiguous image content, the
Wiener filter is employed as follows:

B He(u,v)
) = o) B 1 Ru,0)

Aabs

A

JQx(u,0), 4
where H¢(u,v) denotes the conjugate matrix of H(u,v).
Related to de and di, R(u,v) is the noise to single ratio
that suppresses the effect of ambient illumination sources. It
can be seen that the FRS generates Q4% (u, v) rather than the
ideal restoration, and we use Qabs (u,v) as the real adversarial
sample since it has been able to present key features. The FRS
also requires information estimation of k, R, and they can be
estimated by optimization approaches, e.g., [13] uses artificial
fish swarm algorithm for parameter search. Thus, the limits of
applicability of the FRS is remarkable. That is, k, R is fragile
with the change of underwater environments, and the search
of them is computationally expensive. Inversely, the GAN-RS
forgoes the need for any prior knowledge.

B. Architecture of the GAN-based Restoration Scheme

As illustrated in Fig. 2, the proposed architecture includes
a generator GG and a discriminative model D, and D contains
an adversarial branch D, and a critic branch D...

The generator G based on a forward CNN is an encoder-
decoder structure [17], which is composed of residual blocks.
By means of a 9-residual-block stack, the downsample-
upsample model learns the essence of the input scene, and
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a synthesized version will emerge at the original resolution
after the deconvolution operations.

We design the discriminator D in a multi-branch manner
including an adversarial branch and a critic branch. Using an
image group (i.e., an underwater image concatenates a G’s
output or an FRS’s output) as the input, the multi-branch
structure analyzes images from two aspects with forward
CNNs, followed by the generations of an adversarial map
and an underwater index map. The trunk of D is a one-
layer convolution, and for the purpose of preserving image
content, the real-or-fake discrimination is realized through the
adversarial branch. On the other hand, the critic branch is
carefully designed as a regression to discern whether an image
belongs to an underwater scene or not. That is, it evaluates the
intensity of underwater property in an image, promoting the
generator to produce images without underwater noise. These
two branches are designed using a stack of Conv-BatchNorm-
ReLU (CBR) units to concern image features. Inspired by the
PatchGANs, we design both branches based on the idea of
“patch”, and the number of employed CBR units impacts the
patch size (or receptive field). The effect of patch in adversarial
training have been discussed by pix2pix [18], so we inherit its
setting. As for the critic branch, learning underwater property
needs more contextual information, so larger patch should
have acquired better performance. However, the size of the
underwater index map decreases with increasing patch size.
Compared to small underwater index map, a large one is more
effective for training owing to data augmentation. As a trade-
off, we construct the adversarial branch with 4 CBR units,
whereas the critic branch is built using 6 units. Finally, the
resolution of the output underwater index map is 6 x 6, and
the size of the receptive field is 286 x 286. In addition, the
adversarial branch is constructed using 2 fewer CBR units,
and thus the sizes become 30 x 30 and 70 x 70.

C. Objective

1) Adversarial Loss: As the input condition, the original
underwater image fed into GG is denoted as x, and G tries to
generate “real” sample y with noise z, i.e., G(x, z) — y. The
original conditional adversarial loss is a form of cross entropy
[18]. However, Mao et al. stated that the cross entropy may
lead to a problem with vanishing gradient during training, and
they advocated the use of least squares generative adversarial
networks (LSGANS) [28], whose loss function is the following
least squares form:

LiscaANp = Ex7y~pdata(w7y)[(Da($v Y) — a)2]
+E$diata(x)7z’\‘pz(z) [(Da (:c, G({E, Z)) - b)2]

£lscGANG = ]Exwpdam(z),zwpz(z)[(Da(xa G(ﬂ?, Z)) - G)Q](S)
where Dyata(2,y),p.(2z) represent z — y joint distribution
and noise distribution, respectively. Hence, the LSGANS is
employed for efficiency, and @ = 1,b = 0 are the labels of the
real or synthesized data, respectively.

2) DCP Loss: To promote the generator to not only fool the
discriminator but also encourage an output close to the ground
truth at the pixel level, a L1 loss between y and G(z, z) is

Origin: U=3.252
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Fig. 3. lllustration of an underwater index. (a) A diagram of the underwa-
ter index. The orange patch denotes the a — b distribution of an image,
and d,, ds, and d; can be used to discriminate an underwater image
and in-air image. (b) Typical experiment results. U is larger in terms of
the original frame, and is thus probably an underwater image, whereas
the a — b scatters of a GAN-RS processed frame is closer to the in-
air distribution. Hard to be visualized, the scatter points are excessively
dense, so we present their convex hulls here.

employed in pix2pix. Moreover, the effectiveness of this L1
loss has been verified by [18]. Because the FRS-processed
samples are not final results, we do not expect a pixel-level
similarity. Therefore, our method for the underwater image
restoration task can not employ this L1 loss, and we design
a DCP loss based on the knowledge that there is a distinctive
appearance between a hazy image and its clear version in a
dark channel [14]. Here, we compute a dark channel for each
pixel p, and construct the DCP loss as follows:

Ydark (p) = min)\e{r,g,b} Yx (p)

G(.T, z)dark(p) = min)\e{r,g,b} G($7 Z))\(p)

‘CDCP = Ervy“’pdata,(z’y),ZNPz (2) ‘ |ydark - G(.’I}, Z)dllrk|“(6)

3) Underwater Index Loss: If D works only using the
adversarial branch, the networks can not outperform FRS since
the GAN would consider the real samples as the ideal outputs.
Thus, to further improve the visual quality and promote G
to generate underwater-noise-removed images, a novel loss
function is proposed to train the critic branch, namely the
underwater index loss. According to the observation of mas-
sive amounts of data, we deem that there is a distinctive
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characteristic of underwater images in the Lab color space.
Referring to Fig. 3(a), the Lab color space has a strong
capability to indicate a color distribution, i.e., red and green
can be clearly differentiated on the a-axis, whereas blue and
yellow can be discerned on the b-axis. Moreover, as shown by
the orange patch in Fig. 3(a), the a—b scatters of an underwater
scene consistently gather far from the origin (shown with
the orange patch), whereas those of an in-air image usually
distribute sparsely with the origin as the center (shown with
the cyan patch). Thus, three distances, i.e., d,, dp, and d,, , can
be used to formulate the possibility of an image having been
taken underwater. Accordingly, the underwater index is given

as
WV,
N 1OCleadb7

where a; denotes the average value of the L-channel, and the
square root for d, is employed for the purpose of amplifying
a small distance.

Next, the underwater index loss is designed, which is
learned using L2 sense function by the critic branch:

(7

Lup =Eypiaran(De(y) = U())?]
JrEwdiata(l‘LZNPZ(Z) [(De(G(z,2)) — U(G(z, Z)))z] 3)
Ly, = Em’\‘pdata(z)yz’\‘pz(z)[(‘DC(G(:E7Z)))2}'

where U(-) computes the underwater index of an image. From
(8), it can be seen that Ly is trained towards O rather than
real samples, so the real samples are not ideal outputs in our
design and the GAN-RS is able to perform better than the
FRS.

4) Full Objective: The full objective is

Lp =wcanLiscGANp T wulup ©

Lg = waanLiscaang +wulue +wpepLpep,
where w is the trade-off parameters, and the optimal models
are formulated as D* = arg, min Lp, G* = arg,; min Lg.

Despite two branches in D, our models can be trained

following the canonical GAN paradigm. That is, G and D
use their respective optimizers for back-propagation so that
they can be trained individually and simultaneously. Unlike
the traditional GAN, our discriminator generates two losses
(i.e., an adversarial loss and an underwater index loss), and
we add them up for back-propagation based on (9).

V. EXPERIMENTS AND DISCUSSION
A. Training Details

1) Basic Settings: By collecting underwater images on
seabed in China, a training set was established with 2201
images, whereas the test set combined our data with public
underwater images. Our training setting is according to the
DCGAN [23]. The learning rate begins at 0.0002, and a
linear decay is employed after 50 epochs. There are 65-epoch
iterations in total. The Adam solver with 8 = [0.50,0.99] is
employed as the optimizer [29]. Both the input and output
resolutions are 512 x 512. Additionally, the selection of w
is important. For example, if wy; is too large, G can rapidly

G:ad_loss
D:ad_loss
G:U_loss
D:U_loss

0 10 20 30 40 50 60
epoch

Fig. 4. lllustration of multi-stage training loss. G: ad_loss, D: ad_loss
denotes Liscaang and Liscgany,, Whereas G: U_loss, D: U_loss are
Ly, and Ly, . The stair in Ly, indicates that the critic branch goes
into effect, and the £;;.gan achieves dynamic equilibrium twice.

generate images with lower underwater index, but simulta-
neously, D will quickly distinguish real and fake samples.
As a result, Loy loses its effect, and G could bring about
artifacts in the output images. If wy; is too small, £y can not
impact the training process. Experimentally, wgany = 1,wy =
10, wpcp = 30 are selected based on the model performance,
and these training parameters can assure the stable training of
GAN. Note that w is only used for training, which would not
appear in the test phase. Thus, for real-world applications, the
GAN-RS does not depend on any experimental or empirical
parameter.

2) Multi-Stage Loss Strategy: We develop a multi-stage loss
strategy for effective training, i.e., Lo = waganLisccAaNg +
wpcpLpcp at the beginning of training. Then, wy Ly, will
be added to L at a specific timestamp (i.e., the 30th epoch
in this paper). The necessity of the multi-stage loss strategy
is twofold: 1) The critic branch randomly predicts underwater
index map at the beginning of training, so the L/, is worthless
until D, has been optimized. 2) This operation eliminates the
early impact of Ly, so that D, and G can achieve a dynamic
equilibrium as soon as possible for stable training.

The loss curves are illustrated in Fig. 4. A stair in Ly,
is evident when the critic branch goes into effect. Moreover,
in terms of adversarial loss, it can be seen that G, D achieve
dynamic equilibrium early in the training (i.e., Liscaang =~
0.30, Liscaan, =~ 0.22), whereas Loan deviates from the
balance points when Ly is applied. That is, the generated
image is deemed to probably be synthesized, whereas D is
more certain about its judgment. Gradually, a new dynamic
equilibrium will be obtained at another pair of balance points
(i.e., £lscGANG ~ 0.40, ElscGANG ~ 0.19).

B. Compared Methods

The proposed methods are compared with the GW [24],
CLAHE [25], probability-based method (PB) [26], RBLA [7],
pix2pix [18], CycleGAN [21], and the dehazing (DM) or
contrast enhancement method (CM) in [6]. All the above-
mentioned method are implemented with open source codes.
As for pix2pix [18] and CycleGAN [21], they are under



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

TABLE |
FPS LIST BY THE PROPOSED METHODS AND SEVERAL
CONTEMPORARY APPROACHES.

Method FPS Method FPS

GW [24] 18.21 RBLA [7] 0.02

PB [26] 1.45 CLAHE [25] 21.27/84.03
DM [6] 0.43 FRS (ours) 38.91/118.56
CM [6] 0.32 GAN-RS (ours) 133.77

PyTorch framework, and we adjust training parameters to train
our dataset more effectively. On the contrary, other methods
are based on Matlab, and we maintain the original parameters
in their papers. It should be remarked that the comparison
between the pix2pix and GAN-RS can unveil the effectiveness
of critic branch and underwater index loss.

C. Runtime Performance

1) Running Environment: The GAN-RS is implemented
under the PyTorch framework. Experiments are carried out
on a workstation with an Intel 2.20 GHz Xeon(R) E5-2630
CPU, an NVIDIA TITAN-Xp GPU, 64 GB RAM.

2) Time Efficiency: All the run-time data are tested using
512 x 512 images. Most approaches are based on Matlab, but
our FRS is a C++ project while the GAN-RS is implemented
under a GPU-based framework. Thus, the speed of CLAHE is
described in the form of Matlab speed / C++ speed, whereas
the FRS speed is presented as CPU speed / GPU speed.
Sharing the runtime performance, the pix2pix and CycleGAN
use the same GG as the GAN-RS, so they are not be listed. As
shown in Table I, the processing speed for FRS is 118.56 FPS.
Moreover, far superior to the existing restoration methods, the
GAN-RS reaches 133.77 FPS.

D. Restoration Results

1) Visualization of Underwater Index: As an illustrative
example, the underwater index is delineated graphically in
Fig. 3(b). The demonstrated image is a typical underwater
environment, which is quite hazy and color-distorted. The
upper-right corner of Fig. 3(b) shows original color distribution
in the a — b plane. As can be seen, the color distortion is
reflected in the distance between the distribution center and
the origin, i.e., d, is large for terrible color distortion. On
the other hand, the haziness is related to the concentration
of the distribution. Briefly, d,d, approaches to 0 owing to
the haziness or lower contrast, and thus U — 0 is the ideal
condition. Although U is not involved in the optimization, the
FRS performs well to enhance the underwater index (see the
lower-left corner of Fig. 3(b)). Further, the GAN-RS uses a
critic branch to decrease the underwater index loss, so a more
considerable U can be achieved with less bias and greater
dispersion in the a — b plane (see the lower-right corner of
Fig. 3(b)). Therefore, the underwater index has the capability
of describing the underwater property intensity in an image.

2) Comparison on Restoration Quality: The comparison,
shown in Fig. 5, verifies the qualitative superiority of the

Origin

CLAHE

pix2pix CycleGAN RBLA DM

FRS

GAN-RS

@ B (© (@ (e O (9

Fig. 5. Qualitatively comparison between our method with contemporary
approaches in terms of restoration quality. Images in each row are
restored by the denoted method. (a), (b) are collected by [9]; (c) is
collected by [10]; (d) is collected by [5]; (e) is collected by [8]; and (f), (g)
are collected by this paper.

proposed GAN-RS. Compared with several prior and contem-
porary methods, our method achieves a clearer vision, more
balanced color and stretched contrast. As can be seen, some
approaches see limited effect as for restoration quality, e.g.,
the GW only achieves a white balance; the CLAHE has an
insignificant effect on the color correction; and the brightness
advancement introduced by PB comes with an aggravation of
the color distortion. Meanwhile, due to supervised adversarial
training, our method results in little damage to the original im-
age content. On the contrary, the CycleGAN cannot maintain
the semantic content owing to lack of effective supervision,
whereas the CM cannot preserve the objective color of an
image in certain cases (see Fig.5(f), (g)). The RBLA performs
well, but there is a drawback that the parameter adjustment
is complex and empirical. For instance, the RBLA restores
Fig.5(a) at a resolution of 404 x 303 in the original paper [7].
In this paper, however, a 512 x 512 version is applied instead,
and its performance is restricted with original parameters.
The numerical comparison is shown in Table II. There is
no in-air ground truth for comparison, and therefore some
no-reference quality assessment tools are employed, including
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TABLE Il
QUANTITATIVE COMPARISON USING NO-REFERENCE QUALITY ASSESSMENT ((a),(g) ARE REGARDING TO FIG. 5.)

Label Figure do |l dodyt U] | Laplacet Entropy? UCIQEfT | UICMT UISMtT UIConM{  UIQM7T
Origin 0.79 0.04 3.60 3.11 6.93 0.42 -0.63 3.19 0.15 1.45
GW 0.51 0.25 0.53 2.03 6.54 0.45 2.83 1.75 0.12 1.02
PB 0.84 0.03 3.76 2.12 6.47 0.36 -2.01 1.83 0.10 0.85
CLAHE 0.58 0.11 0.97 8.21 7.22 0.49 1.11 11.83 0.17 4.13
(a) DM 0.79 0.04 3.95 2.72 6.91 0.45 0.06 3.26 0.13 1.43
RBLA 0.63 0.13 1.02 3.93 7.51 0.57 2.21 5.75 0.15 2.30
pix2pix 0.35 0.15 0.47 16.50 7.23 0.49 2.20 13.87 0.21 4.90
FRS 0.36 0.14 0.51 23.10 7.24 0.51 2.51 14.42 0.21 5.07
GAN-RS 0.22 0.2 0.25 17.96 7.15 0.50 2.63 14.20 0.21 5.01
Origin 0.74 0.04 4.28 6.22 6.49 0.42 0.14 6.47 0.17 2.51
GW 0.53 0.13 2.65 3.26 5.28 0.49 4.43 3.55 0.14 1.68
PB 0.83 0.05 2.64 4.28 6.13 0.36 -0.52 5.92 0.12 2.17
CLAHE 0.49 0.17 0.59 19.70 7.01 0.53 3.83 11.63 0.17 4.15
(2) DM 0.72 0.05 3.45 6.27 6.43 0.42 0.06 6.03 0.14 2.27
RBLA 0.53 0.12 0.92 10.65 7.03 0.55 7.03 8.86 0.16 3.38
pix2pix 0.35 0.23 0.36 24.76 7.09 0.56 4.08 12.76 0.20 4.60
FRS 0.28 0.19 0.34 25.12 7.13 0.57 4.02 13.42 0.20 4.79
GAN-RS 0.3 0.27 0.25 28.80 7.06 0.57 4.19 13.57 0.21 4.86
Origin 0.66 0.05 2.81 4.77 6.46 0.44 0.26 5.56 0.15 2.20
GW [24] 0.51 0.16 1.28 3.52 6.03 0.46 3.03 4.24 0.13 1.80
PB [26] 0.73 0.06 2.51 3.67 6.11 0.40 -0.46 5.02 0.11 1.87
CLAHE [25] 0.48 0.14 0.69 12.28 7.11 0.52 2.35 11.33 0.16 3.98
Average DM [6] 0.64 0.07 2.32 4.69 6.44 0.46 0.99 5.52 0.14 2.14
RBLA [7] 0.51 0.12 0.93 7.10 7.11 0.56 3.93 8.30 0.15 3.09
pix2pix [18] 0.25 0.18 0.32 20.51 7.18 0.53 2.74 13.58 0.20 4.79
FRS (ours) 0.26 0.19 0.30 23.85 7.26 0.55 3.14 13.75 0.20 4.85
GAN-RS (ours) | 0.19 0.21 0.20 22.95 7.19 0.54 2.83 13.87 0.20 4.88
the underwater index, Laplace gradient, entropy, underwater TABLE IlI
color image quality evaluation (UCIQE) metric [33], and  FEATURE-EXTRACTION RESULTS ((a),(b) ARE REGARDING TO FiG. 6)
underwater image quality measure (UICM, UISM, UIConM, T Traure TR STET s Canny
UIQM) [34]. The underwater index proposed in this paper Origin - 3l 0 0.00
can be treated as an underwater property intensity in an image. GW - 20 0 0.00
The Laplace gradient reflects haze degree, whereas the entropy CLPEHE - 62208 zg g 8'82
denotes richness of image information. The UIQM, composed () DM B 94 12 0.00
of UICM, UISM, and UIConM, represents a comprehensive CM - 373 227 0.03
quality of a restored underwater image, and its sub-indexes }szLliA; . 1275362 1152212 8%(1)
are the pros and cons of the color, sharpness, and contrast. ”FRZ B 1154 1652 0.18
Similarly, the UCIQE quantifies image quality through the GAN-RS - 1804 1633 0.14
chrominance, average saturation, and luminance contrast. Note Origin | 0.89/0.17 8 0 0.00
. . . GW 1.00/0.09 17 14 0.00
that CycleGAN and CM are not involved in owing to the PB 0.86/0.13 1 0 0.00
above-mentioned drawback. As shown in Table II, results CLAHE | 0.85/0.49 168 172 0.01
include two typical underwater environments (i.e. (a) and (g)) (b) DM 1.00/0.23 26 10 0.00
. CM 0.33/0.02 755 895 0.06
and the average among tested images. Some methods work RBLA | 086/0.15 90 150 001
well from a particular perspective, e.g., the GW is effective pix2pix | 0.79/0.49 1201 1700 0.09
against color distortion, and the RBLA generated the best FRS 0.93/0.55 1562 2138 0.16
. . .. GAN-RS | 0.96/0.57 1708 1941 0.12
production for UCIQE. In terms of underwater index, it is Origin | 089/0.13 626,73 38036 0.03
interesting to note that the pix2pix achieves a performance GW 1.00/0.07  536.09 42727  0.03
similar to but not better than its ground truth (FRS), whereas PB 0.75/0.10 ~ 784.09 ~ 530.82  0.03
. L. . . CLAHE 0.86/0.41  2372.18  1796.82 0.13
the GAN-RS achieves a significant improvement in d,, d,dp, Average DM 1.00/0.18 103609 49736 0.04
and U credited to the critic branch. As for UIQM, the FRS CM 0.40/0.03 214391 187773  0.15
generates UICM-optimal outputs, and the GAN-RS is better RBZLA 82?;85 ;gg;g; ;228;3 8(1)2
with regard to UISM, UIConM, and UIQM. Therefore, it PTRS | 093046 208845 253791  0.19
can be concluded that the comprehensive performance of the GAN-RS | 0.97/0.51 263227 2556.00 0.17

proposed GAN-RS is better in terms of the restoration quality.

E. Feature-Extraction Tests

In this subsection, some feature-extraction algorithms, in-
cluding SIFT [30], Harris [31], Canny [32], and SSD [3], are
employed to test the application of the GAN-RS from the

perspectives of fundamental features and object detection. As
shown in Fig. 6, few key points can be obtained by SIFT in
the original frame, and a correct match seldom occurs. There
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Fig. 6. Feature-extraction tests. (a) SIFT match; (b) SSD detection.
Producing more salient low-level (SIFT points) and high-level (CNN
representation in SSD) features, the superiority of GAN-RS is confirmed.
Sea-urchins and scallops are detected in red and blue boxes.

are limited improvements brought by most compared methods.
On the contrary, assisted by the GAN-RS, salient features are
extracted, and a multitude of accurate matches appear.

As for underwater object detection, the SSD is employed
to locate and classify targets. As shown in Fig. 6, the
SSD is leveraged for sea-urchins and scallops, and our SSD
model is trained and tested with the dataset provided by
http://www.cnurpc.org. However, when it works on the original
scene, the SSD struggles with the recall rate and precision
[3]. Most methods can hardly remedy this issue. Moreover,
some approaches could bring false positive. By contrast, the
performance of the SSD dramatically improves if facilitated
by the GAN-RS.

The numerical comparison is shown in Table III, where
“P/R” denotes precision / recall rate produced by SSD detec-
tion; “SIFT, Harris” are the number of SIFT key points and
Harris corners; “Canny” computes the pixel-level edge ratio in
an image. By comparison, the SIFT and Harris perform better

(b)

Fig. 7. Undersea experiments. (a) The employed ROV and snapshots
of underwater object grasping. (b) We restore underwater vision using
the GAN-RS. For each timestamp, the original frame is illustrated on
top while the bottom one is the processed version with the GAN-RS. (c)
Underwater object detection and tracking based on the GAN-RS.

when combined with GAN-RS, whereas the output of FRS
covers more edges. Moreover, the recall rate and precision
of SSD are promoted more rapidly with the assistance of the
GAN-RS. Therefore, it is verified that the proposed GAN-
RS contributes to the extraction of fundamental and high-level
features of underwater images.

F. Practical Experiment on the Seabed

For underwater object grasping, we conducted practical
experiments on the seabed by mounting a waterproof camera
on a remotely operated vehicle (ROV). Equipped with the
camera as visual guidance and a soft robotic arm as actuating
mechanism, the ROV is 0.68 m in length, 0.57 m in width,
0.39 m in height, and 50 kg in weight. In the robot, we deploy
a microcomputer with an Intel I5-6400 CPU, an NVIDIA GTX
1060 GPU, and 8 GB RAM as the processor, so our approach
can restore underwater vision in real time for navigation. The
test venue is located in Zhangzidao, Dalian, China, where the
water depth is approximately 10 m.

It is difficult and dangerous for humans to manage and
collect marine products (e.g., sea-urchins, scallops, sea-
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cucumbers, and etc.), so we attempt to employ a ROV to
do this laborious job. The visual restoration is particularly
important for this task, because the underwater robotic vision
suffers from serious degeneration (see Fig. 1), prohibiting
robots from navigation or detecting objects. Thereby, the
GAN-RS is employed for high visual quality. As shown in
Fig. 7, our proposed method satisfactorily restores underwater
vision, allowing the robot to subsequently find targets and
then grasp them. More details are presented at https://youtu.
be/8XaOqGhJQvU.

G. Discussion

Quality advancement of underwater robotic vision is es-
sential to underwater visual-based operation and navigation.
We creatively treat the restoration task as an image-to-image
translation to enhance the real-time capacity and adaptability.
We use the FRS to supervise the adversarial branch, but
compared to the FRS, the GAN-RS has merits in processing
speed, restoration quality, and adaptability. Moreover, there
exists room for improvement: 1) Attention mechanism [35]
for selective adversarial training could be beneficial; and 2)
The GAN-RS could perform better, if real samples come from
multiple traditional approaches.

The limitations of GAN-RS are twofold. On one hand,
collecting underwater samples is a costly work. On the other
hand, the training parameters need to be carefully set or
adjusted. The generative model could bring about artifacts in
the output images if trained using an improper setting.

V. CONCLUSION AND FUTURE WORK

In this paper we aim at adaptively restoring underwater
images in real time and propose a GAN-RS. Differing from
the existing methods, the GAN-RS restores underwater visual
quality using a single-shot network for higher computational
efficiency and greater restoration quality. A multi-branch dis-
criminator is designed including an adversarial branch and
a critic branch to promote the generator to simultaneously
preserve image content and remove underwater noise. In
addition, an underwater index loss is investigated based on
the underwater properties, and a DCP loss as well as a multi-
stage loss strategy is developed for training. As a result, the
proposed GAN-RS adaptively restores underwater scenes at a
high frame rate. Moreover, both qualitative and quantitative
comparisons on restoration quality and feature extraction are
conducted, and the GAN-RS achieves a comprehensively
superior performance in terms of visual quality and feature
restoration. Finally, our proposed approach has been employed
in a practical application on the seabed for object grasping, and
achieve encouraging results.

In the future, we plan to introduce an attention mechanism
to the GAN-RS. More practical experiments will be conducted.
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SUPPLEMENT: VISUALIZATION OF DISCRIMINATOR

As shown in Fig:8, although the adversarial branch is able
to roughly distinguish real and generated images, the content
and structure in an image are preserved. Meanwhile, the critic
branch has capacity of reducing U. Furthermore, GG reaches a
compromise between the two branches, and generates better
images.
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