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Abstract—In this paper, we consider the problem of
recovering the phase information of the multiple images
from the multiple mixed phaseless short-time Fourier
transform image measurements, which is called the
blind multiple-input multiple-output image phase retrieval
(BMIPR) problem. It is an inherently ill-posed problem due
to the lack of the phase and mixing information, and the ex-
isting phase retrieval algorithms are not explicitly designed
for this case. To address the BMIPR phase retrieval prob-
lem, an integrated algorithm is presented, which combines
a gradient descent algorithm by minimizing a nonconvex
loss function with an independent component analysis al-
gorithm and a nonlocal means algorithm. Experimental eval-
uation has been conducted to show that under appropriate
conditions, the proposed algorithms can explicitly recover
the images, the phases of the images, and the mixing matrix.
In addition, the algorithm is robust to noise.

Index Terms—Blind multiple-input multiple-output image
phase retrieval (BMIPR), independent component analysis
(ICA), nonconvex optimization, nonlocal means (NM), short-
time Fourier transform (STFT).

I. INTRODUCTION

THE PROBLEM of recovering a one-dimensional (1-D) sig-
nal from its Fourier transform magnitude, known as phase

retrieval, is of paramount importance in various engineering
and scientific applications, such as X-ray crystallography [1],
[2], optics [3], [4], astronomy [5], [6], blind channel estimation
[7], [8], and blind image deblurring [9], [10]. This problem has
a long history and has been studied by many researchers [3],
[11]–[14].
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The phase retrieval problem originally arises from detectors
that can sometimes only record the magnitude square of the
Fourier transform of a signal. Due to the lack of Fourier phase
information, some forms of additional information is required
to identify the underlying signal efficiently. In this respect,
the phase retrieval methods can be mainly classified into
two categories based either on additional prior information,
such as sparsity [3], [11], [12] or additional magnitude-only
measurements, including structured illuminations and masks
[13], [15], [16], and short-time Fourier transform (STFT)
magnitude-square measurements [14], [17], [18]. The key idea
of using additional STFT magnitude-square measurements is to
introduce redundancy in the magnitude-only measurements by
maintaining a substantial overlap between adjacent short-time
windows [17].

These phase retrieval methods have focused on recovering a
single source from its Fourier transform magnitude. However,
in certain cases, the problem of recovering multiple underlying
images from multiple mixed Fourier transform magnitudes
of images, called blind multiple-input multiple-output image
phase retrieval (BMIPR), is ever-present in charge-coupled
device (CCD) cameras and photosensitive films [19], [20],
such as astronomy [11] or light field images [10], [21]. This
problem is ill-posed due to the lack of the phase property
and the mixing information. Recently, Guo et al. proposed
a method for recovering the multiple one-dimensional (1-D)
signals from the multiple mixed phaseless STFT measurements
[22]. Bendory et al. consider the problem of recovering a pair
of signals from their blind STFT [14]. Although these methods
extend the research to a two-source scenario for 1-D signals,
the existing phase retrieval methods cannot provide a solution
to the problem of recovering the multiple underlying images
from the multiple mixed phaseless STFT image measurements.
Therefore, it is necessary to investigate the BMIPR problem.

Extending the former research of Guo et al. [22], a closely
related problem of recovering the multiple underlying images
from the multiple mixed phaseless STFT image measurements
is considered. In this paper, our contribution is three-fold, which
is as follows.

1) BMIPR Model: A new model of the BMIPR problem
is proposed in order to recover multiple underlying im-
ages from multiple mixed STFT image magnitude-square
measurements, corrupted by noise.

2) BMIPR Algorithms: Due to the absence of Fourier
phase information and mixing information, we explore
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Fig. 1. Two shifting examples of the sliding window overlapped with the signal (R = �N/L� = 2) for N = 6, W = 4, and L = 3. (a) A signal x(n)
and two sliding windows g(−n) and g(L − n), shifted by 0 and L time units. (b) A signal x(n), and the examples of x(n) modulated by the sliding
windows.

hybrid methods by introducing additional STFT
magnitude-square measurements as well as estimating
the mixing information. In view of the BMIPR model, an
integrated algorithm is proposed, which combines a gra-
dient descent (GD) algorithm by minimizing a nonconvex
loss function with an improved complex maximization of
non-Gaussianity (CMN) algorithm and a nonlocal means
(NM) algorithm. At first, the mixed images can be recov-
ered by the GD algorithm by minimizing a nonconvex
loss function. Then, we use a composite algorithm that
combined an improved CMN algorithm and an NM algo-
rithm to estimate the mixing information and the under-
lying images from the mixed images.

3) Initialization of the GD Algorithm: It is shown in [22] that
the initialization of the GD algorithm can be obtained by
minimizing a nonconvex loss function and equivalently
posed as a constrained least squares (LS) solution with
a penalty term (�2). However, this method tends to limit
the value range of model parameters and produce biases.
To address this issue, we propose to use the principle
eigenvector of a designed correlation matrix to initialize
the GD algorithm that minimizes an LS solution with
a penalty term ( �1

�2
). The new loss function may provide

significant benefits in three aspects. First, it is more likely
to get a sparser solution than the use of �p (p ∈ (0, 1))
norm. Second, it has a better analytical structure than �q

(q ∈ (1, 2)). Third, it prevents over-fitting and improves
generalization performance and relaxes the rank restric-
tion of the regression variables.

This paper is organized as follows. Section II formulates a
mathematical model and gives the assumptions for the BMRP
problem from the multiple mixed STFT image magnitude-
square measurements. Section III discusses the uniqueness of
the BMRP problem and presents the conditions under which it
has a solution by combining a GD algorithm, an independent
component analysis (ICA) algorithm, and an NM algorithm.
This section also explores the initialization method for the GD
algorithm. Section IV shows numerical experimental results.
Section V concludes this paper.

II. MATHEMATICAL MODEL AND ASSUMPTIONS

Consider a collaborative assessment task that is induced by
blind multi-image phase retrieval from multiple mixed phaseless
STFT image measurements in a noisy environment, we present
a mathematical model and the assumptions for this task in this
section.

A. Model for the BMIPR Problem

The multiple underlying image signals are denoted as I =
{I1 , I2 , . . . , IM }, where Ii ∈ CN×N , i = {1, 2, . . . ,M}. The
mixtures of multiple underlying images are defined as X = AI,
with the mixtures X = {X1 ,X2 , . . . ,XM }, Xi ∈ CN×N , i =
{1, 2, . . . ,M}, and the mixing matrix A ∈ RM×M .

DenoteF = {F1 ,F2 , . . . ,FM } as the STFT matrices ofX =
{X1 ,X2 , . . . ,XM }, where Xi = {xi1 ,xi2 , . . . ,xiN }, xij ∈
CN , Fi = {Fi1 ,Fi2 , . . . ,FiN }, Fij ∈ CR×N , i = {1, 2,
. . . , M}, and j = {1, 2, . . . , N}.

The elements of Fi can be defined as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Fi1(τ, k) =
∑N−1

n=0
xi1(n)g(τL− n)e−2jπkn/N

...

FiN (τ, k) =
∑N−1

n=0
xiN (n)g(τL− n)e−2jπkn/N

(1)

for τ = 0, . . . , R− 1 and k = 0, . . . , N − 1, where W is the
window length, L depicts the separation in time between adja-
cent short-time windows, R = �N/L� denotes the number of
short-time windows considered, and � � rounds the argument to
the smallest integer that is not less than the argument. Fig. 1
shows an example gτ L = {g(τL− n)}N−1

n=0 and applying it to
a signal by shifting the sliding window g by τL time units.
x and g are zero padded over the boundaries of (1), where
i = {1, 2, . . . ,M}, and j = {1, 2, . . . , N}. The τ th row of Fij

corresponds to the N -point discrete Fourier transform (DFT) of
xij ◦ gτ L .

Denote the STFT magnitude-squared measurements as
|F|2 = {|F1 |2 , . . . , |FM |2}. We have the following signal
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Fig. 2. Proposed BMIPR model.

Fig. 3. Schematics diagram of the proposed BMIPR algorithm.

model:

Zi = |Fi |2 + Ni (2)

where i = 1, . . . , M and Ni is a random N ×R×N ten-
sor that represents noise. Thus, Z = {Z1 , . . . ,ZM } and N =
{N1 , . . . ,NM }.

The aim of multisource phase retrieval is to recover the phases
of the underlying sources I from the phaseless STFT measure-
ments Z corrupted by noise N. The model of the BMIPR problem
is illustrated in Fig. 2.

To address this problem, two assumptions and a two-step
algorithm are proposed as discussed in the following.

B. Assumptions for the BMIPR Problem

To address the BMIPR problem, following two assumptions
are utilized for constructing the BMIPR model.

1) The mixed images X are linear mixtures of the multi-
ple underlying image sources I multiplied by the mixing
matrix A.

2) The multiple underlying image sources I are independent
from each other.

III. BMIPR ALGORITHM

In this section, we find the conditions for solving the BMIPR
problem and under which we provide a three-step solution (see
Fig. 3). The first step is to recover the mixed image signals X̂

from its mixed phaseless STFT measurements Z corrupted by
noises N. The second step is to estimate multiple image sources
I from the recovered mixed image signals X̂. The third step
is to reduce the noises of Î and obtain multiple higher quality
underlying image sources Ĩ.

The fundamental question in BMIPR is whether the under-
lying image sources Ĩ can be determined uniquely from Z.
Based on the research of Guo et al. [22], we propose a BMIPR
algorithm, which is effective to solve this problem.

A. Recovery of the Phases of the Mixed Image
Signals X̂

For the purpose of recovering the phases of the mixed image
signals X, we first take DFT of the phaseless STFT measure-
ments Z to simplify the quadratic system of equations and obtain
required correlation data [23]. We take Zij as an example, where
Zij ∈ CR×N , i = {1, 2, . . . ,M}, and j = {1, 2, . . . , N}. The
DFT of the measurement Yij (τ, l) can be described by

Yij (τ, l) =
1
N

N−1∑

k=0

Zij (τ, k)e−2jπkl/N

=
N−1∑

n=0

xij (n)x∗ij (n + l)g(τL− n)g(τL− n− l)

(3)

where Yij (τ, l) is equal to zero for all τ when W ≤ l ≤ (N −
W ) and can be interpreted as a “W bandlimited” function. For
fixed τ , Yij can be seen as the autocorrelation of xij ◦ gτ L ,
where gτ L is defined as in (1). The DFT is normalized by 1/N .
Note that the τ th row of Zij and the τ th row of Yij are Fourier
pairs. Hence, for a particular τ , if Zij (τ, l) for 0 ≤ l ≤ N − 1
is available, then Yij (τ, l) for 0 ≤ l ≤ N − 1 can be calculated
by taking an inverse Fourier transform [17].

Theorem 3.1: Z(τ, k) for 0 ≤ k ≤ 2W − 2 is sufficient to
calculate Y (τ, l) for 0 ≤ l ≤ N − 1.

Proof: See Appendix A. �
Let Dτ L ∈ RN×N be a diagonal matrix composed of the

entries of gτ L , the problem of recovering xij from the measure-
ment Zij can therefore be equivalently posed as a nonconvex
loss function derived from

f(xij ) =
1
2

R−1∑

τ =0

W −1∑

l=−(W −1)

(x∗ijHτ ,lxij − Yij (τ, l))2 (4)

where Hτ ,l = P−lDτ LDτ L−l , x∗ijHτ ,lxij = tr(XijHτ ,l), P−l

= PT
l , and (Plx)(n) = x(n + l).

A GD algorithm is adopted to recover the ijth mixed image
signal by minimizing (4). The kth iteration is

xijk = xij (k−1) − μ∇f(xij (k−1))

∇f(b)

=
R−1∑

τ =0

W −1∑

l=−(W −1)

(bT Hτ ,lb− Yi(j−1)(τ, l))[(Hτ ,l + HT
τ ,l)b]

(5)
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where b = xij (k−1) , μ is the gradient step size, and R is defined
as in (1).

According to the above-mentioned procedures, xij is recov-
ered from Zij , then we can get Xi . For each Zij , the above-
mentioned procedures from (3) to (5) are repeated until all the
mixed signals X have been recovered. In order to remove the
magnitude effect of the mixing matrix, the recovered mixed
image signals are normalized as X̂ = {X̂1 , X̂2 , . . . , X̂M }.

Improved loss function for initialization: For L = 1, the re-
search of Guo et al. [22] show that the geometry of the loss
function for the initialization heavily affects the properties of
the GD algorithm and the initialization x0 can be determined by
a constrained LS solution with a penalty term (�2). However, it
may limit the value range of the model parameters and produce
biases. To address this issue, a penalty term is introduced as
follows, for L = 1:

min
x i j ∈CN

W −1∑

l=−(W −1)

‖yij l −Gldiag(Fij , l)‖2 + λ
‖diag(Fij , l)‖1
‖diag(Fij , l)‖2

subject to Fij = xijx∗ij
(6)

where yij l = {Yij (τ, l)}R−1
τ =0 , λ is a regularization coefficient,

and the (τ, n)th entry of the matrix Gl ∈ RR×N is given
by g(τL− n)g(τL− n− l). Then, the first column of Gl

can be given by the nonvanishing matrix g ◦ (P−lg), where
g = {g(n)}N−1

n=0 , P−l = PT
l , and (Plx)(n) = x(n + l). Gl as a

circulant matrix can be factored as Gl = F∗ΣlF, where F is the
DFT matrix and Σl is a diagonal matrix. The new loss function
may provide significant benefits in three aspects. First, it is more
likely to get a sparser solution than �p (p ∈ (0, 1)). Second, it
has better analytical structure than �q (q ∈ (1, 2)). Third, it pre-
vents over-fitting and improves generalization performance and
relaxes the rank restriction of the regression variables [24].

Thus, we construct a matrix Fij0 from (6) as follows:

min
x i j ∈CN

W −1∑

l=−(W −1)

‖yij l −Gldiag(Fij0 , l)‖2 + λ
‖diag(Fij0 , l)‖1
‖diag(Fij0 , l)‖2

subject to Fij0 = xij0x∗ij0 (7)

where Gl and yij l are represented in (6), and xij0 is a principle
eigenvector of Fij0 . Then, the initialization xij0 of the proposed
GD algorithm can be constructed by Fij0 .

Theorem 3.2: Denote z = diag(Fij0 , l), and S(z) as the
support of z. z ∈ F is called locally sparse if �y ∈ F \
{z} such that S(y) ⊆ S(z). Denote by F = {z ∈ CN :
z is locally sparse, i = {1, 2, . . . ,M}, j = {1, 2, . . . , N}} as
the set of feasible solutions.

Proof: See Appendix B. �
In the case that L > 1, we need to expand yij l =

{Yij (τ, l)}R−1
τ =0 to an up-sampled version ỹij l by expansion and

interpolation as

Yij (n, l) =

{
Yij (τ, l), n = τL

0, otherwise
.

Let ŷij l = {Yij (n, l)}N−1
n=0 for fixed l

ỹij l = (F∗pFp)ŷij l (8)

where Fp is a partial Fourier matrix consisting of the first R rows
of the DFT matrix F defined as in (9). Then, the initialization
xij0 can be obtained by (8).

B. Evaluation of Multiple Image Sources Î

All the normalized mixed image signals X are used as the
input for the recovery of the underlying image sources. On the
basis of the ICA idea [25]–[27], we extend the CMN algorithm
presented in [28] and [29] for blind image separation, which is
an effective algorithm for both circular and noncircular sources
using complex functions.

We take X̂i as an example, where X̂i is converted from a
matrix to a vector x̂i row by row. The whitening mixed image
signals x̃i = Ux̂i are transformed by a whitening matrix U [28].
Here, E{x̃i x̃∗i } = I.

The use of whitening allows us to search for an orthogonal
matrix W as E{Wx̃i(Wx̃i)∗} = WE{x̃i x̃∗i }W∗ = I.

Each source sk is estimated by finding a vector w such that

sik = w∗k x̃i (9)

where wk is a column of W∗. Constraining the source to
E{sik s∗ik} = 1, the weights to ‖w‖2 = 1, and W unitary due
to the whitening transform [29].

The optimal weights wopt are determined by maximizing the
cost under the unit norm constraint where x̃i has been whitened
and G is any complex analytic function C �→ C, such as poly-
nomials or transcendental functions, which is given by

wopt = arg max
‖w‖2 =1

E{|G(w∗x̃i)|2}. (10)

To calculate the optimal weights, a gradient optimization
algorithm is used, followed by a normalization step

w← w + μν
∂J(si)

∂w

w← w
‖w‖ (11)

where J(si) = E{|G(si)|2}, si = w∗x̃i , μ is the learning rate,
and ν ∈ {−1, 1} is the parameter that determines whether we
are maximizing or minimizing the cost function.

Theorem 3.3: Let J = J(si). Suppose w = wR + jwI , and
wR and wI are two real variables. The partial derivative of the
cost function J with respect to the conjugate of the weight vector
w, referred to as the conjugate gradient, is obtained as

∂J

∂w
=

∂J

∂wR
+ j

∂J

∂wI
= E{x̃iG

∗(si)g(si)}
where g is the derivation of G.

Proof: See Appendix C. �
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After each source is estimated, the vectors w are orthogo-
nalized to prevent multiple solutions from converging to the
same maximum since W is unitary due to the prewhitening
step.

The mixing matrix is estimated as A = U−1W∗. We re-
cover the underlying signals by S = A−1X̃. Given S =
s1 , s2 , . . . , sM , each recovered source si needs to be con-
verted from a vector to a matrix Īi , where i = 1, 2, . . . ,M .
The recovered underlying image sources are normalized as
Î = {Î1 , Î2 , . . . , ÎM }.

C. Estimation of Higher Quality Image Sources Ĩ

For purpose of removing the interferences of the underlying
image sources, we use the Stein’s unbiased risk estimate NM
algorithm proposed in [30].

Let the ith recovered image Îi = {Ii(l) | l ∈ Î} and i =
1, 2, . . . ,M , the pixel-based NM algorithm maps the evaluated
image source Îi into Ĩi as follows:

Ĩi(l) =
Σk∈Sl

wi(k, l)Îi(k)
Σk∈Sl

wi(k, l)
(12)

where Sl is the search region around the pixel l and wi(k, l) are
the weights that compare the neighborhoods around pixels l and
k, respectively. The weights are defined as

wi(k, l) = e−
Σ b ∈B ( Î i (k + b )−Î i ( l + b ) ) 2

h 2 (13)

where B defines the neighborhood, B is the total size of B, and
the parameter h acts as a degree of filtering.

Finally, we estimate the higher quality underlying image
sources Ĩi = {Ĩ1 , Ĩ2 , . . . , ĨM }.

IV. NUMERICAL EXPERIMENTS

In this section, we carry out numerical simulations on the
astronomy images captured by the NASA and the oceano-
graphic images to demonstrate the performance of the pro-
posed BMIPR algorithm depends on the length of the window
and the maximal overlapping between adjacent windows, and
how the algorithm is affected by noise for solving the BMIPR
problem.

The relative root-mean-squared error (RRMSE), the corre-
lation coefficient, and signal-to-noise ratio (SNR) are used to
evaluate the performance of the proposed algorithms.

For i = 1, 2, RRMSEi is defined as follows:

RRMSEi =
RMS(Ii − Ĩi)

RMS(Ii)
(14)

where Ĩi is the recovered underlying image and Ii is the original
image source.

The correlation coefficient is similar in nature to the
convolution of two functions. For i = 1, 2, ri can be defined
as

ri =
n

∑
i Ii Ĩi −

∑
i Ii

∑
i Ĩi

√
n

∑
i I

2
i − (

∑
i Ii)2

√

n
∑

i Ĩ
2
i − (

∑
i Ĩi)2

. (15)

Algorithm 1: BMIPR Algorithm.
Input: The phaseless STFT measurements Z as given in

(2), a low-pass interpolation filter with bandwidth R
as depicted in (8).

Output: Initialization of x0 , recovery of X̂, Ī, and Ĩ.
1: DFT. Compute DFT Yij of the STFT Zij as shown in
(3).

2: Up-sampling. For W ≤ l ≤ (N −W ),
if L = 1, omit this step,
else L > 1, yij l is expanded and interpolated to the

up-sampled version ỹij l by (8).
3: Initialization. Construct an initial matrix Fij0 .

min
x i j ∈CN

a∑

l=−a

‖yij l −Gldiag(Fij0 , l)‖2

+ λ
‖diag(Fij0 , l)‖1
‖diag(Fij0 , l)‖2

where a = W − 1, Gl , yij l , and λ are defined as in (6)
and (7). Find the initialization xij0 by the eigenvector
decomposition of Fij0 .
4: Recovery of X̂. Recover the mixed image source Xi by
a GD algorithm by minimizing a nonconvex function as
given in (5). For each Zi , repeat steps 1–4 until all the
mixed image sources have been recovered, and then
normalized as X̂ = {X̂1 , X̂2 , . . . , X̂M }.

5: Whitening. Estimate a whitening matrix U and the
whitening mixed signal x̃i = Uxi .

6: Orthogonalization. Search for an orthogonal matrix W.
The optimal weights are determined by wopt = arg
max‖w‖2 =1 E{|G(w∗x̃i)|2}.
7: Normalization. To calculate the optimal weights, a
gradient optimization algorithm is used and followed by a
normalization step as in (11).
8: Evaluation of Î. Estimate the mixing matrix
A = U−1W∗ and recover the underlying image sources
Î = {Î1 , Î2 , . . . , ÎM } by S = A−1X̃ and a conversion
from a vector to a matrix.
9: Estimation of Ĩ. Estimate the higher-quality underlying
image sources Ĩi = {Ĩ1 , Ĩ2 , . . . , ĨM } by (12).

A. BMIPR for the Astronomy Phaseless STFT
Measurements

The astronomy images are collected normally by the far-
distance measurement methods and rich in phase information.
Sometimes the phases of the astronomy images may be cor-
rupted by some noises and interferences.

The original astronomy images considered for the first simu-
lation are captured by the NASA and can be found online.1 The
mixed phaseless STFT measurements are corrupted by additive
Gaussian noises with zero mean and unit variance with the level
of noise from 5 to 25 dB.

1[Online] Available: https://www.nasa.gov/multimedia/imagegallery/index.
html).

https://www.nasa.gov/multimedia/imagegallery/index.html
https://www.nasa.gov/multimedia/imagegallery/index.html


GUO et al.: BLIND MULTIPLE-INPUT MULTIPLE-OUTPUT IMAGE PHASE RETRIEVAL 2225

Fig. 4. Image sources I (size 203 × 203) and the mixed images X.

Fig. 5. Four phaseless STFT images.

In the first set of simulations, we evaluate the estimation
performance of the proposed algorithm described in Algo-
rithm 1. We choose the maximal overlapping between adjacent
windows (L = 2), the window length (W = 7), the image size
(203× 203), and the noise at SNR = 25 dB. The number of
short-time windows is denoted by R = �N/L�. The gradient
step size μ is set to be 0.005, the regularization coefficient λ is
set to be 0.01, the maximal number of iterations for stopping
Algorithm 1 is 5000.

Fig. 4 shows the image sources I = {I1 , I2} and the mixed
images X = {X1 ,X2}.

We give four example images of the phaseless STFT images
converted from X in Fig. 5.

Fig. 6 demonstrates the recovered mixed images X̂ =
{X̂1 , X̂2} and the mixed images X = {X1 ,X2}. It shows that
the capability of the proposed algorithm in recovering the phases
of the mixed images.

In Fig. 7, we can see that the evaluated underlying images
Î = {Î1 , Î2} and the estimated higher quality underlying images
Ĩ = {Ĩ1 , Ĩ2} are similar to the image sources.

As shown in Fig. 8, the final RRMSEs of the recovered un-
derlying images Ĩ = {Ĩ1 , Ĩ2} are less than 0.13. The correlation
coefficients of the image sources and the underlying images are

Fig. 6. Recovered mixed images X̂ and the mixed images X.

Fig. 7. Evaluated underlying images Î and the estimated higher quality
underlying images Ĩ.

0.7874 and 0.8102, whereas those of the image sources and the
higher quality underlying images are 0.9203 and 0.9422, re-
spectively. These demonstrate the effectiveness of the proposed
algorithm in recovering the phases of multiple underlying as-
tronomy images.

We also estimated the performance of the proposed BMIPR
algorithm with respect to different types of noise and levels
of noise (in terms of SNRs). Fig. 9 demonstrates the average
RRMSE for 50 experiments of the evaluated underlying images
Î and the estimated higher quality underlying images Ĩ for Gaus-
sian noise, Laplacian noise, and Poisson noise at different SNR
when L = 2 and W = 7. With the increase in SNR, the RRM-
SEs of Î and Ĩ drop rapidly. For SNR = 20, 25 dB, the RRMSEs
of Ĩ are relatively low and less than 0.15. The results mean that
the proposed algorithm has better anti-noise performance in Ĩ
than Î especially for high values of SNR.
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Fig. 8. RRMSE and the normalized objective function values of the
recovered underlying images Ĩ1 and Ĩ2 .

Fig. 9. Average final RRMSE for 50 experiments of the evaluated un-
derlying images Î and the estimated higher quality underlying images
Ĩ for different types of noise at different SNRs. (a) Gaussian noise. (b)
Laplacian noise. (c) Poisson noise.

Fig. 10. Average final RRMSE for 50 experiments of the evaluated
underlying images Î and the estimated higher quality underlying images
Ĩ for different L.

Fig. 11. Average final RRMSE for 50 experiments of the evaluated
underlying images Î and the estimated higher quality underlying images
Ĩ for different W.

Fig. 10 presents the average RRMSE for 50 experiments of
the evaluated underlying images Î and the estimated higher
quality underlying images Ĩ for different L when SNR = 25 dB
and W = 7. For low values of 1 ≤ L ≤ 3, the RRMSEs of Î and
Ĩ are relatively low (at around 0.2 and 0.15, respectively), and
in this case, the underlying images are well-recovered. For high
values of L = 4, 5, the RRMSE of Î is smaller than that of Ĩ and
the values are mostly above 0.5. The proposed algorithm has
better performance in recovering Ĩ than Î only for low values
of L.

Fig. 11 presents the average RRMSE for 50 experiments of the
evaluated underlying images Î and the estimated higher quality
underlying images Ĩ for different W when L = 2, and SNR =
25 dB. For W ≤ 6 and W ≥ 25, the RRMSEs of Î and Ĩ are
relatively high and the values are mostly above 0.16. For middle
values of 6 < W < 25, the RRMSE of Î and Ĩ are about 0.1.
The proposed algorithm has better performance in recovering Ĩ
than Î for 6 < W < 25.

B. RGB BMIPR for the Oceanographic Phaseless
STFT Measurements

In the marine photogrammetric survey, many sea animals,
boats, and rocks are filmed by the aerial photoing or other
photography from a great distance. The oceanographic images
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Fig. 12. Oceanographic image sources I and the mixed images X.

Fig. 13. Six phaseless STFT images.

should contain abundant phase information. However, the
phases of these images may be corrupted by some interferences.

In the second set of simulations, we choose the image size
(290× 290× 3), the maximal overlapping between adjacent
windows (L = 2), the window length (W = 7), and the noise at
SNR = 25 dB. The number of short-time windows is denoted
by R = �N/L�. The gradient step size μ is set to be 0.005, the
regularization coefficient λ is set to be 0.01, and the maximal
number of iterations for stopping Algorithm 1 is 5000.

Fig. 12 shows the image sources I = {I1 , I2 , I3} and the
mixed images X = {X1 ,X2 ,X3}.

Six example images of the phaseless STFT images converted
from X are shown in Fig. 13.

Fig. 14 demonstrates the phase retrieval capability of the
proposed algorithm.

As shown in Figs. 12 and 15, the evaluated underlying images
Î = {Î1 , Î2 , Î3} and the estimated higher quality underlying im-
ages Ĩ = {Ĩ1 , Ĩ2 , Ĩ3} resemble the oceanographic image sources
I = {I1 , I2 , I3}.

The final RRMSEs of Ĩ1 , Ĩ2 , and Ĩ3 are 0.1502, 0.1791, and
0.1377, respectively. The correlation coefficients of the image
sources and the higher quality underlying images are 0.9251,
0.9076, and 0.9679. This demonstrates the efficiency of the
proposed BMIPR algorithm in recovering the phases of the
oceanographic images.

In Table I, the phase retrieval performance of the proposed
BMIPR algorithm, PhaseLamp algorithm [16], and PhaseLift

Fig. 14. Recovered mixed images X̂ = {X̂1 , X̂2 , X̂3} and the mixed
images X = {X1 , X2 , X3}.

Fig. 15. Evaluated underlying images Î and the estimated higher
quality underlying images Ĩ.

TABLE I
COMPARISON OF THE PERFORMANCE FOR THE BMIPR ALGORITHM,

PHASELAMP ALGORITHM, AND PHASELIFT ALGORITHM FOR SNR = 25 DB

algorithm [31] are compared for SNR = 25 dB by three different
images. The codes of the PhaseLamp algorithm and PhaseLift
algorithm are obtained from a phase retrieval library PhaseP-
ack [32]. It shows clearly that the phase retrieval performance
of the proposed BMIPR algorithm outperforms the other two
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TABLE II
COMPARISON OF THE PERFORMANCE FOR THE BMIPR ALGORITHM,

PHASELAMP ALGORITHM, AND PHASELIFT ALGORITHM FOR SNR = 20 DB

algorithms for SNR = 25 dB in terms of RRMSE, PSNR, and
correlation.

Table II gives a phase retrieval performance comparison of
the proposed BMIPR algorithm, PhaseLamp algorithm [16], and
PhaseLift algorithm [31] for SNR = 20 dB by three different
images. Again, we observe the similar advantages using the
proposed BMIPR algorithm over the two baseline algorithms.
In terms of computational complexity, the proposed BMIPR
algorithm is more efficient than the PhaseLift and PhaseLamp
algorithms.

V. CONCLUSION

The model and the algorithm for the problem of blind
multi-image phase retrieval from multiple mixed phaseless
STFT image measurements were investigated in this paper. Our
contributions to this challenging problem are as follows.

Model: We formed a new model for the problem of blind
multi-image phase retrieval from multiple mixed phaseless
STFT image measurements.

Algorithm: Due to the absence of Fourier phase information
and mixed information, a BMIPR algorithm, which combined a
GD algorithm by minimizing a nonconvex loss function with an
improved CMN algorithm and an NM algorithm, was presented
as a solution to BMIPR problem.

Initialization: We showed the significance of the initialization
method to the GD-ICA algorithm and demonstrated that the
initialization method could be constructed by an improved LS
loss function with a penalty term ( �1

�2
).

Numerical experiments showed that the proposed algorithms
performed well in estimating the phases of multiple image
sources and the mixing information. In terms of future research
directions, it was interesting to investigate how to incorporate
conditions, such as window length, additional magnitude-only
measurement, mixing mode, or maximal overlapping between
adjacent windows into the BMIPR algorithm. It was also tempt-
ing to consider different mixing mode and extend a fast algo-
rithm for recovering multiple underlying image sources from
multiple mixed phaseless STFT image measurements.

APPENDIX

A. Proof of Theorem 3.1

The problem of STFT phase retrieval is equivalent to the
short-time autocorrelation Y by taking an N-point DFT of the
phaseless STFT measurement Z

Y (τ, l) =
1
N

N−1∑

k=0

Z(τ, k)e−2jπkl/N

=
N−1∑

n=0

x(n)x∗(n + l)g(τL− n)g(τL− n− l)

where 0 ≤ l ≤ N − 1 and 0 ≤ τ ≤ R− 1.
If the window length is W , the values of Y are nonzero only in

the interval 0 ≤ l ≤W − 1 and N −W + 1 ≤ l ≤ N − 1. By
circularly shifting Y by W − 1 rows, a signal H that has nonzero
values only in the interval 0 ≤ l ≤ 2(W − 1) is obtained.

Let b be the sub-matrix of the DFT matrix Y acquired
by considering the first 2W − 1 rows and 2W − 1 columns
(the Vandermonde structure is retained). Since b is invert-
ible, Z(τ, k) for 0 ≤ k ≤ 2(W − 1) and H(τ, l) for 0 ≤ l ≤
2(W − 1) are related by an invertible matrix. Note that Z(τ, k)
for 0 ≤ k ≤ N − 1 can be trivially calculated from H(τ, l) for
0 ≤ l ≤ 2(W − 1).

This proof gives evidence that Z is sufficient to calculate
Y [17].

B. Proof of Theorem 3.2

Lemma 1 means that any locally sparse solution is the sparsest
solution in essence locally.

Lemma 1: ∀z ∈ FL ,∃δ > 0 such that ∀y ∈ F , if 0 <
‖y − z‖2 < δ, we have S(z) ⊂ S(y).

Let y = z + v and select δ = mini∈S(z){zi}, then

‖v‖∞ ≤ ‖v‖2 < min
i∈S(z)

{zi}.

Hence

yi ≥ zi − ‖v‖∞ > zi − min
i∈S(z)

{zi ≥ 0 ∀i ∈ S(z).

The above-mentioned equations mean

S(z) ⊆ S(y).

However, S(z) �= S(y) for z ∈ FL . Then, minz≥0
‖z‖1
‖z‖2 that

subjects to yij l = Glz must be locally sparse, thereby being at
least locally the sparsest feasible solution.

C. Proof of Theorem 3.3

The derivative of the function J = J(si) is calculated based
on real-valued functions because J is not analytic. Let si =
w∗x̃i , G(si) is expanded in terms of two real-valued functions
u(y) and v(y)

J = |G(si)|2 = |G(w∗x̃i)|2 = |u(w∗x̃i) + jv(w∗x̃i)|2

≡ u2(a, b) + v2(a, b)
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where a and b are the real part and imaginary part of w∗x̃i ,
respectively. The partial derivative of J with respect to the
real weight wR

i is obtained by use of the chain rule and
results in

∂J

∂wR
i

= 2u

(
∂u(a, b) ∂a

∂a ∂wR
i

+
∂u(a, b) ∂b

∂b ∂wR
i

)

+ 2v

(
∂u(a, b) ∂a

∂a ∂wR
i

+
∂u(a, b) ∂b

∂b ∂wR
i

)

.

The above-mentioned expression is rearranged as follows:

∂J

∂wR
i

= 2u(uax̃R
ij + ubx̃

I
ij ) + 2v(va x̃R

ij + vbx̃
I
ij )

= 2[x̃I
ij (uua + vva) + x̃R

ij (uub + vvb)]

where ua ≡ ∂u(a,b)
∂a , ub ≡ ∂u(a,b)

∂b , va ≡ ∂v (a,b)
∂a , and

vb ≡ ∂v (a,b)
∂b .

The derivative of J with respect to the imaginary weight wI
i

is calculated as
∂J

∂wI
i

= 2[x̃I
ij (uua + vva)− x̃R

ij (uub + vvb)].

It is advantageous to utilize complex operators for a more
compact notation. Noticing that

(uua + vva) + j(uub + vvb) = g∗(w∗x̃i)G(w∗x̃i)

where g is the derivative of G. According to the Cauchy–
Riemann equations: gR = ua = vb and gI = va = −ub , the
derivative of J with respect to the complex weight vector w
is shown as

∂J

∂w
= 2(g∗(w∗x̃i)G(w∗x̃i))∗x̃i = 2x̃iG

∗(w∗x̃i)g(w∗x̃i)

which is equivalent to

∂J(w)
∂w

=
1
2

(
∂J(w)
∂wR

+ j
∂J(w)
∂wI

)

.

ACKNOWLEDGEMENT

The authors would like to thank the anonymous reviewers for
their constructive comments for improving this paper.

REFERENCES

[1] B. Yu et al., “Evaluation of phase retrieval approaches in magnified x-
ray phase nano computerized tomography applied to bone tissue,” Opt.
Express, vol. 26, no. 9, pp. 11110–11124, 2018.

[2] P. Baran et al., “High-resolution x-ray phase-contrast 3-D imaging of
breast tissue specimens as a possible adjunct to histopathology,” IEEE
Trans. Med. Imag., vol. 37, no. 12, pp. 2642–2650, Dec. 2018.

[3] J. R. Fienup, “Phase-retrieval algorithms for a complicated optical sys-
tem,” Appl. Opt., vol. 32, no. 10, pp. 1737–1746, 1993.

[4] L. J. Wright, M. Karpinski, C. Soller, and B. J. Smith, “Spectral shearing
of quantum light pulses by electro-optic phase modulation,” Phys. Rev.
Lett., vol. 118, no. 2, 2017, Art. no. 023601.

[5] N. Arnaud et al., “Controlling kilometre-scale interferometric detectors
for gravitational wave astronomy: Active phase noise cancellation using
EOMs,” Nucl. Instrum. Methods Phys. Res. Sect. A, vol. 845, pp. 347–349,
2017.

[6] R. Abuter et al., “First light for GRAVITY: Phase referencing optical inter-
ferometry for the very large telescope interferometer,” Astron. Astrophys.,
vol. 602, 2017, Art. no. A94.

[7] A. Ahmed, B. Recht, and J. Romberg, “Blind deconvolution using convex
programming,” IEEE Trans. Inf. Theory, vol. 60, no. 3, pp. 1711–1732,
Mar. 2014.

[8] T. J. Lee and Y. C. Ko, “Channel estimation and data detection in the
presence of phase noise in MIMO-OFDM systems with independent os-
cillators,” IEEE Access, vol. 5, pp. 9647–9662, 2017.

[9] A. Ahmed, A. Aghasi, and P. Hand, “Blind deconvolutional phase re-
trieval via convex programming,” in Proc. Ann. Conf. Adv. Neural Inform.
Process. Syst., 2018, pp. 10 051–10 061.

[10] Q. Qu, Y. Q. Zhang, Y. C. Eldar, and J. Wright, “Convolutional phase
retrieval via gradient descent,” in Proc. Ann. Conf. Adv. Neural Inform.
Process. Syst., 2017.

[11] K. Jaganathan, S. Oymak, and B. Hassibi, “Sparse phase retrieval: Unique-
ness guarantees and recovery algorithms,” IEEE Trans. Signal Process.,
vol. 65, no. 9, pp. 2402–2410, May 2017.

[12] R. W. Gerchberg, “A practical algorithm for the determination of phase
from image and diffraction plane pictures,” Optik, vol. 35, no. 2, pp. 237–
246, 1972.

[13] E. J. Candes and P. Sur, “The phase transition for the existence of the
maximum likelihood estimate in high-dimensional logistic regression,”
2018, arXiv:1804.09753.

[14] T. Bendory, D. Edidin, and Y. C. Eldar, “Blind phaseless short-time Fourier
transform recovery,” 2018, arXiv:1808.07414.

[15] T. Goldstein and C. Studer, “PhaseMax: Convex phase retrieval via basis
pursuit,” IEEE Trans. Inf. Theory, vol. 64, no. 4, pp. 2675–2689, Apr.
2018.

[16] O. Dhifallah, C. Thrampoulidis, and Y. M. Lu, “Phase retrieval via lin-
ear programming: Fundamental limits and algorithmic improvements,” in
Proc. IEEE 55th Ann. Allerton Conf. Commun., Cont., Comput. (Allerton),
2017, pp. 1071–1077.

[17] K. Jaganathan, Y. Eldar, and B. Hassibi, “STFT phase retrieval: Unique-
ness guarantees and recovery algorithms,” IEEE J. Sel. Topics Signal
Process., vol. 10, no. 4, pp. 770–781, Jun. 2016.

[18] T. Bendory, Y. C. Eldar, and N. Boumal, “Nonconvex phase retrieval from
STFT measurements,” IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 467–
484, Jan. 2018.

[19] K. Jaganathan, Y. C. Eldar, and B. Hassibi, “Phase retrieval: An overview
of recent developments,” 2015, arXiv:1510.07713.

[20] B. Rajaei, E. W. Tramel, S. Gigan, F. Krzakala, and L. Daudet, “Intensity-
only optical compressive imaging using a multiply scattering material
and a double phase retrieval approach,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process., 2016, pp. 4054–4058.

[21] G. Cheng, S. Cheng, J. Tan, X. Bao, S. Liu, and Z. Liu, “A robust multi-
image phase retrieval,” Opt. Lasers Eng., vol. 101, pp. 16–22, 2018.

[22] Y. Guo, A. Wang, and W. Wang, “Multisource phase retrieval from
multichannel phaseless STFT measurements,” Signal Process., vol. 144,
pp. 36–40, 2018.

[23] D. Lyon, “The discrete Fourier transform, Part 6: Cross-correlation,” J.
Object Technol., vol. 9, no. 2, pp. 17–22, 2010.

[24] P. Yin, E. Esser, and J. Xin, “Ratio and difference of l1 and l2 norms
and sparse representation with coherent dictionaries,” Commun. Inf. Syst.,
vol. 14, no. 2, pp. 87–109, 2014.

[25] A. Hyvarinen, J. Karhunen, and E. Oja, Independent Component Analysis.
New York, NY, USA: Wiley, 2004.

[26] Y. Guo, S. Huang, and Y. Li, “Single-mixture source separation using
dimensionality reduction of ensemble empirical mode decomposition and
independent component analysis,” Circuits, Syst., Signal Process., vol. 31,
no. 6, pp. 2047–2060, 2012.

[27] Y. Guo, S. Huang, Y. Li, and G. R. Naik, “Edge effect elimination in
single-mixture blind source separation,” Circuits, Syst., Signal Process.,
vol. 32, no. 5, pp. 2317–2334, 2013.

[28] M. Novey and T. Adali, “ICA by maximization of nonGaussianity us-
ing complex functions,” in Proc. IEEE Workshop Mach. Learn. Signal
Process., 2005, pp. 21–26.

[29] M. Novey and T. Adali, “Complex ICA by negentropy maximization,”
IEEE Trans. Neural Netw., vol. 19, no. 4, pp. 596–609, Apr. 2008.

[30] D. Van De Ville and M. Kocher, “Sure-based nonlocal means,” IEEE
Signal Process. Lett., vol. 16, no. 11, pp. 973–976, Nov. 2009.

[31] E. J. Candes, T. Strohmer, and V. Voroninski, “PhaseLift: Exact and
stable signal recovery from magnitude measurements via convex pro-
gramming,” Commun. Pure Appl. Math., vol. 66, no. 8, pp. 1241–1274,
2013.

[32] R. Chandra, Z. Zhong, J. Hontz, V. McCulloch, C. Studer, and T. Goldstein,
“PhasePack: A phase retrieval library,” in Proc. Asilomar Conf. Signals,
Syst., Comput., 2017, pp. 1617–1621.



2230 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 67, NO. 3, MARCH 2020

Yina Guo (M’16) received the B.Sc. degree
in electronics and information technology from
the China University of Mining and Technology,
Xuzhou, China, in 2002, and the M.E. and Ph.D.
degrees in communication engineering from the
Taiyuan University of Science and Technology,
Taiyuan, China, in 2007 and 2014, respectively.

She is currently a Professor in Signal and In-
formation Processing with the Taiyuan Univer-
sity of Science and Technology. She has au-
thored/coauthored more than 30 papers and two

books, and was granted six patents, and four software copyrights in
China. Her research interests include blind source separation, biosignal
processing, and phase retrieval.

Prof. Guo was the recipient of several science and technology awards
from Shanxi Province and holds grants from the National Natural Sci-
ence Foundation of China and Shanxi Province. She is a Senior Member
of the China Institute of Communications and a member of the IEEE
Signal Processing Society.

Xiangning Zhao received the B.E. degree
in electronic engineering from Shanxi Univer-
sity, Taiyuan, China, in 2016. He is currently
working toward the master’s degree in elec-
tronics and communication engineering with the
Taiyuan University of Science and Technology,
Taiyuan.

His research interests include image signal
processing and phase retrieval.

Jianyu Li received the B.E. degree in electronic
engineering in 2016 from the Taiyuan Univer-
sity of Science and Technology, Taiyuan, China,
where he is currently working toward the mas-
ter’s degree in electronics and communication
engineering.

His research interests include blind source
separation and phase retrieval.

Anhong Wang received the B.Sc. and M.E. de-
grees in electronic information engineering from
the Taiyuan University of Science and Technol-
ogy, Taiyuan, China, in 1994 and 2002, respec-
tively, and the Ph.D. degree in information sci-
ence from Beijing Jiaotong University, Beijing,
China, in 2009.

She is currently a Professor in Signal and
Information Processing and the Director of the
Institute of Digital Media and Communication,
Taiyuan University of Science and Technology.

She has authored/coauthored more than 90 papers in international jour-
nals and conferences. She is leading several research projects, including
two funded by the National Science Foundations of China. Her research
interests include image and video coding and transmission, compressed
sensing, and secret image sharing.

Wenwu Wang (M’02–SM’11) received the B.Sc.
degree in automatic control, the M.E. degree in
control science and engineering, and the Ph.D.
degree in navigation, guidance, and control from
Harbin Engineering University, Harbin, China, in
1997, 2000, and 2002, respectively.

He is currently a Reader in Signal Processing
with the University of Surrey, Surrey, U.K., and a
Co-Director of the Machine Audition Laboratory
within the Centre for Vision, Speech and Signal
Processing. He has been a Guest Professor with

Qingdao University of Science and Technology, Qingdao, China, since
2018. He has coauthored more than 250 publications. His research in-
terests include signal processing and machine learning.

Prof. Wang has been a Senior Area Editor since 2019 and an Asso-
ciate Editor from 2014 to 2018 for the IEEE TRANSACTIONS ON SIGNAL
PROCESSING. He is a Publication Co-Chair for the International Confer-
ence on Acoustics, Speech, and Signal Processing 2019, Brighton, U.K.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


