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Abstract—In most multi-objective optimization problems of electrical machines, the 

weighted function method is used to convert them into single-objective optimization 

problems. This paper applies a kind of new multi-objective evolutionary algorithms 

(MOEAs), called adaptive multi-objective black hole (AMOBH) algorithms, to achieve 

effective multi-objective optimization of a tubular coreless linear permanent magnet 

synchronous motor (LPMSM). To reduce the computation cost of the MOEAs, a one-layer 

analytical model (AM) is presented for the tubular coreless LPMSM in this paper. The 

accuracy of the simplified one-layer AM is verified by comparisons with multi-layer AM and 

finite element analysis (FEA) under different structure parameters. It is found that the 

simplified AM has good accuracy and can decrease the computation cost significantly. 

AMOBH algorithm is subsequently introduced. The optimal Pareto front with regard to 

thrust, copper loss and permanent magnet volume are analyzed, and more diversified 

optimization results are provided. The final Pareto solution can be selected directly by 

practical physical values according to the application requirements. Finally, a prototype is 

fabricated for the selected design; its experimental results are provided and compared with 

those of the FEA results.  

Index Terms—Multi-objective optimization, analytical method, linear permanent magnet 

synchronous motor. 
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I. INTRODUCTION 

Recently, the linear permanent magnet (PM) synchronous motor (LPMSM) has gained more and more 

applications in industry and other areas, especially in high speed and high precision servo applications [1], 

[2], and linear oscillatory actuator (LOA) system (refrigerators/compressors) [3–5]. The LPMSM avoids 

rotary-to-linear conversion mechanism and generates linear motion directly, which contributes to structure 

simplification and improvement of work efficiency. Due to the manufacturing complexity of the tubular 



laminated core, the tubular coreless LPMSM (without slots) is an economic and commonly used type, 

which has advantages of zero detent force, light weight and high acceleration performance [6], [7]. It also 

has no lateral edge effect that exists in the flat one and it is very suitable for some cylindrical applications 

such as linear compressors, electric power switch plunger solenoids [4], and electromagnetic hammer [8], 

[9]. 

To improve the performances of LPMSM under different conditions, the multi-objective optimization has 

been applied to motor design in previous researches [10]. The commonly used calculation models of the 

electrical machines include the finite-element model (FEM) [11], [12] and the analytical model (AM) [13], 

[14]. As to the major electrical machines, it is hard to establish an accurate AM for optimization algorithm 

because of their complex structure and the nonlinear magnetic circuit. Therefore, the optimization methods 

coupled with FEM become prevalent and practical, especially in high dimensional problems [11], [12], [15]. 

At the same time, as to the coreless LPMSM there is no iron core and slots among the coils, so its magnetic 

circuits are nearly linear. The AMs for the magnetic field, thrust and back-EMF have been deduced and 

analyzed in many previous works. Refs. [13] and [14] introduced a multi-objective optimization of air-core 

LPMSM (flat) based on a multilayer model. The AM (magnetic field distribution, EMF, and thrust force) of 

a tubular modular PM machine equipped with quasi-Halbach magnetized magnets has been deduced in [16] 

and [17]. The magnetic field is worked out by solving differential equations according to the boundary 

conditions at different regions. For example, there are three regions in a non-magnetic tubular coreless 

LPMSM. The coefficients of the differential equation solution are calculated very tediously and 

time-consumingly. In linear motor optimization, the properties and characteristics of the motor obtained by 

single-objective optimization can provide some empirical help for multistage optimization, such as offering 

the selection of weights in the thermal calculation, iron losses calculation and magnet losses calculation of 

the motor, so that it can derive theoretical basis of its calculation through the corresponding model [18–20]. 

Usually, the optimization objectives in electrical machines include the maximization of the average 

thrust and power density, and minimization of the torque ripple, power loss and material cost. Moreover, 



these objectives are often conflicting with each other under the constraints. Nearly all the multi-objective 

optimization problems (MOPs) in electrical machines use the weight function to transform MOPs into 

single-objective optimization problems (SOPs) to simplify the solution process [21]. However, to transform 

MOPs into SOPs requires some prior knowledge to assign weight coefficients and it can only obtain one 

solution of the Pareto optimal solution set. The decision of weight coefficients will determine the result of 

optimization to a large extent which may reduce the feasibility of the results [22], [23]. Unlike the SOPs, 

there are multiple global optimum solutions which are called Pareto optimal solutions in MOPs. Also, these 

objectives are often conflicting with each other. Commonly used multi-objective evolutionary algorithms 

(MOEAs) are as follows: multi-objective particle swarm optimization (MOPSO) [24], non-dominated 

sorting genetic algorithm II (NSGA-II) [25] and multi-objective evolutionary algorithm based on 

decomposition (MOEA/D) [26], Ref. [27] proposed a  

 

Fig. 1.   Structure of the hammer driven by tubular coreless LPMSM. 

 

novel multi-objective optimization algorithm called adaptive multi-objective black hole algorithm 

(AMOBH), which has a good performance in terms of convergence rate, population diversity, population 

convergence, and subpopulation obtention of different Pareto regions. Although many new algorithms for 

multi-objective evolutionary computation have emerged in solving engineering problems recently, they 

have rarely been applied in electrical machines in previous publications. The overall complexity of MOEAs 

is approximately O(MN2) or O(MN3), where M is the number of objectives, and N is the number of Pareto 

solutions. For example, if M = 3 and N = 50, the total computations are about 7500.  

The primary purpose of this paper is to apply AMOBH algorithm to achieve effective multi-objective 

optimization of a tubular coreless LPMSM used in drilling project [8]. To simplify and reduce the 

calculations of MOEAs, we present a one-layer AM of the tubular coreless LPMSM in this paper. The 

scalar field on the boundary interface is estimated by the average working magnetic intensity Hpm. The 



accuracy of the simplified one-layer AM is verified by comparisons between AM and finite element 

analysis (FEA) under different structure parameters. AMOBH algorithm has been developed recently 

which is based on several entropy controlled adaptive evolutionary strategies, black hole (BH) algorithm 

[28], and a new individual density evolution metric called cell density. The searching solutions, which 

belong to the Pareto front regard to thrust, copper loss and PM volume, are analyzed. Finally, the diversity 

of the solutions is compared and the validity of the analytical results is verified by the FEA and 

experiments. There are two main contributions of this paper: (1) A new simplified and accurate one-layer 

AM which can increase the computation efficiency significantly compared with the multi-layer AM and 

FEA; (2) Successful application of the MOEAs to solve multi-objective optimization design of electrical 

machines, which provides more diversified and global optimization results.  

II. MOTOR STRUCTURE AND ANALYTIC MODEL 

A. Motor Structure  

Fig. 1 illustrates the actual design structure of the electromagnetic hammer driven by tubular LPMSM. 

Part 1 is an impact anvil. Parts 2 and 7 are the buffer cushion and the buffer springs. Parts 3 and 5 are the 

stator (toroidal PM and iron bar) and the mover (coils and iron yoke), respectively. In order to ensure the 

smooth motion of the mover, a ball bearing, indicated by 4, is used to reduce the friction between the 

mover and the shell of hammer 6.  
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Fig. 2.   Structural diagram of the tubular coreless LPMSM. 

The structural diagram of the tubular LPMSM is shown in Fig. 2, where b is a half width of the ring PM, 

τp is the pole pitch, τwp is the coil axial distance which equals τp, τw is the axial width of one phase coil, Rs is 



the outer radius of the coil (Mover), Ri1 is the inner radius of the coil (Mover), Rm is the outer radius of PM 

(Stator), and Ri2 is the inner radius of PM (Stator).  

B. Analytical Model 

According to the material properties, the solution regions in the AM are often divided into different 

layers as shown in Fig. 2. Regions I and III are the air area, and Region II is the PM area. The general 

solutions of the differential equation in each region are expressed as 
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where
I ,

II are the scalar potentials of Region I and Region II, /
p

n   . The coefficients C1, C2, C3 and 

C4 are calculated by the boundary conditions which are defined by 
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Since the coefficients’ expressions deduced in the appendix of [16] are very complicated, a simplified 

one-layer AM is presented below. What is more，the solution process may be much more complicated if the 

material between the PM in Region II is magnetic (iron core). The iron core can make the magnetic flux 

density in Region I within this area much flatter and stronger. 

 

1) Magnetic Field Model 

The PMs adopt axial magnetization as shown in Fig. 2. Assuming that the scalar magnetic potential on 

the interface between Region I and Region II is also considered as a rectangular wave, the Fourier 

expansion of the rectangular magnetic potential is  
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where Hpm denotes HI in (3) which has a physical meaning that provides the external magnetic potential for 



Region I and its another physical meaning is the magnetic intensity at the working point of the PM, b is 

half-length of the PM in magnetization direction,  2 1 /
p

m n    and  4sin / ( )
m p

mb mF  . Actually, the 

magnetic intensity of the PM in different cross-sectional areas and at different locations is not the same as 

shown in Fig. 3. In order to simplify the calculation, it can be assumed that the PM are a homogeneous 

magnet and the average working magnetic intensity Hpm is considered as the operating point of an entire 

PM [29], [30]. 

  Assume that the PM is uniformly magnetized and the operating point P (Bpm, Hpm) is shown as in Fig. 4, 

where Bpm is the average flux density at the working point of the PM, Br0 is the residual magnetic flux 

density of the PM and μr is the relative permeability of the PM.  
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Fig. 3.   The calculation model for the back-EMF. 

 

The magnetic field AM of the tubular coreless LPMSM is an axisymmetric model, the scalar magnetic 

potential has nothing to do with θ, and there is no current in the solution area, so   

 2
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and the boundary conditions in Region I are as follows,  
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Using the method of separation of variables to solve the Laplace differential equation of (8), one obtains, 
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The radial magnetic flux density can be calculated as  
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2) Electromagnetic Thrust Calculation Model 

The formula of Ampere force can be deduced by 

d ( , ) 2 ( , )z r mF r z B r z J drdz       (12) 

where 
m

J is the current density of the coil winding. The thrust of tubular coreless LPMSM can be 

described as the following: 

    
1

2 cos sin

7 2
cos sin                   

6 3

2
cos sin

6 3

m p

p

p

Tn
n

F J K m z t

m z t

m z t

 

 


 






 

  

  



   
  
  

   
   
   



 (13) 

where 

 
1

0

3

1

4
s

i

R
pm m w

Tn wn
R

H bF
K pK r r d

m
r

 
  


  (14) 

1 2wnK K K  is the (2n-1) -th order’s winding coefficient,  1 sin / 2wpK m  is the (2n-1) -th order’s harmonic 

winding coefficient, and    2 sin / 2 / / 2w wK m m   is the (2n-1) -th order’s winding distribution 

coefficient. 

3) Back-EMF and Copper Loss Calculation Model 

General speaking, the coils are usually composed by the toroidal windings in tubular LPMSM. Assuming 

that one phase coil (for example A+) has Nz turns in the axial direction z and Nr turns in the radial direction 

as shown in Fig. 3, the total number of conductors is N = NzNr. The coils are divided into Nr layers in the 



radial direction. The radial flux densities at different radial positions have different values, shown as Figs. 

5–9. In Fig. 3, 
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The instantaneous value of phase A’s back-EMF is as 
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where ri is the radius of the Nr-th coils. The peak value of the radial flux density Brm is calculated by the 

following 
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Therefore, the peak back-EMF value of phase A is as  
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The section area of winding A+ is  

1 1s wW                   (19) 

Assuming that the slot full rate coefficient is Sp = 0.85 (Although there are no slots for coils), the 

cross-sectional area of the enameled wire can be calculated as 

1 /d ps s s N                  (20) 

The resistance of phase A is calculated as 
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where   is the resistivity of copper. 

The copper loss of three phases is 

23( )cua m dP J s R               (22) 

where Jm is the current density.  
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Fig. 4.   The demagnetization curve and working point of the permanent magnet. 

4) The Work Point of PM under different parameters 

The calculation accuracy of Hpm has significant influences on the whole AM including thrust, flux 

density and back-EMF. The magnetic flux lines are shown in Fig. 3. Actually, the magnetic fluxes in any 

section are not the same, even though in one section the magnetic intensity near the air-gap is larger than 

that far from the air-gap. Ref. [29] has proposed a method to calculate Hpm in which the middle 

cross-section at
0 0.5z b  in Fig. 4 is adopted as the calculated section in the slotted tubular LPMSM. 

However in the coreless one, for the boundary conditions are changed as formula (9) and the magnet 

gathering effect of the iron core between the PMs, it is found that when the cross-section is chosen 

at
1 0.8z b , the magnetic densities at specified radii under different structure parameters are very consistent 

with each other. The total radial magnetic flux from 
1 0.8z b  to z τ / 2

p
  under a half pole distance at r = 

Rm is, 
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and the total axial magnetic flux in this selected section of the PM (
1 0.8z b ) is as 
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where σ is a parameter that is only related to the geometry of the motor. According to
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Figs. 5–9 show the radial flux density at different radii along z-axis by using the AM and FEM. The solid 

curves are calculated by AM and the dotted curves are calculated by FEM. The lengths (2b) of the PMs are 



50, 60, 70 and 80 mm, respectively, the thicknesses (W2 = Rm - Ri2) of the PMs are 5 and15 mm, 

respectively. The solutions are given under the conditions Br0 = 1.1 T, µr =1.1, Rs = 34 mm. As shown, the 

results obtained by the AM align well with those by the FEM in the flat area while the FEM waveform 

increases sharply in the dividing line between the iron core and the PM. The calculation time of one-layer 

AM (iteration number n = 10,100 points along x axis) is about 2.12 s and that of the multi-layer AM is 

about 18.23 s (Fig. 5). Although the accuracy of the one-layer AM is slightly lower, it is more suitable for 

the MOEAs because the computation time can be reduced by 88.03%. 
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Fig. 5.   The radial flux density comparison at different radii by one-layer AM, multi-layer AM and 

FEM (2b = 50 mm, W2 = 5 mm, τp = 180 mm and Rm = 17 mm)  
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Fig. 6.   The radial flux density comparison at different radii by AM and FEM (2b = 60 mm, W2 = 15 mm, 

τp = 180 mm and Rm = 17 mm) 
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Fig. 7.   The radial flux density comparison at different radii by AM and FEM (2b = 70 mm, W2 = 5 mm, τp = 180 

mm and Rm = 17 mm) 
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Fig. 8.   The radial flux density comparison at different radii by AM and FEM (2b = 80 mm, W2 = 15 mm, 

τp = 180 mm and Rm = 17 mm) 
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Fig. 9.   The radial flux density comparison at different radii by AM and FEM (2b = 60 mm, W2 = 15 mm, 

τp = 180 mm and Rm = 21 mm) 

III. ADAPTIVE MULTI-OBJECTIVE BLACK HOLE ALGORITHM 

Population diversity and convergence performance are two important properties of a good 

multi-objective optimization algorithm. And there is a trade-off between convergence and diversity. Many 

multi-objective optimization algorithms have a problem of how to achieve a good balance between them. 



To solve this problem, a novel multi-objective optimization algorithm called AMOBH has been developed 

[27]. It is based on the black hole (BH) algorithm. Different from the BH algorithm (original single 

objective version), AMOBH searches the entire space of solutions (stars) and finds the multiple global 

optimum solutions (Pareto solutions).  

Compared to some state-of-the-art methods, such as NSGA-II [25] and MOEA/D [26], AMOBH 

outperforms them in terms of convergence performance, population diversity, and computation efficiency. 

The details of AMOBH can be referred in [27]. The flowchart of AMOBH algorithm is shown as follow. 
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Fig. 10.   AMOBH algorithm flowchart 



Here, the entropy represents the uniformity and diversity of approximate Pareto solutions. Larger entropy 

means better uniformity and diversity [31]. AMOBH will first randomly initialize a population set and 

select several solutions from this set to form the initial archive based on cell density [27] and cell 

dominance [31]. Then it enters the main loop: (1) Firstly, the algorithm will select several leading solutions 

from the archive to lead population evolving. To keep good diversity, leaders also will mutate under a 

certain possibility. (2) Next, the algorithm will determine whether or not to accept the new solution to the 

archive. (3) Then, after all solutions are accepted or rejected, the algorithm will calculate the entropy of the 

new archive based on the parallel cell coordinate system (PCCS) [31] and update the evolution status. (4) 

Finally, the algorithm will output the Pareto solutions, if it reaches the max iterations. If not, it will 

continue (1)-(4). 

IV. OPTIMIZATION AND COMPARISON 

To replace the hydraulic or pneumatic hammer in the drilling project, the coreless tubular LPMSM was 

developed as a new application in petroleum and geological engineering [8]. Due to the special application 

conditions, the outer diameter of the hammer is limited less than 90 mm (drill pipe’s passing diameter). As 

a result, the diameter of the LPMSM should be designed less than 68 mm. In order to acquire sufficient 

impact energy as the hydraulic or pneumatic hammer (single impact energy is about 40–80 J), the thrust of 

the electromagnetic hammer shall be designed as large as possible. What is more, the down hole 

temperature is quite high and the cooling conditions are relatively poor, so the copper loss of the motor 

shall be designed as small as possible. 

For the optimization task, five design variables are selected as components of the input vector. The 

chosen design variables are listed in Table I, together with the value ranges. The other design parameters 

are shown in Table II, in which the air gap and the polar distance are constant. 

TABLE I 

OPTIMIZATION DESIGN VARIABLES OF THE TUBULAR LPMSM 



Variable 
Symbo
l 

Unit 
Initial 
Value 

Range 

Outer radius of coil  Rs mm 34 Ri1<Rs≤34 
Outer radius of PM   Rm mm 17 Ri2+5< Rm<Rs 
Inner radius of PM  Ri2 mm 9 5< Ri2<28 
Width of PM 2b mm 60 0.5τp<2b<0.9τp 
Number of coils  N -- 350 -- 

TABLE II 

OTHER DESIGN PARAMETERS OF THE TUBULAR LPMSM 

PARAMETERS Symbol Unit Value 

Air gap σs mm 1 
Polar distance τp mm 90 
Inner radius of coil  Ri1 mm Rm+σs 
Current density Jm A/mm2 4 
Rated speed vN m/s 9 

 

The input vector x can be described as following: 

m 2[ , , , , ]s ix R R R b N  

The optimization objectives of the tubular coreless LPMSM here are chosen to maximize the thrust and 

the efficiency (copper loss ratio), minimize the PM consumption (the maximum problems are changed to 

its dual problem). The objective functions are defined as follows, 
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where F is the thrust by (14), Pcua is the copper loss by (23), and Em is the back-EMF amplitude at rated 

speed, calculated by (19). Cf is the penalty function when the constraints functions g1(x) and g2(x) are not 

satisfied with the limitations Cf  = 100, otherwise Cf  = 1. Table III shows the parameters used in the 

AMOBH algorithm in this study. 

TABLEIII 

AMOBH ALGORITHM PARAMETERS 

PARAMETERS Sym. Value 

Dimension of vector  D 5 
Number of objectives  nobjs 3 
Max iterations T 200 
Star size Ns 100 
Maximum elite learning-rate Els-max 0.4 
Minimum elite learning-rate Els-min 0.1 



Archive size narc 100 

Although the thrust and the magnetic fields have nothing to do with variable N (number of coils), it is 

necessary to establish the variable N (actually Nr or Nz) to calculate the winding resistance for copper loss 

calculation. Also, the variable N is significant to calculate the back-EMF precisely. To take full advantage 

of the power driver's capacity, the amplitude of one phase back-EMF is limited within a range from 200 V 

to 350V. Another constraint is that the thrust must be more than 250 N to ensure the impact energy. 

To speed up the optimization process, the variable N is not a random value but is pre-estimated as (27) 

after the other variables are assigned. 
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The Pareto optimal solutions by AMOBH algorithm after T = 200 iterations are shown as Figs. 11–12. 

Compared to SOPs algorithm, the Pareto optimal solutions by AMOBH here provide more feasible and 

diverse choices for optimal design. TABLE IV lists three selected optimal solutions corresponding to three 

objectives domain respectively: the minimum PM volume (optimal design I, region 1 as Fig. 11), the 

maximum thrust (design II, region 2 as Fig. 11) and the minimum copper loss (design III, region 3 as Fig. 

11). Here the sectional area of coil di is calculated by (20) and the rated current I1N is the product of di and 

Jm. The actual hammer is made up by three unit motors in parallel. Therefore, the rated current, total thrust, 

and copper loss are all the sum of three parallel units. Region 3 is the solution area of minimizing copper 

loss ratio (minimum value 2.09%) in which the PM consumption is the highest (3.1×105 mm3) and the 

thrust is the lowest (250 N). Region 2 is the solution area of maximizing the thrust (490 N), and region 1 is 

the solution area of minimizing the PM consumption (0.5×105 mm3) in which the thrust is nearly the lowest 

(250 N) and the copper loss is the largest (8.97%). Fig. 13 illustrates the Shannon Entropy during the 

iterations, and it can be seen that the entropy enters approximate convergence after 200 iterations 

evolutionary calculation. The listed three optimal designs also show that different optimization goals 

conflict with each other. 



What is more, the global optimal solutions (Pareto solutions) set as shown in Fig. 11 and Fig. 12 can help 

to choose the best one for the actual application-oriented design requirements. Unlike the SOPs, the final 

selection can take advantages of the comparisons among actual physical quantities such as thrust, 

back-EMF, copper loss, and PM volume directly. In this application of the electromagnetic hammer we can 

firstly find the best ones corresponding to thrust objective (e.g. F > 400N), then to consider the copper loss 

performance, the Pareto optimal solutions set is downsized furtherly. If there are no ideal solutions to meet 

the copper loss conditions, the first step can be modified and then continue. The third step is to choose the 

final one according to the cost objective (less PM volume). Here design II is selected for the final Pareto 

optimal solution. Compared to the initial design, the thrust performance is enhanced by 34% and copper 

loss is reduced by 18.55% while the PM volume increases approximately by 95%.   

TABLE IV  COMPARISON AMONG THREE OPTIMAL DESIGNS 

Variables and Performance 
Symb

ol 

Initial 

Design 
Optimal 

Design I  

Optimal 

Design II* 

Optimal 

Design III 

Outer radius of coil (mm)  Rs 34 33.8 34 34 
Outer radius of PM (mm)  Rm 17 14.6 20.5 26.1 
Inner radius of PM (mm)  Ri2 9 9.4 8.1 8.2 
Radial height of PM (mm) W2 8 4.2 12.4 17.9 
Radial height of coils (mm) W1 16 19.2 12.5 6.9 
Width of PM (mm) 2b 60 70 68.8 68.3 
Number of coils N 350 726 286 203 
Number of radial coils  Nr 14 22 11 7 
Number of axial coils  Nz 25 33 26 29 
Sectional area of coil (mm2) di 1.09 0.63 0.77 0.81 
Thrust (N) F 318 310 427 345 
Rated current of one phase 
(A) 

I1N 
4.36 

2.53 3.07 
3.26 

Rated current of three phases 
(A) 

IN 
13.08 

7.59 9.21 
9.78 

Copper loss (W) Pcua 168 180 137 82.9 
Copper loss ratio (%) η 5.44% 6.8% 3.44% 2.59% 
Peak phase back-EMF (V) Em 208 352 330 359 
PM Volume (mm3) V 78414 54889 153304 263480 

The performance comparisons among the AMOBH and two popular MOEAs (in the same conditions): 

MOEA/D and MOPSO [24] are carried out as Fig. 14 and Fig. 15. The consumption time of AMOBH is 

about 2604 seconds, that of MOPSO is about 3108 seconds, and that of MOEA/D is about 1837 seconds. 

Although MOEA/D is the fastest, the diversity of its Pareto solutions set is the worst against the other two 

algorithms. In terms of population diversity, AMOBH outperforms MOEA/D. In general, the 

comprehensive performance of AMOBH is the best. The whole solution time is greatly shortened which is 

nearly the same time as one TS-2D FEA. 



 

Fig. 11.   The optimization results by AMOBH algorithm at T = 200 (View 1) 

 

Fig. 12.   The optimization results by AMOBH algorithm at T = 200 (View 2) 

 

Fig. 13.   The Shannon Entropy during T = 200 Iterations Evolution 



 

Fig. 14.   The comparison among three MOEAs (View 1) 

 

Fig. 15.   The comparison among three MOEAs (View 2) 

V. FEA AND EXPERIMENTAL VERIFICATION   

To validate the analysis presented in the paper, a prototype LPMSM of optimal Pareto design II listed in 

Table IV has been manufactured and tested for the comparison with the analytical and FE results.  

 
 
 
 
 
 
 
 

Fig. 16.   The pancake windings of the tubular LPMSM before assembling 

 



 

 

Fig. 17.   Physical diagram of the test platform 

Fig. 16 is the diagram of pancake windings of the LPMSM before they were assembled into the shell. Fig. 

17 is the prototype and the thrust and back-EMF test platform. The thrust comparisons between the AM 

and TS-2D FE are as Fig. 18. It can be seen that the thrust calculated by analytical method is slightly larger 

than that of 2D FE model. The two thrust ripple waveforms are very close. Fig. 19 is the thrust comparisons 

among the analytical method, TS-2D FE and the experiments under different phase current. The thrust error 

between the analytical method and experiment is less than 9%.    

The three-phase back-EMF waves by 2D FEA and the actual measured phase back-EMF of the prototype 

are as Fig. 20, showing that the phase peak value of the 2D FEA is 325 V and that by experiment at 3.6 m/s 

is 322 V. Correspondingly the phase peak value calculated by analytical method is 330 V, which is also 

slightly larger. The discrepancies in thrust and back-EMF result from the factor that the radial flux density 

calculated by the simplified one-layer AM is larger than that by 2D FEA, although the flat waveforms of 

two methods are nearly the same, the rising edge of the waveform in one-layer AM is not so precipitous, 

and it does not take the iron core between the PM into account. In general, the comparison shows that the 

errors are quite small which can be accepted, especially in electrical MOEAs solution. 
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Fig. 18.   Thrust curves by analytical method and TS-2D FEA 
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Fig. 19.   Thrust comparison among analytical, 2D-FEA and the experiment 
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Fig. 20.   Back-EMF curve of 2D finite element model and measured back-EMF curves.  

VI. CONCLUSION  

This paper presented a multi-objective design optimization of tubular coreless LPMSM based on 

AMOBH algorithm. A simplified and accurate one-layer AM of the tubular coreless LPMSM was 



presented, which can significantly reduce the computation time compared with the multi-layer models. At 

the same time, the accuracy is relatively high and the thrust errors of the FEA and experiments are less than 

10%. The MOEAs can provide more diversified and global optimization results for the multi-objective 

optimization design of the tubular coreless LPMSM. They are efficient and simple in implementation, and 

can be extended to the multi-objective optimization of other electrical machines. 
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