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 Abstract—This paper presents a hybrid battery 
parametrisation technique for the purpose of battery state-
of-charge (SOC) and state-of-power (SOP) monitoring in 
real time. The proposed technique is centred around an 
opportunistic initialisation of a dual Extended Kalman 
Filter (DEKF) algorithm using Pseudo Random Binary 
Sequence (PRBS) battery excitation. A Second-order 
electrical equivalent-circuit battery model is used whose 
parameters are identified using a carefully designed 10-bit 
10-Hz PRBS signal while the battery is in a zero- or low-
current quiescent mode. The PRBS-identified resistive 
elements of the battery model are then utilised to provide 
an initial estimate for the battery’s SOP. Once in load 
conditions, the DEKF algorithm is implemented 
recursively to provide an accurate estimate of the 
battery’s parameters, SOC and subsequently its SOP in 
real time. The experimental results obtained form an 
electrochemical impedance spectroscopy (EIS) method 
give confidence to the performance of the proposed 
hybrid battery parametrisation technique. 

 
Index Terms—Battery Excitation; Kalman Filtering; 

Pseudo Random Binary Sequences  

I. INTRODUCTION 

ATTERIES are pervasively appearing in more energy 

storage applications requiring powers ranging from a few 

watts (e.g. electronic portable devices) to several megawatts 

(e.g. grid-connected storages). Due to unpredictable load 

behaviour in such applications, battery management systems 

(BMSs) are put in place to ensure the battery adheres to a set 

of time-varying operating constraints, which requires for in 

situ parametrisation of the battery while in load conditions.  
Techniques for battery parameterisation can be summarised 

into three categories of 1) sine-swept methods, e.g. 
electrochemical impedance spectroscopy (EIS) [1], 2) electrical 
equivalent-circuit model-based methods, e.g. Kalman filter 
(KF), recursive least-squares, genetic algorithms or particle 
swarm optimisation [2]–[4], and 3) electrochemical model-
based methods such as nonlinear-coupled partial differential 
equations (PDEs), where due to the large number of unknowns 
involved in the latter method, they are often precluded from 
real-time BMS utilisation [5]. In contrast, due to their 
effectiveness and simplicity, electrical equivalent-circuit 
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models find themselves in the heart of almost every modern 
BMS algorithm, where battery states such as state-of-charge 
(SOC), stat-of-power (SOP), state-of-health (SOH) and state-
of-function (SOF) need to be estimated iteratively in real time.     

The Kalman filter (KF) algorithm [6] is a robust system 
identification technique which has been utilised in many 
battery state estimation problems [7]–[9]. Moreover, the KF 
can be implemented in either a ‘joint’ or ‘dual’ framework to 
provide a practical solution to simultaneous estimation of both 
battery states and underlying battery model parameters in real 
time. Difficulty arises when there is 1) insufficient a priori 
knowledge of the model parameters on initialisation step and/or 
2) a lack of persistent excitation in the input signal (e.g. in deep 
charge/discharge cycles) to properly reveal the battery’s 
dynamic response over a prescribed spectrum. Despite the 
asymptotic convergence of the KF’s covariance matrices 
towards zero, failing to satisfy the aforementioned pre-
conditions often results in a very slow convergence or even 
divergence in the true battery model parameters [10]. 

The pseudo random binary sequence (PRBS) is a special 
type of random signal with properties akin to a band-limited 
white noise, which can persistently excite the system under test 
[11]. This particular system identification technique, as 
opposed to laborious sine-swept methods (e.g. EIS), can 
provide an elegant solution to online battery impedance 
characterisation [12], which can serve useful for initialisation 
of battery models employed in most online BMS applications. 

Therefore, this paper proposes a hybrid battery 
parameterisation technique for the purpose of online battery 
SOP prediction. The proposed technique is based on PRBS 
identification of the resistive battery parameters required for 
SOP prediction, given the battery has been rested for at least 30 
minutes prior to load engagement. Upon successful PRBS 
characterisation, the data is used to statically parametrise a 
second-order resistor-capacitor (RC) network model and source 
a nonlinear dual KF algorithm, namely the dual Extended 
Kalman Filter (DEKF), with a reasonably accurate a priori 
knowledge of the battery model parameters for real-time SOC 
and SOP estimation under load conditions. 

This paper is organised as follows. Section II describes the 
structure of the battery model used in this paper and provides a 
steady-state definition for SOP. Section III provides an 
overview of the DEKF algorithm, presents the formulation of 
the battery state-space equations, and analyses the DEKF’s 
response to erroneous initialisation conditions. In addition, 
Section III presents the structure of the proposed hybrid battery 
identification technique. In Section IV, the theory of PRBS 
generation is explained. In Section V, the proposed technique 
is applied to estimate and monitor SOC and SOP of a 
commercially available 3.6 lithium nickel-manganese-cobalt-
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oxide (NMC) battery cell under a European Artemis drive 
cycle. Finally, Section VI concludes this paper. 

II. BATTERY MODELLING AND IDENTIFICATION  

A. Electrical Equivalent-Circuit Model Structure  

In this paper, a second-order electrical equivalent-circuit 
model [13], as show in Fig. 1, is used to describe the transient 
responses of the battery, where an ideal voltage source is used 
to represent the battery’s open-circuit voltage (OCV) as a 
function of its SOC, a series resistor, 𝑅𝑅s, is used to describe the 
ohmic losses in the metallic interconnections, and two parallel 
resistor-capacitor (RC) branches (i.e. 𝑅𝑅1||𝐶𝐶1 and 𝑅𝑅2||𝐶𝐶2) are 
included to capture the long time-constant processes related to 
diffusional reactions and those short time-constant processes 
related to charge-transfer and double-layer capacitance 
phenomena in the battery electrodes [13]. 

 

Fig. 1.  Second-order equivalent-circuit battery/cell model.  

 
Fig. 2. OCV-SOC relationship for a 3.6 Ah NMC cell, showing an 
eighth-order polynomial fit over its operational SOC range. 

To apply the DEKF algorithm for online battery 
identification, a pre-defined relationship between the battery’s 
OCV and its SOC is required. For practicality, a battery 
intended for either motive (e.g. in electric and hybrid-electric 
vehicles) or stationary (e.g. in grid-tie) applications is operated 
within a safe SOC envelope, usually between 10-90%. As 
shown in Fig. 2, within this range, an eighth-order polynomial 
can be employed to sufficiently describe the average OCV-
SOC relationship for the 3.6 Ah lithium-NMC test cell. The 
polynomial coefficients 𝑎𝑎0→8 are determined through curve-
fitting of the charge and discharge OCV curves, measured as a 
function of SOC using a pulse-current test profile similar to 
that reported in [14].  
 𝑉𝑉OC = 𝑎𝑎8 × SOC8 + ⋯+ 𝑎𝑎1 × SOC + 𝑎𝑎0. (1) 

The coefficients obtained for the lithium-NMC test cell at 
25°C are 𝑎𝑎8 = −100.93, 𝑎𝑎7 = 385.06, 𝑎𝑎6 = −579.36, 𝑎𝑎5 =
433.48, 𝑎𝑎4 = −167.5, 𝑎𝑎3 = 33.354, 𝑎𝑎2 = −4.552, 𝑎𝑎1 =
1.217, and 𝑎𝑎0 = 3.403. 

B. Impedance-Based SOP Estimation 

Equation (2) provides an impedance-based definition for 
the battery’s charge and discharge peak-power capability (i.e. 
SOP) in the frequency domain,  
 𝑃𝑃(𝜔𝜔) = ⎩⎪⎨

⎪⎧𝑉𝑉min(𝑉𝑉OC − 𝑉𝑉min)

|𝑍𝑍bat(𝜔𝜔)|𝑉𝑉max(𝑉𝑉max − 𝑉𝑉OC)

|𝑍𝑍bat(𝜔𝜔)|

 (2) 

where 𝑉𝑉min is the battery’s minimum operating voltage limit, 𝑉𝑉max is the maximum voltage threshold, 𝑉𝑉OC is the battery’s 
OCV as a function of SOC, and |𝑍𝑍bat(𝜔𝜔)| is the magnitude of 
the battery’s impedance as a function of angular frequency.  

Now, to derive a model-based definition for the battery’s 
impedance response, first, a time-domain equation for the RC 
model of Fig. 1 is formed. 𝑉𝑉(𝑡𝑡) = 𝑉𝑉OC(SOC) − [𝑉𝑉RC1(𝑡𝑡) + 𝑉𝑉RC2(𝑡𝑡)] − [𝐼𝐼(𝑡𝑡) ∙ 𝑅𝑅s] (3) 

where 𝑉𝑉(𝑡𝑡) is the terminal voltage, 𝐼𝐼(𝑡𝑡) is the throughput 
current, 𝐼𝐼(𝑡𝑡) ∙ 𝑅𝑅s is the series voltage drop, and 𝑉𝑉RC1(𝑡𝑡) and 𝑉𝑉RC2(𝑡𝑡) are the transient voltage drops across 𝑅𝑅1||𝐶𝐶1 and 𝑅𝑅2||𝐶𝐶2, respectively.  

The model’s output equation can be expressed in the 
Laplace domain as, 𝑉𝑉(𝑠𝑠) = 𝑉𝑉OC − 𝐼𝐼(𝑠𝑠) �𝑅𝑅s + � 𝑅𝑅1𝑅𝑅1 ∙ 𝑠𝑠𝐶𝐶1 + 1

�
+ � 𝑅𝑅2𝑅𝑅2 ∙ 𝑠𝑠𝐶𝐶2 + 1

��. (4) 

Subsequently, by rearranging (4), the transfer function of 
the second-order RC battery model can be obtained. 𝑍𝑍mdl(𝑠𝑠) =

𝑉𝑉(𝑠𝑠) − 𝑉𝑉OC𝐼𝐼(𝑠𝑠)
 

= 𝑅𝑅s + � 𝑅𝑅1𝑅𝑅1 ∙ 𝑠𝑠𝐶𝐶1 + 1
� + � 𝑅𝑅2𝑅𝑅2 ∙ 𝑠𝑠𝐶𝐶2 + 1

�. 

(5) 

Under steady-state conditions, as 𝑠𝑠 → 0, the model-based 
battery impedance described by (5) reduces to, 𝑍𝑍mdl𝑠𝑠→0 = 𝑅𝑅s + 𝑅𝑅1 + 𝑅𝑅2. (6) 

Therefore, by substituting 𝑍𝑍mdl𝑠𝑠→0 into equation (2), the 
steady-state definitions for discharge and charge SOP in a 
discrete form can be derived. 
 

𝑃𝑃𝑘𝑘+1 = ⎩⎪⎨
⎪⎧𝑉𝑉min(𝑉𝑉OC(𝑆𝑆𝑘𝑘) − 𝑉𝑉min)𝑅𝑅s,𝑘𝑘 + 𝑅𝑅1,𝑘𝑘 + 𝑅𝑅2,𝑘𝑘 , 𝑓𝑓𝑓𝑓𝑓𝑓 𝐼𝐼𝑘𝑘 ≤ 0

 𝑉𝑉max�𝑉𝑉max − 𝑉𝑉OC(𝑆𝑆𝑘𝑘)�𝑅𝑅s,𝑘𝑘 + 𝑅𝑅1,𝑘𝑘 + 𝑅𝑅2,𝑘𝑘 , 𝑓𝑓𝑓𝑓𝑓𝑓 𝐼𝐼𝑘𝑘 > 0

 (7) 

From equation (7), it can be deduced that for an accurate 
and reliable SOP estimate, the DEKF algorithm must be able to 
produce a convergent estimate for the resistive elements of the 
RC battery model. Moreover, it is apparent that the battery’s 
OCV also needs to be estimated in real time. To this end, SOC 
is defined in its discrete-time form using (8) to allow for its 
inclusion as an estimable state in the DEKF algorithm, which 
will produce a real-time estimate for the battery’s SOC as an 
input to the polynomial of equation (1) for OCV prediction. 
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 𝑆𝑆𝑘𝑘+1 = 𝑆𝑆𝑘𝑘 − 𝜂𝜂 ∙ 𝑇𝑇s ∙ 𝐼𝐼𝑘𝑘𝑄𝑄nom  (8) 

where 𝐼𝐼𝑘𝑘 is the throughput current at discrete-time step 𝑘𝑘, 𝑄𝑄nom = 3600 × 𝐶𝐶nom and 𝜂𝜂 (for charge 𝜂𝜂 < 1 and for 

discharge 𝜂𝜂 = 1) is the battery’s columbic efficiency and 𝐶𝐶nom 

is its nominal ampere-hour capacity. 

III. DEKF ALGORITHM  

A. Underlying Theory 

Generally, a random process to be identified using the 

DEKF algorithm can be modelled as, 

 
𝐱𝐱𝑘𝑘+1 = 𝑓𝑓(𝐱𝐱𝑘𝑘,𝐮𝐮𝑘𝑘,𝛉𝛉𝑘𝑘) + 𝐰𝐰𝑘𝑘  𝐲𝐲𝑘𝑘 = ℎ(𝐱𝐱𝑘𝑘,𝐮𝐮𝑘𝑘,𝛉𝛉𝑘𝑘) + 𝐯𝐯𝑘𝑘 𝐰𝐰𝑘𝑘 ~ 𝑁𝑁(0,𝐐𝐐𝑘𝑘x); 𝐯𝐯𝑘𝑘 ~ 𝑁𝑁(0,𝐑𝐑𝑘𝑘x ) 

(9) 

where 𝐱𝐱𝑘𝑘 ∈ ℝ𝑛𝑛 is a vector containing the states to be 

predicted, 𝛉𝛉𝑘𝑘 ∈ ℝ𝑞𝑞   contains the time-varying model 

parameters, 𝐮𝐮𝑘𝑘 ∈ ℝ𝑝𝑝  is the exogenous model input, 𝐲𝐲𝑘𝑘 ∈ ℝ𝑚𝑚 

is the output and 𝐰𝐰𝑘𝑘 ∈ ℝ𝑛𝑛 and 𝐯𝐯𝑘𝑘 ∈ ℝ𝑚𝑚 are the zero-mean 

process and measurement noises of covariance 𝐐𝐐𝑘𝑘x  and 𝐑𝐑𝑘𝑘x  

respectively. The nonlinear function 𝒇𝒇(∙) relates the states 

estimated at discrete time 𝑘𝑘-1 to those at the current time 

step 𝑘𝑘, and  𝒉𝒉(∙) maps the updated states to the measurements 

taken at time step 𝑘𝑘. 

Assuming the model parameters vary slowly over time (i.e. 

minutes to hours), a second EKF can be designed to adaptively 

estimate 𝑅𝑅𝑠𝑠, 𝑅𝑅1, 𝐶𝐶1, 𝑅𝑅2 and 𝐶𝐶2.   

 
𝛉𝛉𝑘𝑘+1 = 𝛉𝛉𝑘𝑘 + 𝐫𝐫𝑘𝑘 𝐝𝐝𝑘𝑘 = ℎ(𝐱𝐱𝑘𝑘,𝐮𝐮𝑘𝑘 ,𝛉𝛉𝑘𝑘) + 𝐞𝐞𝑘𝑘 𝐫𝐫𝑘𝑘 ~ 𝑁𝑁(0,𝐐𝐐𝑘𝑘θ); 𝐞𝐞𝑘𝑘  ~ 𝑁𝑁(0,𝐑𝐑𝑘𝑘θ) 

(10) 

where the dynamics of changes in parameters vector 𝛉𝛉𝒌𝒌 are 
attributed to a small “imaginary” white noise 𝐫𝐫𝑘𝑘 ∈ ℝ𝑝𝑝 of 

covariance 𝐐𝐐𝑘𝑘θ that evolves the parameters over time. The 
output equation 𝐝𝐝𝑘𝑘 ∈ ℝ𝑚𝑚 is given as a measurable function of 𝛉𝛉𝑘𝑘 and a white noise 𝐞𝐞𝑘𝑘 ∈ ℝ𝑚𝑚 of covariance 𝐑𝐑𝑘𝑘θ  to account for 
the measurement uncertainties. For more details on DEKF 
update equations, the reader is referred to [13].  

B. Formulation of Battery State-Space Equations 

The state-space equations representing the RC model of 

Fig. 1 can be expressed by, 

 

𝒇𝒇(∙) = �SOC𝑘𝑘+1𝑉𝑉RC1𝑘𝑘+1𝑉𝑉RC2𝑘𝑘+1� = �1 0 0

0 𝑒𝑒−𝑇𝑇s𝜏𝜏1 0

0 0 𝑒𝑒−𝑇𝑇s𝜏𝜏2 � �
SOC𝑘𝑘𝑉𝑉RC1𝑘𝑘𝑉𝑉RC2𝑘𝑘� +

⎣⎢⎢
⎢⎢⎡−

𝜂𝜂𝑇𝑇s𝑄𝑄nom 0 0

0 𝑅𝑅1 �1 − 𝑒𝑒−𝑇𝑇s𝜏𝜏1 � 0

0 0 𝑅𝑅2 �1 − 𝑒𝑒−𝑇𝑇s𝜏𝜏2 �⎦⎥⎥
⎥⎥⎤ 𝐼𝐼𝑘𝑘   

𝛉𝛉𝑘𝑘 = [𝑅𝑅s,𝑅𝑅1, 𝜏𝜏1,𝑅𝑅2, 𝜏𝜏2]T 𝒉𝒉(∙) = 𝑉𝑉𝑘𝑘 = 𝑉𝑉OC(SOC𝑘𝑘) − 𝑉𝑉RC1𝑘𝑘 − 𝑉𝑉RC2𝑘𝑘 − 𝐼𝐼𝑘𝑘𝑅𝑅s 

(11) 

where 𝜏𝜏1 = 𝑅𝑅1𝐶𝐶1 and 𝜏𝜏2 = 𝑅𝑅2𝐶𝐶2. Finally, the Jacobian 
matrices required for DEKF’s update steps are given in (12) 
and (13). 

 𝐅𝐅𝑘𝑘−1 =
𝜕𝜕𝒇𝒇(∙)𝜕𝜕𝐱𝐱𝑘𝑘 �𝐱𝐱𝑘𝑘=𝐱𝐱�𝑘𝑘−1+ = �1 0 0

0 𝑒𝑒−Δ𝑡𝑡𝜏𝜏1 0

0 0 𝑒𝑒−Δ𝑡𝑡𝜏𝜏2 � (12) 

 𝐇𝐇𝑘𝑘θ =
d𝒉𝒉(∙)
d𝛉𝛉𝑘𝑘 �𝛉𝛉𝑘𝑘=𝛉𝛉�𝑘𝑘− =

𝜕𝜕𝒉𝒉(∙)𝜕𝜕𝛉𝛉�𝑘𝑘− +
𝜕𝜕𝒉𝒉(∙)𝜕𝜕𝐱𝐱�𝑘𝑘− ∙ d𝐱𝐱�𝑘𝑘−

d𝛉𝛉�𝑘𝑘−
d𝐱𝐱�𝑘𝑘−
d𝛉𝛉�𝑘𝑘− =

𝜕𝜕𝒇𝒇(∙)𝜕𝜕𝛉𝛉�𝑘𝑘− +
𝜕𝜕𝒇𝒇(∙)𝜕𝜕𝐱𝐱�𝑘𝑘−1+ ∙ d𝐱𝐱�𝑘𝑘−1+

d𝛉𝛉�𝑘𝑘−𝜕𝜕𝒉𝒉(∙)𝜕𝜕𝛉𝛉�𝑘𝑘− = [−𝐼𝐼𝑘𝑘−1 0 0 0 0]

d𝐱𝐱�𝑘𝑘−
d𝛉𝛉�𝑘𝑘− = �0 0 0 0 0

0 𝑎𝑎2,2 𝑎𝑎2,3 0 0

0 0 0 𝑎𝑎3,4 𝑎𝑎3,5�
   

⎭⎪⎪
⎪⎪⎬
⎪⎪⎪⎪
⎫

 (13) 

where,  𝑎𝑎2,2 = −𝐼𝐼𝑘𝑘−1 ∙ (exp(Δ𝑡𝑡/𝜏𝜏12) − 1);  𝑎𝑎2,3 = (Δ𝑡𝑡/𝜏𝜏12 ) ∙ �𝑥𝑥�2,𝑘𝑘− − 𝑅𝑅1𝐼𝐼𝑘𝑘−1� exp(−Δ𝑡𝑡/𝜏𝜏1);  𝑎𝑎3,4 = −𝐼𝐼𝑘𝑘−1 ∙ (exp(Δ𝑡𝑡/𝜏𝜏22) − 1); and 𝑎𝑎3,5 = (Δ𝑡𝑡/𝜏𝜏22 ) ∙ �𝑥𝑥�3,𝑘𝑘− − 𝑅𝑅2𝐼𝐼𝑘𝑘−1� exp(−Δ𝑡𝑡/𝜏𝜏2). 

C. DEKF Response to Unknown Initial Conditions 

To gain a better understanding of the DEKF’s performance 

under unknown initial conditions, a dynamic experiment is 

devised and implemented on the NMC test cell. The load 

profile used here is an Artemis-based drive cycle [15], which 

is commonly used in verification of new BMS algorithms for 

electric vehicle applications in Europe. The complete test 

profile starts with a standard charge/discharge cycle to 

initialise the coulomb-counter used for the calculation of a 

reference SOC for comparison purposes, followed by 28 

consecutive Artemis-based drive cycles of Fig. 3, in order to 

dynamically discharge the test cell from 80% to 20% SOC.  

TABLE II 
INITIAL RC MODEL PARAMETERS FOR DEKF BATTERY IDENTIFICATION 

 

Parameters 𝑅𝑅s(mΩ) 𝑅𝑅1(mΩ) 𝐶𝐶1(F) 𝑅𝑅2(mΩ) 𝐶𝐶2(F) 

Datasheet 

EIS-attained 

20 

26.95 

10 

12.6 

1000 

1853 

10 

3.2 

100 

17.08 

 

 
Fig. 3. The current profile used for dynamic excitation of the NMC test 
cell, showing a single repetition of the Artemis-based drive cycle. 
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In the following sub-sections, the DEKF’s performance 
capability in terms of voltage, SOC and parameter estimation 
errors is explored for two cases; 1) DEKF initialised with best-
guess RC model parameters taken from the cell datasheet, and, 
2) DEKF initialised with a priori knowledge of the model 
parameters that were obtained through curve-fitting of the 
complex battery impedance data at 25°C and 80% SOC using 
the EIS method [16]. The EIS test was performed using a 
Solartron 1260 electrochemical interface in conjunction with a 
Solartron 1287 frequency response analyser, over the 
frequency range of 5 mHz up to 5 kHz, at a resolution of 15 
steps per decade. The amplitude of the excitation signal was 
chosen at 5 mV, low enough to avoid nonlinearities due to 
charge modification, but high enough for good noise immunity. 
The test cell’s SOC was adjusted by using a 0.5C constant-
current pulse followed by a zero-current relaxation period of 1 
hour to ensure the cell has reached an equilibrium state prior to 
conducting the EIS. For more details on the EIS testing 
procedure adopted herein, the reader is referred to [17].  

Table II provides the RC model parameters for the two 
filter initialisation scenarios. It should be noted that for both 
cases, the initial SOC is intentionally set to 20% instead of true 
79.12%. This is to demonstrate the robustness of the DEKF for 
SOC estimation, even under erroneous initialisation of the 
battery model parameters. The state and weight filters in the 
DEKF algorithm are initialised according to (14). 

𝐱𝐱0 = �SOC0𝑉𝑉RC1,0𝑉𝑉RC2,0� = �0.2

0

0

� ;   𝛉𝛉0 = [𝑅𝑅𝑠𝑠,𝑅𝑅1, 𝜏𝜏1,𝑅𝑅2, 𝜏𝜏2]T 𝐐𝐐0x = diag𝑛𝑛{1 × 10−8};   𝐏𝐏x� ,0+ = diag𝑛𝑛{10};  𝐑𝐑0x = diag𝑚𝑚{0.1} 𝐐𝐐0θ = diag𝑞𝑞{1 × 10−12};  𝐏𝐏θ�,0+ = diag𝑞𝑞{10};   𝐑𝐑0θ = diag𝑚𝑚{10} 

(14) 

where diag{∙} is a diagonal matrix of size 𝑛𝑛 = 3, 𝑚𝑚 = 1, and 𝑞𝑞 = 5. Note that the error covariance matrices 𝐏𝐏x� ,0+  and 𝐏𝐏θ�,0+  are 

set to a large value at initialisation to account for any 
uncertainties in both state and weight filters’ initial conditions. 
However, for the EIS-obtained parameters, since the weight 
EKF is initialised with a prior knowledge, the initial error 

covariance is set to a small value, i.e. 𝐏𝐏θ�,0+ = diag5{0.01}. 

1) Voltage Estimation Response 
Table III presents the voltage RMSE values calculated for 

the DEKF algorithm initialised with the aforementioned model 
parameters. Note that the RMSE has been calculated from the 
time that voltage estimate satisfied a 5% error bound with 
respect to the measured signal. This ensured that large errors in 
the model states during the convergence phase did not skew the 
results. From the presented RMSE results, it can be said that, 
the DEKF algorithm’s performance in battery terminal voltage 
estimation is not significantly improved by correctly initialising 
the battery model parameters. 

2) SOC Estimation Response 
Similarly, the SOC estimates obtained for the two filter 
initialisation scenarios were plotted on the same graph, as 
presented in Fig. 4. Despite the large errors in the initial SOC 
sate and the battery model parameters, the state EKF delivers a 
satisfactory performance by converging to the actual SOC 
within the first 15 minutes of filter initialisation. This is owed 
to the fairly accurate OCV-SOC relationship that was 

empirically derived for the test cell using the eighth-order 
polynomial function given in equation (1). 

 
Fig. 4. The SOC estimation performance of the DEKF algorithm with 
respect to correct and erroeneous initial model parameters. 

TABLE III 
VOLTAGE ESTIMATION PERFORMANCE OF THE DEKF ESTIMATOR  

 

Initial condition RMSE Voltage (mV) 

Without a priori knowledge of RC parameters  

With a priori knowledge of RC parameters  

1.7e-3 

8.9e-4 

 
TABLE IV 

SOC ESTIMATION PERFORMANCE OF THE DEKF ESTIMATOR  
 

Initial condition RMSE SOC (%) 

Without a priori knowledge of RC parameters  

With a priori knowledge of RC parameters  

0.8 

0.49 

 
Table IV presents the RMSE SOC values calculated from 

the moment that the 5% error-bound criterion has been met. 
Evidently, under both scenarios, the state filter produces a SOC 
estimate with less than ±1% error. This outcome demonstrates 
the robustness of the DEKF estimator regardless of the 
accuracy of the initial model parameters. 

3) Battery Parameter Identification Performance 
Fig. 5 compares the parameter estimation capability of the 

DEKF algorithm for both correct and incorrect initial 
conditions. It is evident that, despite its excellent SOC 
estimation performance, the DEKF is significantly affected by 
the slow time-variability of the battery model parameters, 
which can have a detrimental effect on the performance of the 
DEKF algorithm. Therefore, by having a priori knowledge of 
the battery parameters at the initialisation step, it is possible to 
achieve a more realistic estimate for the battery’s RC model 
parameters, which is key to reliable BMS operation.  
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Fig. 5. Comparison of identified resistive-element parameters with and 
without a priori knowledge at SOC = 80% and EIS-identified values. 

D. Proposed Hybrid Battery Identification Technique 

The structure of the proposed hybrid battery identification 
technique is presented in Fig. 6. The PRBS excitation is 
conducted while the battery is in the rest mode (i.e. quiescent 
or very low-current mode). Once in the active mode (i.e. under 
load conditions), the DEKF is initialised with the PRBS-
attained RC model parameters, which is then ran recursively to 
yield an adaptive estimate for 𝑅𝑅s, 𝑅𝑅1, and 𝑅𝑅2 in real time. In 
order to ensure a steady-state condition prior to PRBS 
excitation, the test cell is allowed to relax for 30 minutes. This 
relaxation period ensures the battery has reached an 
electrochemical and thermodynamic equilibrium, a requirement 
for better PRBS identification. 

According to control theory, the observability of a linear 
system can be determined if matrix 𝑂𝑂b has full rank. This is 
applied to the linearised system. 

𝑂𝑂b = ⎣⎢⎢⎢
⎡ 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪2⋮𝑪𝑪𝑪𝑪𝑛𝑛−1⎦⎥⎥

⎥⎤
 (15) 

where, 𝑪𝑪 = [𝜕𝜕𝑂𝑂𝐶𝐶𝑉𝑉/𝜕𝜕𝑆𝑆𝑂𝑂𝐶𝐶 −1 −1]; and 𝑪𝑪 = 𝑭𝑭𝑘𝑘−1. In this 
case, by providing the state filter (where 𝑛𝑛 = 3) with an 
accurate set of battery parameters obtained from the proposed 
PRBS identification technique, and providing an initial 
estimate for SOC by reading the battery’s OCV after a 30-

minute relaxation period, the system in hand may be deemed 
observable. However, without a sufficient knowledge of the 
battery parameters to construct the 𝑪𝑪 matrix at DEKF 
initialisation, observability, and thus, the convergence of the 
battery states cannot be guaranteed.   

 

Fig. 6. Block diagram demonstrating the concept of the proposed 
hybrid battery parameter identification. 

Upon the completion of PRBS excitation, the battery model 
parameters are identified using the nonlinear Levenberg-
Marquardt algorithm [18], whereby minimisation of (16), 
parameters vector, 𝛉𝛉𝒌𝒌 , in (11) are accurately initialised. In case 
the PRBS excitation procedure is interrupted due unpredictable 
consumer behaviour, the parameters vector of the weight EKF 
is provided with ‘best-guess’ values at the time of initialisation. 

|𝜖𝜖|2 = �  

ln�𝑍𝑍prbs(𝜔𝜔)� − ln|𝑍𝑍mdl(𝜔𝜔)|

 
�2

+ �𝜙𝜙prbs(𝜔𝜔)

 −𝜙𝜙mdl(𝜔𝜔)

 
�2 

(16) 

where �𝑍𝑍prbs(𝜔𝜔)� is the magnitude and 𝜙𝜙prbs(𝜔𝜔) is the 

resulting phase angle of the battery’s frequency response under 
PRBS excitation, and |𝑍𝑍mdl(𝜔𝜔)| and 𝜙𝜙mdl(𝜔𝜔) are the 
magnitude and phase angle of the RC model’s frequency 
response, all as functions of angular frequency. 
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IV. PRBS GENERATION FOR DEKF INITIALISATION 

A typical PRBS sequence is comprised of binary ‘zeros’ 
and ‘ones’ that are switched according to a pre-determined 
pattern [19]. The most commonly-used PRBS’s are those based 
on maximum-length sequences. They can be both generated in 
hardware or software, using a number of linear-feedback shift 
registers (LFSR) with modulo-two (XOR) feedback taken from 
some pre-determined tap positions [19].  

When designing a PRBS signal, there are two base 
parameters that must be carefully selected. These are the source 
clock frequency (𝑓𝑓clk) and the number of shift registers (𝑛𝑛), 
which in turn define the PRBS frequency bandwidth and the 
test duration. For a maximum-length PRBS, the test duration is 
given by (17) where 𝑁𝑁 = 2𝑛𝑛 − 1 is sequence length. 𝑇𝑇prbs =

𝑁𝑁𝑓𝑓clk (17) 

In [20] and [21] the authors have shown that by analysing 
the signal power spectral density (PSD), the bandwidth over 
which the PRBS data is useable can be established as,  𝑓𝑓min = 𝑓𝑓clk 𝑁𝑁⁄ ;  𝑓𝑓max =

𝑓𝑓clk
2.3

;  𝑓𝑓band = 𝑓𝑓clk � 1

2.25
− 1𝑁𝑁� ;  𝑓𝑓norm =

𝑓𝑓band𝑓𝑓max = 1 − 2.25𝑁𝑁 . 
(18) 

where 𝑓𝑓band is the theoretical frequency band and 𝑓𝑓norm is the 
normalised frequency band over which the PRBS information 
are useful. 

In [12], the authors have shown that 𝑓𝑓norm increases 
exponentially with increasing PRBS bit-length, 𝑛𝑛. However, 
the resulting increase in test duration becomes 
disadvantageous. It follows that there exists a trade-off at 𝑛𝑛 =
10, leading to a PRBS perturbation signal that is less than two 
minutes long (i.e. 102 seconds) and covers a theoretical band of 
0.01 Hz ≤ 𝑓𝑓 ≤ 4.44 Hz. Note that for a 10-bit PRBS, XOR 
feedback must be taken from the seventh and the tenth shift 
registers [19]. 

Finally, to compute the complex impedance of the battery 
system, a conversion of the signals in time-domain to 
frequency-domain is required. This is often realised by taking 
the discrete Fourier transform of the acquired input/out data 
[22]. This operation is described by, 𝑍𝑍prbs,𝑘𝑘(𝑓𝑓) =

ℱ{𝑉𝑉𝑘𝑘}ℱ{𝐼𝐼𝑘𝑘}
;   𝑓𝑓 = 𝑘𝑘 𝑓𝑓𝑠𝑠𝑛𝑛𝑠𝑠 ;   𝑛𝑛s = 𝑁𝑁 � 𝑓𝑓s𝑓𝑓clk� ; ∀ 𝑘𝑘 ≤ 𝑛𝑛𝑠𝑠 − 1 

(19) 

where ℱ{∙} denotes the Fourier transform, 𝑓𝑓s = 100 Hz is the 

sampling rate and 𝑛𝑛s is the number of samples.  

V. EXPERIMENTAL VERIFICATION 

In order to verify the performance of the proposed hybrid 
PRBS-DEKF battery identification technique for online SOP 
estimation, a test profile is devised (see Fig. 7) and 
implemented using the experimental setup described in [16]. 
The test profile consists of a standard HPPC repetition [23], 
followed by a 10-bit 10-Hz PRBS signal. This test is applied 
over the SOC range of 10-90%. 

 
Fig. 7. Excerpt of the modified HPPC test profile with PRBS, showing 
(a) current and (b) voltage waveforms. 

Fig. 8 presents the RC model parameters identified as a 
function of SOC at 25°C, using the EIS, PRBS and the 
proposed hybrid DEKF methods. It should be noted that in the 
latter case, the SOC state has been allowed to fully converge 
(i.e. enter and stay within ±5% error band), before the first set 
of estimated parameters were used for absolute error 
calculations; thus, the results for the hybrid DEKF estimator 
are displayed over the SOC range of 70% to 20%.  

The performance of each technique is quantified by 
calculating the mean-absolute-error (MAE) between the PRBS- 
and DEKF-identified model parameters with those obtained 
from the fairly accurate EIS method. 

 MAE (%) = �1𝑑𝑑� |𝜌𝜌�𝑖𝑖 − 𝜌𝜌𝑖𝑖|𝜌𝜌𝑖𝑖𝑑𝑑
𝑖𝑖=1 � × 100 (20) 

where 𝜌𝜌�𝑖𝑖 is the estimated model parameter using the PRBS or 
hybrid DEKF method, 𝜌𝜌𝑖𝑖 is the EIS-identified parameter and 𝑑𝑑 
is the number of SOC steps at which the test is conducted. 
Table V presents the resulting MAEs and it is evident that the 
low-cost PRBS technique is capable of producing a fairly 
accurate set of model parameters at each SOC step. Moreover, 
by accurately initialising the DEKF algorithm with PRBS-
identified parameters at 80% SOC, the MAE is even further 
reduced while operating in load condition. 

TABLE V 
STATISTICAL ASSESSMENT OF THE PROPOSED PRBS AND HYBRID DEKF 

IDENTIFICATION METHODS 
 

Identification 

method 

MAE (%) 𝑅𝑅s 𝑅𝑅1 𝐶𝐶1 𝑅𝑅2 𝐶𝐶2 

PRBS 

Hybrid dual-EKF 

0.387 

0.129 

10.42 

4.09 

13.20 

12.35 

14.36 

4.76 

24.03 

21.68 
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Fig. 8. Comparison of RC model parameters identified using EIS, 
PRBS and the proposed hybrid DEKF method at 25°C. 

The test cell was applied with the profile of Fig. 7 at three 
controlled temperature settings of 5°C, 25°C and 45°C, over 
10-90% SOC range. The resulting RC parameters identified 
using the HPPC method, EIS method and the 10-bit 10-Hz 
PRBS signal designed in this paper were then used in equation 
(7) to characterise the battery’s charge and discharge SOP at 
every 10% SOC step. As presented in Fig. 9, the PRBS method 
is capable of producing a reliable and comparable SOP 
estimate over a wide range of operating temperatures. 

In general, the accuracy of SOP estimate obtained using (7) 

depends on the quality of 𝑅𝑅�s, 𝑅𝑅�1, 𝑅𝑅�2 and 𝑉𝑉�OC estimates. In Fig. 
5, it was shown that, if initialised with correct battery model 
parameters at time-step 𝑘𝑘 = 0, the DEKF estimator can 
robustly track any deviations in the model parameters caused 
by operating conditions. Thus, a PRBS-initialised DEKF 
estimator is designed (see Fig. 10) to produce an adaptive SOP 
estimate in real time. The proposed algorithm is based on the 
hybrid DEKF battery identification technique developed in this 
paper, starting with PRBS initialisation of the parameters 

vector (𝛉𝛉𝑘𝑘) in (11). Thereafter, 𝑅𝑅�s, 𝑅𝑅�1 and 𝑅𝑅�2 are estimated by 

the DEKF at each time-step 𝑘𝑘 and 𝑉𝑉�OC is predicted based on 
the DEKF-estimated SOC using the polynomial given by (1). 
The dynamic performance of the proposed DEKF-based SOP 
estimator is verified using the Artemis-based load profile of 
Fig. 3. 

Fig. 11 compares the online SOP estimates obtained using 
the PRBS-initialised DEKF estimator and the HPPC method. It 
can be seen that, as the battery is discharged from 80% SOC 
down towards 20%, the DEKF-estimated discharge SOP poses 
a decreasing trend, while the charge SOP estimate shows the 
opposite. This is an expected behaviour caused by the battery’s 
charge acceptance/retention at its either SOC extremes [24], 
which is further verified against the HPPC results, where a 
similar trend in the predicted powers can be observed. 

 

 
Fig. 9. Comparison of SOP estimates obtained using the HPPC (white 
diamonds), EIS (blue triangles) and PRBS (red squares) methods. 

 

Fig. 10. Block diagram of the proposed online battery SOP estimator.  

 
Fig. 11. Comparison of the online SOP estimates obtained using the 
PRBS-initialised DEKF estimator and the HPPC method. 

At SOC = 70%, the cell’s DEKF-estimated discharge and 
charge SOPs are, respectively, 82 W and 25 W, whilst for the 

States EKF 

{SOC,𝑉𝑉𝑅𝑅𝑅𝑅1,𝑉𝑉𝑅𝑅𝑅𝑅2} 

Weight EKF 

{𝑅𝑅s,𝑅𝑅1, 𝜏𝜏1,𝑅𝑅2, 𝜏𝜏2} 

DEKF Estimator 

𝐱𝐱�𝑘𝑘+ 𝜽𝜽�𝑘𝑘+ 

SOPdis =
𝑉𝑉min�𝑉𝑉�OC − 𝑉𝑉min�𝑅𝑅s + 𝑅𝑅1 + 𝑅𝑅2  

 

SOPch =
𝑉𝑉max�𝑉𝑉max − 𝑉𝑉�OC�𝑅𝑅�s + 𝑅𝑅�1 + 𝑅𝑅�2  

𝑉𝑉�OC 

�𝑅𝑅�s,𝑅𝑅�1,𝑅𝑅�2� 

𝑉𝑉𝑘𝑘 𝐼𝐼𝑘𝑘 

Initialised with 
PRBS 
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HPPC method, the test cell’s SOP is estimated at 85 W and 29 
W for discharge and charge respectively. Similarly, at the 
lower end of SOC range, the DEFK-estimated cell power is 52 
W and 49 W, whilst the HPPC-predicted power levels are 54 
W and 47 W for discharge and charge respectively. Despite the 
fact that HPPC and the proposed battery SOP estimation 
techniques differ in implementation, a good agreement between 
the powers estimated can be observed.  

VI. CONCLUSION 

For a reliable BMS operation, the incorporated battery 
model needs to be identified accurately in real time; to this end, 
the DEKF algorithm has been extensively applied in many 
online battery identification problems. However, for an 
accurate identification of the battery model parameters using 
the DEKF algorithm, the filter must be initialised with 
sufficient a priori knowledge of the unknown parameters. In 
practice, such information might not be available to the BMS, 
or the input signal may not be persistently exciting at all times 
for convergence to occur. Thus, in this paper, a hybrid PRBS-
DEKF battery identification technique has been put forward to 
adaptively identify the parameters of a second-order RC 
equivalent-circuit battery model. The technique involves PRBS 
characterisation of the battery/cell to provide the DEKF 
algorithm with an accurate set of initial battery model 
parameters prior to load engagement. The accuracy of the RC 
parameters identified by the PRBS and the hybrid PRBS-
DEKF methods were experimentally verified against the well-
established EIS battery identification method. For 
completeness, the performance of the proposed PRBS and the 
hybrid DEKF algorithm were both tested for online SOP 
prediction of a 3.6 Ah lithium-NMC cell. 
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