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Acoustic Source Localization From Multirotor UAVs
Daniele Salvati, Carlo Drioli, Member, IEEE, Giovanni Ferrin, Member, IEEE, and Gian Luca Foresti,

Senior Member, IEEE

Abstract—We address the problem of acoustic source
localization using a microphone array mounted on multi-
rotor unmanned aerial vehicles (UAVs). Conventional local-
ization beamforming techniques are especially challenging
in these specific conditions, due to the nature and inten-
sity of the disturbances affecting the recorded acoustic
signals. The principal disturbances are related to the high
frequency, narrowband noise originated by the electrical
engines, and to the broadband aerodynamic noise induced
by the propellers. A solution to this problem is proposed,
which adopts an efficient beamforming technique for the
direction of arrival (DOA) estimation of an acoustic source
and a circular array detached from the multirotor vehicle
body in order to reduce the effects of noise generated by
the propellers. The approach used to localize the source
relies on a diagonal unloading (DU) beamforming with a
novel norm transform (NORT) frequency fusion. The pro-
posed algorithm was tested on a multirotor UAV equipped
with a compact uniform circular array (UCA) of eight mi-
crophones, placed on the bottom of the drone to localize
the target acoustic source placed on the ground while
the quadcopter is hovering at different altitudes. The ex-
perimental results conducted in outdoor hovering condi-
tions are illustrated, and the localization performances are
reported under various recording conditions and source
characteristics.

Index Terms—Acoustic source localization, diagonal
unloading beamforming, drone, microphone array, norm
transform, multirotor unmanned aerial vehicle.

I. INTRODUCTION

Acoustic source localization (ASL), an important topic

in microphone array processing since many decades, has

recently proven to offer interesting application perspectives

in a number of scenarios involving mobile robotic devices

[1]–[5]. These include direction of arrival (DOA) estimation

in a single mobile robot [6] and in mobile robot sensor

networks [7], relative position estimation with an ensemble of

drones [8], multimodal sound localization for humanoid robots

[9], acoustic source localization for human-robot interaction

[10], among others. A small number of investigations also

concerned aerial acoustic scene analysis by using microphones

carried by aerial drones, addressing for example relative

acoustic source position estimation by a single drone [11] or

Copyright (c) 2019 IEEE. Personal use of this material is permit-
ted. However, permission to use this material for any other purposes
must be obtained from the IEEE by sending a request to pubs-
permissions@ieee.org.

D. Salvati, C. Drioli, G. Ferrin, and G.L. Foresti are with the
Department of Mathematics, Computer Science and Physics, Uni-
versity of Udine, Udine 33100, Italy, e-mail: daniele.salvati@uniud.it,
carlo.drioli@uniud.it, giovanni.ferrin@uniud.it, gianluca.foresti@uniud.it.

This research was partially supported by Italian MoD project a2018-
045 “A proactive counter-UAV system to protect army tanks and patrols
in urban areas” (Proactive Counter UAV).

drone ensembles [7]. To date, the investigation of audio array

processing solutions for aerial drone applications remains

however limited, despite of the wide range of applications in

which environmental acoustic information would effectively

complement the visual information commonly managed by un-

manned aerial vehicles (UAVs). Examples of such applications

are found in various domains, including civil and industrial.

Civil applications include search and rescue, delivery of goods,

broadcasting of sports and entertainment events, security and

surveillance, agriculture, and civil infrastructure inspection

[12]. Industrial application examples include energy produc-

tion plant performance monitoring and power transmission line

inspection [13], industrial critical structure inspections services

[14], management of disasters and emergency scenarios in

chemical and industrial plants [15]. Acoustic sensors carried

by aerial drones are useful in a wide range of situations in

which relevant information can be gathered only by acoustic

sensing, but the positioning of microphones in the region of

interest is impossible or impractical. Such situations are often

found in the scenarios cited above. Note that acoustic sensing

allows to collect acoustic-only related information through

specific audio processing applications, i.e., acoustic source

localization, acoustic scene analysis, source signal enhance-

ment and remote transmission, acoustic event recognition,

speech/speaker recognition. Information gathered from such

acoustic data is in most cases not possible to obtain with other

sensors (optical, magnetic-field, thermal, proximity), and can

sometimes effectively complement their functions. E.g., when

visual localization is temporarily unavailable due to occlusion

or wrong camera orientation, acoustic localization information

may result useful for camera steering.

The ASL problem concerns the processing of acoustic data

collected by a microphone array with the aim of obtaining

spatial information of the acoustic sources [16]–[22]. At today,

the methods for acoustic localization can be broadly classified

in two classes: indirect methods and direct methods. The

indirect methods aim at estimating the time difference of the

acoustic wavefront arrivals between microphone pairs [23] and

then the position using geometric considerations [24]. Direct

methods, on the other hand, estimate the source position of

an acoustic source in a single step by exploiting some power

density function representing the spatially-relevant information

distribution, and they are considered in general more robust

under noisy and reverberant conditions if compared to the

indirect methods. The conventional steered response power

(SRP) is performed with the delay and sum beamformer [25],

and the minimum variance distortionless response (MVDR)

[26] filter is a well-known data-dependent beamformer that

provides better resolution if compared to the conventional

beamformer. The multiple signal classification (MUSIC) [27]
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is a high resolution and noise robust method that exploits the

subspace orthogonality property to build the spatial spectrum

and to localize the sources.

When the acoustic recording is performed using microphone

arrays installed on multirotor aerial vehicles, the localization

of acoustic sources of interest becomes especially challenging,

due to the number and variety of acoustic disturbances gen-

erated by this class of devices [28]. Moreover, in the case of

micro aerial vehicles (MAVs) of small size, the consequent

constraints on the size of the microphone array may lead

to poor sensitivity and poor spatial resolution issues. As a

matter of fact, attempts to tackle the acoustic related problems

typical of multirotor aerial systems have been documented

only recently [11], [29]–[35]. In [11], a cross-correlation time

difference of arrival (TDOA) method and a particle filter are

applied to localize acoustic sources with known spectrums

using an aircraft drone with one rotor. In [34], [35], methods

derived from the MUSIC [27] are assessed, and the reported

results show good localization performances. However, the

method described also requires the monitoring of MAV inertial

sensors and motor controls, and the learning or monitoring of

propellers noise signal. The MUSIC method is also used in

[32] with a spherical microphone array system. The conven-

tional delay-and-sum beamformer is used in [33] with mul-

tirotor helicopters. In [29], [31], the time-frequency sparsity

of specific target signals, such as speech, is exploited through

the use of a time-frequency spatial filtering technique, and the

method is tested in indoor laboratory prototypes. In [30], it

is illustrated the performance of a localization beamforming-

based spectral distance response algorithm relying on diagonal

unloading (DU) beamforming, recently introduced in [36]. In

the investigation, a small-size and low-cost hardware config-

uration is used, consisting in a 4-microphone uniform linear

array of 6 cm length mounted on a micro aerial quadcopter in

an indoor laboratory.

In the present study, we propose a DU beamforming with

a novel norm transform (NORT) frequency fusion for the

DOA estimation of an acoustic source and a new hardware

arrangement, in which a uniform circular array (UCA) is

placed on the bottom of the drone to localize acoustic sources

at ground level while hovering, and which is detached from

the multirotor vehicle body in order to reduce the effects of

noise generated by the propellers.

The algorithm proposed to process the multichannel data

recorded during flight is based on the narrowband DU beam-

forming, which provides noise robustness similar to the MU-

SIC method but with reduced computational cost. In fact,

MUSIC method requires an eigendecomposition of the co-

variance matrix, while the DU beamformer is a data-dependent

spatial filtering model that aims at exploiting the orthogonality

property between signal and noise subspaces by subtracting an

opportune diagonal matrix from the covariance matrix. The de-

sign and implementation of the DU beamformer is thus simple

and effective, since it is obtained by computing the matrix

(un)loading factor. A broadband localization beamformer is

computed in the frequency-domain by calculating the SRP

on each frequency bin and by integrating the narrowband

SRP components over all frequencies. To increase the spatial

resolution, the narrowband components are in general normal-

ized with respect to some spectral characteristic. Examples

are the widely used phase transform (PHAT) [23], a pre-

filter that uses the magnitude information of the covariance

matrix to normalize the narrowband components in the SRP

conventional beamforming, or the incoherent frequency fusion

[37], that has been shown to increase the spatial resolution

for the MUSIC, the MVDR, and the DU beamformer. In

this work, we do not assume any knowledge concerning the

spectral source characteristics, thus the frequency range for the

computation of the DU narrowband beamforming is selected to

be sufficiently wide to operate with acoustic sources that have

different spectral characteristics. If the source spectrum does

not span all frequencies used for the narrowband beamforming,

some narrowband components are corrupted primarily by

noise. To mitigate the contribution of these noisy components

in the fusion, we introduce a new frequency fusion, called

here NORT, which is based on the norm of the narrowband

SRP. Specifically, we demonstrate that the taxicab norm (i.e.,

L1-norm) provides an effective broadband fusion in very high

noise conditions.

With respect to other drone-specific localization techniques

[11], [29]–[35], we propose a new system configuration, in

which the UCA is positioned under the UAV, at a certain

distance from the propellers. In this way, we significantly

improve the signal-to-propeller-noise ratio (SPNR), reducing

also the energy of the propellers in the acoustic map, since

the UCA is mounted on a hanging circular plate and is

directed towards the ground. Hence, the propeller wavefronts

do not impinge directly upon the microphones. Since the

SPNR affects significantly the localization performance, the

detached-array configuration aims at improving the acoustic

source localization by increasing the SPNR at microphones.

To summarize, the main contributions of the paper are: (1)

A DU beamforming with a novel broadband NORT frequency

fusion is proposed to improve the localization accuracy re-

ducing the drone ego-noise contribution in the acoustic map

and to operate with a wide range of acoustic sources with

different spectral characteristics; (2) A configuration strategy

in which the microphone array is detached from the drone is

proposed to reduce the intensity of noise, generated by the

propellers, at microphones reducing the SPNR and obtaining

an effective localization in real-world conditions; (3) The

DU-NORT and the detached-array configuration are validated

with real-world experiments, conducted in outdoor hovering

conditions at different heights, for different source target

DOAs, for different sound types, and with different SPNRs.

II. METHOD: THE DU-NORT ALGORITHM

A. Model

Let us refer to a UCA with M omnidirectional microphones,

placed on the bottom side of the multirotor UAV, and let us

address the problem of localizing an active acoustic source

positioned at the ground level. We assume that the distance of

the source from the array is much greater than the diameter

of the UCA, consequently we will refer to a far-field model

for the sound source wave propagation.
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Suppose that a single source impinges upon the UCA and let

s(t) denote the signal generated by a nonstationary broadband

source at the reference sensor and at time t. If xm(t) (m =
1, 2, . . . ,M ) is the multichannel input captured by the array,

the far-field noisy data model of the array signals in free-field

can be expressed as

x(k, f) = a(f,Ωs)S(k, f) + vd(k, f) + v(k, f), (1)

where S(k, f) is the discrete-time Fourier transform (DTFT)

of the source signal at the reference sensor s(t), k is the

block time index, f is the frequency bin, vd(k, f) is the

drone ego-noise, v(k, f) is an additive noise assumed to be

spatially white Gaussian, a(f,Ωs) is the array steering vector

for the source direction Ωs = [θs, φs] (θs and φs are the

azimuth and elevation angles), and the vectors are defined as

x(k, f) = [X1(k, f), X2(k, f), . . . , XM (k, f)]T ,vd(k, f) =
[V d

1 (k, f), V
d
2 (k, f), . . . , V

d
M (k, f)]T and v(k, f) =

[V1(k, f), V2(k, f), . . . , VM (k, f)]T , where Xm(k, f),
V d
m(k, f) and Vm(k, f) are the DTFTs of xm(t), vdm(t) and

vm(t) respectively, and T denotes the transpose operator.

The frequency-domain model of a typical acoustic narrow-

band beamformer, i.e., a spatial filter whose goal is to achieve

directional signal reception, can be stated as Y (k, f,Ω) =
wH(k, f,Ω)x(k, f), with w(k, f,Ω) being the beamformer

coefficients for time-shifting, weighting, and summing the data

so to steer the array in the direction Ω = [θ, φ], Y (k, f,Ω)
being the output of the narrowband beamformer, and H
denoting the conjugate transpose. The power spectral density

of the spatially filtered signal is thus

P (k, f,Ω) = E{|Y (k, f,Ω)|2} = E{|wH(k, f,Ω)x(k, f)|2}

= wH(k, f,Ω)Φ(k, f)w(k, f,Ω),
(2)

where | · | denotes the absolute value, Φ(k, f) =
E{x(k, f)xH(k, f)} is the covariance matrix of the array

signal, and E{·} denotes mathematical expectation.

B. Narrowband DU beamforming in single-source case

with spatially white noise and true covariance matrix

The DU beamformer [36] is a data-dependent spatial filter-

ing model that aims at exploiting the orthogonality property

between signal and noise subspaces by subtracting an oppor-

tune diagonal matrix from the covariance matrix Φ(k, f) of the

array output vector. As a result, the DU beamforming removes

as much as possible the signal subspace from the covariance

matrix and provides a high resolution spatial pseudo-spectrum.

In practice, the design and implementation of the DU transfor-

mation is simple and effective, and is obtained by computing

the matrix (un)loading factor that sets to zero the eigenvalue

corresponding to the signal subspace in the theoretical model

of a single source with spatially uncorrelated white Gaussian

noise with zero mean and variance equal to σ2 for all sensors.

In this case, let Ps(k, f) = E{|S(k, f)|2} denote the power

of the signal, then the covariance matrix can be written as

Φ(k, f) = Ps(k, f)a(f,Ωs)a
H(f,Ωs) + σ2I, where I is the

identity matrix.

Given the matrix Φ(k, f) which represents the array output

vector covariance, the DU transformed matrix can be written

as

ΦDU(k, f) = Φ(k, f)− µ(k, f)I, (3)

where µ(k, f) is a real-valued, positive scalar, selected in such

a way that the resulting matrix is negative semidefinite, that its

eigenvalue corresponding to the signal subspace is null, and

that its eigenvalues corresponding to the noise subspace are

non-zero. The value of µ that verifies such constraints in a

single source case with spatially uncorrelated white Gaussian

noise can be shown to be

µ(k, f) = tr[Φ(k, f)]− (M − 1)σ2, (4)

where tr[·] is the operator that computes the trace of a matrix.

The DU beamformer is formulated by using an optimization

problem with an orthogonality constraint that aims to achieve

the signal subspace removal and high resolution directional

response. The optimization problem reads as:

minimize ||w(k, f,Ω)− a(f,Ω)||22,

subject to uH
s (k, f)w(k, f,Ω) = 0,

(5)

where us(k, f) is the signal subspace of Φ(k, f), and ||·||2 de-

notes the Euclidean norm. The DU beamformer is formulated

by imposing that the spatial filter output is zero in the look

direction. The minimization problem of the Euclidean square

distance between the steering vector and the weight vector

resides thus in the noise subspace due to the orthogonality

property between signal and noise subspaces. For more details,

the reader can refer to [36]. Using the method of Lagrange

multipliers, the solution of (5) for the beamforming coeffi-

cients is wDU(k, f,Ω) =
(

1
λ
I
)
ΦDU(k, f)a(f,Ω), where λ

is the noise eigenvalue of the matrix ΦDU(k, f). Substitut-

ing wDU(k, f,Ω) in (2) and considering that ΦDU(k, f) =
Φ(k, f) − µ(k, f)I = Udiag(0, λ, . . . , λ)UH , where U

is the eigenvector matrix of Φ(k, f), and Φ(k, f) =
Udiag(MPs(k, f) + σ2, σ2, . . . , σ2)UH , we have

P ′

DU(k, f,Ω) =
σ2

λ3
aH(f,Ω)ΦDU(k, f)a(f,Ω), (6)

where the quantity σ2

λ3 is a scalar factor that can be omitted

since it has no influence on the DOA estimation.

C. Narrowband DU beamforming with drone ego-noise

and estimated covariance matrix

In real-world applications, the covariance matrix Φ(k, f) is

unknown and it has to be estimated through the averaging of

the array signal blocks [38]

Φ̂(k, f) =
1

B

B−1∑

kb=0

x(k − kb, f)x
H(k − kb, f), (7)

where B is the number of snapshots for the averaging. There

is always a certain mismatch between the estimated and the

true covariance matrix, due to the finite sample size (number

of snapshots), to the signal model mismatches, and to the

nonstationary nature of the source. Besides that, the propeller
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noise is nonstationary and correlated at microphones, giving

rise to a multisource localization problem. The solution in

(4) is based on an ideal model in which a single source is

corrupted by spatially white noise. This hypothesis is however

easily violated in practice due to the model mismatch or when

operated in multisource scenarios.

By considering a general data model with drone ego-

noise (1), we can model the DU procedure taking into

account an available covariance matrix. We can write the

estimated eigenvalue matrix of the estimated covariance ma-

trix Φ̂(k, f) at time block k, organizing the eigenvalues of

Φ̂(k, f) in descending order (λ̂1 > λ̂2 > · · · > λ̂M ) as

Λ̂ = diag(λ̂1, λ̂2, . . . , λ̂M ). The eigenvalue matrix of the

transformed covariance matrix can be written as Λ̂DU =
diag(λ̂1−µ(k, f), λ̂2−µ(k, f), . . . , λ̂M −µ(k, f)). Assuming

that the acoustic source spans the eigenvector corresponding to

the largest eigenvalue λ̂1, an effective practical DU solution is

given by assuming µ(k, f) = tr[Φ̂(k, f)] = λ̂1+λ̂2+· · ·+λ̂M

[36]. This solution is valid for the model (1), since it guar-

antees that the transformed matrix Φ̂DU(k, f) is negative

semidefinite. In fact, we have that tr[Φ̂(k, f)] > λ̂1 (λ̂1 is the

largest eigenvalue of Φ̂(k, f)]), resulting in an attenuation of

the signal subspace with respect to the noise subspace. Hence,

the orthogonality property is exploited, even if partially, since

the transformed matrix may contain a residual amount of sig-

nal subspace [36]. Since Φ̂DU(k, f) = Φ̂(k, f)− tr[Φ̂(k, f)]I
is negative semidefinite, we can write the DU pseudo-spectrum

as

PDU(k, f,Ω) =
1

aH(f,Ω)[tr[Φ̂(k, f)]I− Φ̂(k, f)]a(f,Ω)
.

(8)

D. Broadband NORT frequency fusion

Given the narrowband SRP components PDU(k, f,Ω) (8),

the corresponding broadband SRP P (k,Ω) is obtained by in-

tegrating the narrowband SRP over all frequencies. To increase

the spatial resolution, the narrowband components are in gen-

eral normalized with respect to some spectral characteristic. In

[36], the incoherent frequency fusion [37] was used. The SRP

P (k,Ω) of a beamformer conveys information on the acoustic

energy coming from direction Ω, thus it will be characterized

by a maximum peak corresponding to the source direction

Ω̂s(k). Therefore, the DOA estimate of the source is obtained

by

Ω̂s(k) = argmax
Ω

[P (k,Ω)]. (9)

The proposed norm transform (NORT) frequency fusion is

defined as

P (k,Ω) =

fmax∑

f=fmin

PDU(k, f,Ω)

||g(k, f)||p
, (10)

where || · ||p denotes the p-norm (p is a real

valued positive scalar) of the vector g(k, f) =
[PDU(k, f,Ω1), PDU(k, f,Ω2), . . . , PDU(k, f,ΩD)] that

contains all the pseudo-spectrums for the considered

directions D, and fmin and fmax denote the frequency range

for the computation of the broadband SRP. We can note

Fig. 1. Example of narrowband DU maps (a-c), and of a broadband
map (d) at the same time block k computed on recorded acoustic data.
The symbol x denotes the ground truth. The SPNR is about -13 dB. The
source signal is a whistle sound positioned at an elevation of 5 degrees.
For a frequency of 800 Hz, in which the source signal does not provide
any component, we can note the amplification of the drone ego-noise
due to the uniform norm (p = ∞) (a), and the corresponding attenuation
with the taxicab norm (p = 1) (b). For a frequency of 4000 Hz, the
source provides an active spectral component and the narrowband DU
beamforming correctly estimates the DOA of the source (c). We can
observe the correctly DOA estimation in the broadband fusion with the
taxicab norm (d).

that the uniform norm proposed in [37], i.e., p = ∞, is

the solution that corresponds to a normalization of the

narrowband SRP with respect to the largest value of g(k, f).
Under the hypothesis that the system is designed to operate

with sound sources having different spectral characteristics and

that the type of sources is unknown during the localization

process, the broadband computation of the DU is in practical

computed on a frequency range [fmin, fmax] that is sufficiently

wide to operate with different sound types. This requirement

implies that the broadband fusion may contain narrowband

components corrupted only by noise. It is clear that a nor-

malization that assigns equal importance to each narrowband

component (as the case of the NORT with p = ∞) introduces

noise components in the broadband fusion. In very low signal-

to-noise ratio (SNR) conditions, this fact can be problematic

and can lead to the complete inability of estimating the source

direction. Beside that, the ego-noise of a drone is composed

by multiple narrowband harmonic noise originated by the

electrical engines, and by the broadband aerodynamic noise

induced by the propellers. The frequencies of the narrowband

harmonic noise are typically nonstationary since they depend

on the motor rotation speed [29]. In this scenario, the nar-

rowband SNR, or more specifically the narrowband SPNR,

varies significantly in the spectrum. A narrowband component

that contains the source signal may anyhow provide a wrong

information in the broadband fusion due to the low SPNR

conditions.
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Given these considerations, we investigate here the case

p < ∞ instead. To better understand the improvement of

the fusion using the NORT with p < ∞, and in particular

with the L1-norm, p = 1, we can model the steered response

power P (f,Ω) (k is omitted for simplicity) of a narrowband

DU beamforming by considering a signal component Ps(f,Ω)
that has a Dirac delta in the source direction with value Es

and zero value in the other directions, and a noise component

Pv(f,Ω) due to the drone ego-noise. We have that P (f,Ω) =
Ps(f,Ω)+Pv(f,Ω). In the noiseless case, Pv(f,Ω) = 0, ∀Ω,

the NORT provides the same result with p = 1 and p = ∞
since ||g(f)||∞ = Es and ||g(f)||1 = Es, and we have an

SRP with value 1 in the source direction. On the other hand,

when the source does not have a spectrum component in the

considered frequency bin, Ps(f,Ωs) = 0, we have that the

max value of the power response map g(f) is 1 with p = ∞,

while it is less than 1 with p = 1, depending on the noise

distribution in the map. Since p does not affect the signal

component Ps(f,Ω), the NORT can be formalized with the

following optimization problem:

minimize
Pv(f,Ω)

||gv(f)||p
,

subject to p ≥ 1.

(11)

The solution is obtained with p = 1. An example of the

NORT performance is depicted in Figure 1. The plots show

three narrowband DU maps and a broadband map at the same

time block k computed on acoustic data recorded by an 8-

microphone UCA mounted on the bottom of a UAV. The

SPNR is about -13 dB. The source signal is a whistle sound

positioned at an elevation of 5 degrees. For a frequency of

800 Hz, in which the source signal does not provide any

component, we can note the amplification of the drone ego-

noise due to the uniform norm (p = ∞), and the corresponding

attenuation with the taxicab norm (p = 1). For a frequency of

4000 Hz, the source provides an active spectral component and

the narrowband DU beamforming correctly estimates the DOA

of the source. We can also observe that the DOA estimation

in the broadband fusion is correct.

E. Computational complexity analysis

In this section, we analyze the computational cost of the

broadband DU-NORT, and we also report a comparison anal-

ysis with the SRP-PHAT [23], [25] and the broadband MUSIC

[27], [37]. The computational cost is expressed in terms of the

approximated number of floating-point operations (FLOPs),

where a FLOP is assumed to be either a real multiplication or

a real summation.

Let L denote the frame size for the fast Fourier transform

(FFT), we obtain BM(4Llog2L − 6L + 8) FLOPs for the

FFTs of M channels for B snapshots. Let F denote the

number of frequency bins, we obtain M2F (2B + 6) FLOPs

for the estimation of covariance matrices (7). The steered

response power (2) requires FD(7M2 + 7M − 2) FLOPs

with D being the number of considered search directions. The

sum of narrowband components has D(F − 1) summations.

The DU operation adds F (M − 1) summations and FM

TABLE I
THE COMPUTATIONAL COST EXPRESSES IN TERMS OF THE

APPROXIMATED NUMBER OF FLOPS.

DU-NORT

BM(4Llog
2
L− 6L+ 8) +M2F (7D + 2B + 6) +MF (7D + 2) + F (D − 2)−D

SRP-PHAT

BM(4Llog
2
L− 6L+ 8) +M2F (7D + 2B + 11) + 7MFD − FD −D

MUSIC

BM(4Llog
2
L− 6L+ 8) + 21M3F +M2F (7D + 2B − 2) +MF (7D + 2) + F (D − 1)−D

TABLE II
THE COMPUTATIONAL COST (FLOPS) AT VARIATION OF THE SEARCH

DIRECTIONS D FOR AN ARRAY OF 8 MICROPHONES.

D 10 100 500 1000

DU-NORT 21057870 49918530 178188130 338525130

SRP-PHAT 21239480 49985840 177747440 337449440

MUSIC 27560905 56421565 184691165 345028165

subtractions to obtain the transformed matrices, and the NORT

(p = 1) adds F (D − 1) summations and FD divisions.

The approximate number of FLOPs of the DU-NORT can

be summarized as BM(4Llog2L − 6L + 8) + M2F (7D +
2B + 6) +MF (7D + 2) + F (D − 2)−D. The PHAT filter

in the conventional SRP requires 5FM2 FLOPs. We hence

obtain for the SRP-PHAT a total of BM(4Llog2L − 6L +
8) + M2F (7D + 2B + 11) + 7MFD − FD − D FLOPs.

The MUSIC instead requires an eigendecomposition that can

be approximated with 13M3 FLOPs for the singular value

decomposition of a covariance matrix [39]. The product of

the noise subspace with the corresponding conjugate transpose

requires 8M3−8M2+2M FLOPs. The normalized frequency

fusion used in [37] adds 2FD − F FLOPs. The MUSIC

requires approximately BM(4Llog2L− 6L+8)+ 21M3F +
M2F (7D + 2B − 2) + MF (7D + 2) + F (D − 1) − D
FLOPs. The overall computational cost for each method is

summarized in Table I. Hence, the proposed DU-NORT has

a computational cost similar to the SRP-PHAT, while the

MUSIC requires an eigendecomposition that has a cubic

complexity of M that becomes significant at increasing of

the array size. However, when the array size is small, the

main contribution of the computational cost is related to

the number of considered search directions. Table II shows

the computational cost (FLOPs) at variation of the search

directions D, considering M = 8, L = 2048, B = 25,

F = 635. We can note that the DU-NORT and the SRP-

PHAT provides less computational cost if compared to the

MUSIC with low D, and when the number of D increases,

the computational cost due to the search directions D becomes

predominant, reducing the FLOPs differences between all the

methods.

III. CONFIGURATION STRATEGY WITH THE ARRAY

DETACHED FROM THE DRONE

The proposed new system configuration consists in posi-

tioning the UCA under the UAV at a certain distance from

the propellers. This detached array configuration aims at

improving the SPNR, and hence the localization accuracy,
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Fig. 2. Theoretical and measured SPNRs at variation of distance r

between the array and the drone.

reducing also the energy of the propellers in the acoustic map,

since the UCA is mounted on a hanging circular plate and is

directed towards the ground. Hence, the propeller wavefronts

do not impinge directly upon the microphones.

The wideband SPNR is defined as

SPNR = 10log10
E{
∑M

m=1 |sm(t)|2}

E{
∑M

m=1 |v
d
m(t)|2}

, (12)

where sm(t) and vdm(t) are the time-domain m-th source

signal and m-th drone ego-noise at time t and microphone

m. The intensity of drone ego-noise at microphones affects

significantly the localization performance, degrading the DOA

estimation accuracy at very low SPNRs. By increasing the

distance between the array and the drone, we can increase

the SPNR providing a better localization accuracy. The effect

of the distance between the array and the UAV can be

theoretically analyzed with the inverse square law [40].

Said Wd the sound power of the drone ego-noise, and

assuming spherical acoustical waves, the sound intensity in

homogeneous and isotropic medium can be expressed as

Id(r) =
Wd

4πr2
, (13)

where r is the distance from the drone. The sound intensity

is thus proportional to the inverse square of the distance

(Id(r) ∝ 1/r2). By considering two distances r1 and r2 = 2r1,

we have that the variation ∆I of the sound intensity becomes

∆I = 10log10
Id(r2)
Id(r1)

= 10log10
r2
1

(2r1)2
= 10log10

1
4 = −6dB.

Hence, the drone ego-noise power theoretically decreases by

6 dB each time the distance from the drone is doubled.

Assuming that the distance between the acoustic source and

the array is constant, the SPNR can be described by the

following expression depending on the distance r

SPNR(r) = SPNR(r0)− 10log10

(
r20
r2

)
, (14)

where SPNR(r0) is the signal-to-propeller-noise ratio for a

reference distance r0 (r0 < r). Figure 2 shows the theoretical

SPNR and a measured one that is computed on acoustic data

recorded by an 8-microphone UCA. The source signal was a

whistle sound positioned at an elevation of 0 degrees. With the

hanging system removed and the array positioned at a distance

of 1.7 m above the source, the drone was put vertically above

the array in hovering mode, and its altitude was gradually

increased so that the array-drone distance raised from 1 m to

Fig. 3. The acoustic recording system used in the experiments. Top: the
circular microphone array and the devices used for the signal acquisition
(the 8-channel audio device, the ARM class micro-pc, the microphone
windshields, and the battery pack); Bottom: the circular microphone
array mounted on a hanging circular plate hosting the array itself and
the audio recording devices.

7 m. We can see in Figure 2 that the measured SPNR follows

the trend of the theoretical inverse square law.

IV. EXPERIMENTAL SETUP

The multirotor UAV system selected for the study is a DJI

Matrice 100 quadcopter with a 650 mm diagonal length, 2.3

kg weight, on which we mounted a compact 8-microphone

UCA with a diameter of 196 mm. The microphone array was

built by mounting on a circular plastic frame four Semitron

seMOD-ADMP441 microphone modules, each one hosting

a pair of micro electro-mechanical systems (MEMS) digital

microphones in stereo configuration. The MEMS microphone

has a flat frequency response from 60 Hz to 15 kHz. Each

microphone pair has a distance of 40.6 mm, and the four

pairs are arranged so to be equally spaced on a circumference

of radius r = 98 mm. The MEMS capsules are covered

with windshields to protect the microphone element from the

wind noise. The 8 microphone channels are recorded using

an Odroid-XU4 ARM-Cortex computing device, through a

MiniDSP USBStreamer I2S-to-USB audio acquisition inter-

face. The whole audio recording system is powered by a

dedicated battery pack. The audio recording components are

mounted on a hanging circular plate hosting the array itself,

the audio recording devices (I2S interface and computing

unit), and battery pack. The top of the plate is covered

by polyurethane acoustic insulation foam. A picture of the

recording device is provided in Figure 3

Two different configurations were investigated: setup A and

setup B. In the first one, the plate with the microphones was

located on the bottom of the quadcopter with a distance of
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Fig. 4. The circular microphone array mounted on the bottom of the
Matrice 100 quadcopter, through a set of four nylon cords of 1 m length
each (setup B).

0.25 m from the plane of the propellers, centered with respect

to the four propellers. This choice is the best one in terms

of compactness of the system, however it has some serious

drawbacks in terms of acoustic properties, since the ego-noise

of the quadcopter leads to very poor SPNRs even for small

UAV-target distances. In order to mitigate the effect of the

ego-noise, a different configuration was also investigated, in

which the plate is hung to the quadcopter through a set of

four nylon cords of 5 mm diameter and 1 m length each.
1 A picture of the UAV configured according to setup B

is provided in Figure 4. In the experimental section, it will

be shown how this solution leads to a sensible improvement

in the SPNR of the acquired data and in the localization

performance. In general, a load hanging on ropes below

the drone can affect its maneuverability. This is however

a situation that is encountered more and more today in a

number of practical scenarios (the most important one being

hauling aerial cargo), and various solutions have been made

available for damping the oscillations, avoid drone swinging

and improve the maneuverability in general (e.g., [41], [42]).

In this study, the principal difficulties were encountered during

take-off and landing, whilst during hovering and translational

motion in obstacle-free space, the quadcopter was kept under

control easily. A technical solution to avoid these difficulties

might be to use a winch mounted below the drone to keep the

sensor plate in place during take-off and landing, and to lower

it once in hovering or stable flight conditions.

The audio sampling frequency was 48 kHz, and the block

size was 2048 samples with a hop size of 512 samples. A Hann

window was used. The covariance matrix is estimated using

B = 25 snapshots. A spatial resolution of 2.5 degrees was

used. A frequency range between 150 Hz and 15 kHz was used

for broadband SRP computation, resulting 635 narrowband

1The hanging rope system was designed as a horizontal rectangular
swing hold by four parallel ropes. This ensures that when the quad-
copter’s attitude is horizontal, the base of the hanging system is kept
horizontal. When the attitude of the UAV is not horizontal (e.g., non-
null pitch to achieve constant horizontal velocity), the array plane is no
more parallel to the ground, however it will still be possible to know its
inclination, since it is that of the quadcopter plane. Further refinements
to this design might include a gimbal system to keep the array horizontal
even for non-horizontal attitudes of the UAV, however the simple hanging
rope system has proved effective for the aim of this investigation.

TABLE III
THE RMSE (DEGREE) OF THE DU-NORT WITH A SCREAMING VOICE

SIGNAL USING SIMULATED DATA AT VARIATION OF SPNR LEVEL. THE

SNR WAS 0 dB.

SPNR (dB) p = 1 p = 2 p = ∞ no norm.

-10 1.28 1.31 1.52 1.91
-11 1.44 1.46 1.95 2.61
-12 1.58 1.60 6.58 8.01
-13 2.03 2.08 11.20 12.11
-14 2.88 3.04 18.48 30.53
-15 5.24 6.50 23.20 39.41
-16 9.02 10.10 28.55 43.33
-17 14.71 18.16 35.56 44.63
-18 25.31 26.86 39.35 44.74
-19 33.56 34.66 40.27 45.43
-20 37.86 38.20 42.43 50.00
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Fig. 5. The localization performance of a whistle sound signal using
simulated data at variation of SPNR level. The SNR was 0 dB.

components. The frequency range was set considering the

microphone frequency response (60 Hz to 15 kHz), and its

suitability for the localization of a wide class of acoustic

sources that may usually be of interest for typical acoustic

scene analysis applications. These are, namely, voice sounds,

ecological sounds and noises, acoustic events related to human

activities and actions in a broad sense.

V. SIMULATIONS

In this section, we present some simulations made to test the

performance of the proposed DU-NORT under real drone ego-

noise conditions and spatially white Gaussian noise conditions.

The simulations were conducted on a set of three sound

sources: a white Gaussian noise (WGN) signal, a screaming

voice, and a whistle sound. We evaluated the localization

performance of the NORT using the taxicab norm (p = 1),

the Euclidean norm (p = 2), and the uniform norm (p = ∞).

We compared the DU-NORT performance with the MUSIC

[27] method using the frequency fusion in [37] and with the

SRP-PHAT algorithm [23], [25]. We report some simulations

conducted by adding to a source signal the drone ego-noise

signal recorded from a hovering UAV and by adding mutually

independent white Gaussian noise to each channel. Different

SPNR and SNR values where obtained by changing the ego-

noise gain and the spatially white Gaussian noise level.

Table III reports the root mean square error (RMSE) of the

DOA estimation of a screaming voice signal under different

SPNR conditions for the DU-NORT with an SNR of 0 dB.

The results show the improvement of the taxicab norm if

compared to the uniform norm and to the Euclidean norm.

We can also note the degradation of the performance when

no normalization is used. The localization performance of

the WGN source signal with an SPNR of -20 dB and an
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Fig. 6. The localization performance of a screaming voice signal using
simulated data at variation of SNR level. The SPNR was -13 dB.

UCA
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5-15 m

1 m

40°20°10°5°

Setup B Setup A
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Fig. 7. Recording configuration for evaluating the setup A and B: the
microphone array is on the bottom of the quadcopter for the setup
A and it is 1 m below the hovering UAV for the setup B. The target
acoustic source was positioned at four different angles, for three different
hovering heights: 5 m, 10 m, and 15 m.

SNR of 0 dB is instead equal for all the considered norms

(the RMSE is 1.6 degrees) since the frequency range for the

broadband SRP is occupied by the signal in all narrowband

components. Figure 5 shows the performance comparison

when using a whistle sound signal. The SNR was 0 dB.

The DU-NORT algorithm with the taxicab norm provides a

better performance if compared to the SRP-PHAT and to the

MUSIC at increasing of the noise level. Finally, Figure 6

depicts the RMSE comparison at variation of SNR levels using

a screaming voice sound signal. The SPNR was -13 dB. The

DU-NORT (p = 1) outperforms the MUSIC and the SRP-

PHAT, and it is robust to the increase of the spatially white

Gaussian noise level.

Hence, the taxicab norm provides a lower RMSE due to

their ability in reducing the drone ego-noise in the narrowband

components primarily corrupted by the noise, emphasized the

target source acoustic energy in the final acoustic map. Both

SRP-PHAT and MUSIC instead use a broadband fusion that

assigns equal importance for each narrowband component

resulting in a poor performance with the screaming voice and

the whistle sound in noisy conditions.

VI. EXPERIMENTAL RESULTS

The DU-NORT method described is applied to the task of

localizing an acoustic source by processing the data recorded

by the quadcopter equipped with the UCA discussed so

far. Several recording sessions were conducted to build a

database featuring different target acoustic sources at different

positions with respect to the hovering UAV, and corrupted

by the propeller noise in realistic acoustic conditions. In the

TABLE IV
THE RMSE (DEGREE) OF THE DOA LOCALIZATION PERFORMANCE

USING THE SETUP A.

WGN source

SPNR (dB) DU-NORT (p = 1) MUSIC SRP-PHAT

-25 35.23 38.89 40.23
-31 71.27 81.82 89.41
-34 97.01 114.14 105.54

Screaming voice source

SPNR (dB) DU-NORT (p = 1) MUSIC SRP-PHAT

-25 95.20 104.87 115.54
-31 98.01 106.14 118.32
-34 99.24 124.14 118.78

Whistle source

SPNR (dB) DU-NORT (p = 1) MUSIC SRP-PHAT

-25 96.33 104.32 110.44
-31 97.12 111.14 111.33
-34 98.01 112.44 115.72

TABLE V
THE RMSE (DEGREE) OF THE DOA LOCALIZATION PERFORMANCE

USING THE SETUP B.

WGN source

SPNR (dB) DU-NORT (p = 1) MUSIC SRP-PHAT

-13 7.29 7.67 8.07
-19 10.61 10.21 11.92
-22 27.96 27.83 28.77

Screaming voice source

SPNR (dB) DU-NORT (p = 1) MUSIC SRP-PHAT

-13 10.56 34.60 42.22
-19 24.63 63.34 66.41
-22 91.97 107.28 97.33

Whistle source

SPNR (dB) DU-NORT (p = 1) MUSIC SRP-PHAT

-13 12.50 12.77 12.98
-19 32.05 74.72 70.05
-22 93.53 104.59 103.77

hanging sensing plate configuration, the microphone array was

positioned 1 m below the bottom of the UAV, and centered

on average with respect to the four propellers. During stable

hovering in the experiments, the hanging plate undergoes

very small oscillations which are not influential in the DOA

estimation task.2

The first experiment aims at comparing the setup A and

setup B. The target acoustic source was generated by a

loudspeaker positioned at the ground level, at different angles

with respect to the UAV, namely at 5◦, 10◦, 20◦, and 40◦,

with the UAV at different heights (5 m, 10 m, 15 m), as

illustrated in Figure 7. The assessment was conducted on a set

of three sound sources: a WGN signal of 2 seconds duration,

a screaming voice of 10 seconds duration, and a whistle sound

of 8 seconds duration. We use a sound pressure level meter

to measure the energy of the drone and of the source and to

estimate the SPNR. The measured propellers noise loudness at

2However, the hanging plate may be subject to oscillations which,
if wide, may affect the DOA estimation task. To compensate the error
component due to such issue, the measurement of the relative position
and orientation between the array and the drone can be addressed
by using two MEMS inertial measurement units (IMUs) with integrated
three-axis magnetometer, one positioned on the drone and the other on
the array. The IMU has 9-degrees-of-freedom, and it achieves drift-free
3D orientation tracking with an error of 0.5 degrees [43].
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Fig. 8. The DU-NORT (p = 1) acoustic maps as seen at the hanging
plate (setup B) in two adjacent frames of analysis. Left: the source
is inactive and we can see the small energy component due to the
UAV. Right: the source is active and it is clearly visible in the acoustic
map. The screaming voice source was positioned at an elevation of 10
degrees. The UAV was at 10 m height. The SPNR is about -19 dB.

the array was 100 dB for the setup A and 88 dB for the setup

B, and the mean loudness of the source signal at the array (with

no propeller noise) was 75 dB, 69 dB and 66 dB on average,

for the three different heights (5 m, 10 m, 15 m) respectively.

We have that in the setup B the average sound pressure level of

the UAV at the microphones is reduced by 12 dB if compared

to setup A. Tables IV and V report the DOA estimate RMSE

for the setup A and B, respectively. As we can observe, the

RMSE is very poor for all methods, for all types of sound and

for all SPNR conditions with the setup A (Table IV), except

for the case at -25 dB with the WGN source. From Table V,

we can see the improvement of the localization performance

due to the detached array configuration. We observe that all

methods have a similar performance with a WGN signal, while

the DU-NORT using the taxicab norm outperforms the MUSIC

and the SRP-PHAT with the voice screaming and whistle

sound signal for the SPNR of -13 dB and -19 dB. When the

SPNR is -22 dB the localization totally fails for all methods.

Figure 8 shows the DU-NORT acoustic maps as seen at the

hanging plate from two consecutive frames of analysis using

the setup B. In the right plot, the source is active and it clearly

visible in the acoustic map. In the left plot, the source is

inactive, and we can see the small energy component due to

the UAV propellers.

Next, an experiment to evaluate the localization perfor-

mance for larger heights was conducted. The target acoustic

source was generated by a loudspeaker positioned at the

ground level with an angle of 0 degree with the UAV. The

mean loudness of the source signal was 90 dB at 1 m. The

UAV was positioned in stable hovering at different heights in

the range [15,35] m. Table VI shows the RMSE using the setup

B. The sources are correctly localized for all the heights, and

we can observe that the DU-NORT provides a lower RMSE

at increasing of the hovering height for the screaming voice

and whistle sound signal.

Then, we have conducted an experiment to evaluate the lo-

calization performance with an interference source. The target

acoustic source was generated by a loudspeaker positioned at

the ground level with an angle of 0 degree with respect to the

UAV. The UAV with the setup B was positioned at an hovering

height of 10 m. The SPNR was -13 dB. The interference source

was generated by a loudspeaker positioned at the ground level

with a distance of 15 m from the target source position. The

TABLE VI
THE RMSE (DEGREE) OF THE DOA LOCALIZATION PERFORMANCE

USING THE SETUP B AT VARIATION OF THE DRONE HOVERING HEIGHT.
THE SOURCE IS POSITIONED WITH AN ELEVATION OF 0 DEGREES. THE

MEAN LOUDNESS OF THE SOURCE WAS 90 dB AT 1 m.

WGN source

Height (m) DU-NORT (p = 1) MUSIC SRP-PHAT

15 0.00 0.00 0.00
20 1.44 1.44 1.44
25 1.77 1.77 1.77
30 2.50 2.50 2.50
35 2.50 2.50 2.50

Screaming voice source

Height (m) DU-NORT (p = 1) MUSIC SRP-PHAT

15 0.00 1.25 1.25
20 2.17 2.17 2.17
25 3.15 7.18 8.20
30 3.77 8.93 8.93
35 3.06 10.46 10.46

Whistle source

Height (m) DU-NORT (p = 1) MUSIC SRP-PHAT

15 1.25 1.25 6.50
20 3.95 6.37 8.75
25 4.25 7.25 10.91
30 5.23 7.23 10.40
35 6.37 7.91 10.68

TABLE VII
THE RMSE (DEGREE) OF THE DOA DU-NORT (p = 1) LOCALIZATION

PERFORMANCE USING THE SETUP B WITH AN INTERFERENCE SOURCE.
THE SPNR WAS -13 DB.

SIR (dB) WGN Screaming voice Whistle

0 1.25 5.20 1.77
-10 1.25 5.20 1.77
-20 1.25 171.68 172.16

interference signal was the noise of bulldozers and digging

machines at work recorded at a construction site. The mean

loudness of the interference signal was set to different values

to obtain three signal-to-interference ratios (SIRs): 0 dB, -10

dB, -20 dB. As we can see in Table VII, the localization of

the DU-NORT fails for a SIR of -20 dB. However, the RMSE

is not affected by the interference source for a SIR up -10 dB.

Last experiment was conducted with a moving UAV with the

setup B. The drone was moved along a rectilinear trajectory

with a hovering height of 14 m and with an average speed

of 5 m/s. The UAV was first directed towards the source and

then it was moved away from it. We have used a whistle sound

signal. Figure 9 shows the effective localization using the DU-

NORT (p = 1). The figure also depicts some acoustic maps

in different frames and the spectrogram of a channel of the

UCA. We can note the approaching to the source and the

corresponding decrease of the elevation angle, and then the

moving away from the source with the corresponding elevation

increment.

VII. CONCLUSIONS

We have discussed the problem of acoustic source local-

ization using a compact 8-microphone UCA installed on a

quadcopter. We have presented a DU beamforming with a

novel frequency fusion, called NORT, for the DOA estima-

tion of an acoustic source. We have shown that the taxicab

NORT is effective in high noise conditions when the source
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Fig. 9. The DU-NORT (p = 1) localization performance of a whistle
signal using the setup B with the drone moving horizontally above the
acoustic source.

signal spectrum does not span all the frequencies for the

broadband SRP computation. We have proposed a new system

configuration, in which the UCA is positioned at a certain

distance under the UAV to significantly improve the SPNR at

microphones and to lead an effective localization performance

in realistic scenarios. Simulations and experimental results

have demonstrated that the proposed system can localize

successfully different types of acoustic sources up to an SPNR

of about -19 dB.
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