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Super-twisting algorithm based time-varying
delay estimation with external signal

Yang Deng, Vincent Léchappé, Sébastien Rouquet, Emmanuel Moulay and Franck Plestan

Abstract—This article provides an online time-varying
delay estimation method by using an external signal sent
along with control inputs and output measurements. Since
the external signal is isolated from the system, the lin-
earity and delay-identifiability of the system are no longer
required. Moreover, the sliding mode method guarantees
the finite-time convergence of the delay estimation. By
comparing with the standard sliding mode method, the
super-twisting algorithm reduces the chattering and pro-
vides better performances. Furthermore, the super-twisting
algorithm based delay estimator is implemented on a real
remote data transmission system and its performances are
illustrated by experimental results.

Index Terms—Delay estimation, time-varying delay,
super-twisting.

I. INTRODUCTION

T IME-DELAY systems (TDS) have been widely stud-
ied for the last decades given that time-delays can be

found in many systems (i.e. systems with communication
lags or sensor measurements) and can destabilize them [1,
p.vii]. Several control techniques are proposed to compensate
TDS with known constant or time-varying delay (e.g. Smith
predictor [2], prediction-based controller [3]–[5]). Therefore,
time-delay estimation (TDE) is an effective way to achieve
the stabilization of TDS with unknown time-delay. Moreover,
large numbers of time-delays in real systems are time-varying
or even discontinuous [6]. To stabilize these systems, TDE
technique for constant time-delays is helpless. Consequently,
TDE techniques for TDS with time-varying delays play an
important role in the control of such systems.
A vast literature is available on TDE techniques. An overview
of the existing methods is given in the sequel.

(i) Optimization-based approaches: these methods optimize
the cost function based on the estimation error. The cost
function is usually optimized with least squares method
[7], [8]; mean-square method [9]; linear approximation
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[10] or gradient descent method [11]. The drawback of
these approaches is that they cannot always accurately
estimate the time-varying delays, especially fast-varying
delays.

(ii) Convolution-based algebraic approaches [12]–[14]: these
approaches use convolution methods to identify the un-
known parameters and the constant delay of a linear TDS
with high convergence speeds. The delay-identifiability of
the system must be ensured. However, these approaches
are still not applied to time-varying delay estimation
problems.

(iii) Adaptive backstepping approach [3], [15]: the main con-
ception of this approach is the use of partial differential
equation (PDE) transformation. The TDS is stabilized and
the constant delay can be estimated if the initial condition
of the delay estimator is well chosen. This approach can
also deal with a class of nonlinear systems. The main
drawback is that the estimation algorithm is sensitive to
the initial condition of the adaptation law.

(iv) Sliding mode method based approaches: sliding mode
approach has been successfully used for control [16]
and observation [17] of TDS, it is also an effective
method to solve TDE problems. Sliding mode method is
firstly introduced in [18] to estimate the constant or time-
varying delays of linear system. Another sliding mode
based delay estimator is proposed in [19] to estimate
the constant state delay of nonlinear systems. However,
only local convergence can be ensured by using these two
methods.

(v) Some other approaches: in [20], an adaptive observer
is proposed to estimate the constant or slow-varying
delay (with slight fluctuating estimation error) of non-
linear systems. However, if the delay is fast-varying,
the convergence no longer holds. The authors of [21]
have proposed a neural network-based TDE technique,
but the estimation error cannot accurately tend towards
zero, and the algorithm has large computational load if the
neural network is not well trained. A delay measurement
approach is introduced in [22], messages are transmitted
between a clock-driven sensor and a controller, and the
time-varying delay is estimated as the difference between
the sending and the receiving instants of the message.
However, this approach has the following drawbacks:
• Message rejection: if two messages arrive at the same

sampling period, then the first one must be discarded;
• This approach is sensitive to noise and perturbation in



the communication channel.
A comparison between the proposed method and this
approach is made in Section IV-E.

In this paper, an external signal is sent along with the control
input and the system output by using the same communication
channel. It is supposed that the communication between the
controller and the system is available. For instance, the compo-
nents (actuators, sensors) of the Internet of Things technology
[23] are connected via the wireless network to reach common
goals. Therefore, it is possible to use an external signal instead
of system input/output or state information to estimate the
time-varying delays. The main contribution of this paper is the
use of super-twisting (STW) algorithm [24], [25], it is a very
simple approach with finite-time convergence and chattering
limitation.

The paper is organized as follows. Notations, problem
statements and discussions on the practical implementation
are addressed in Section II. The main results of this paper
are given in Section III. The performances of the proposed
delay estimator are illustrated by hardware-in-the-loop tests in
Section IV. Some conclusions and future work are drawn in
Section V.

II. PRELIMINARIES

Some mathematical notations are introduced in subsection
II-A; then the problem statements are given in subsection II-B;
the experimental set-up is introduced in subsection II-C.

A. Notations

In this paper, the following notations are used. A function
with k-times continuous derivative is called a Ck function. The
right-hand time derivative of a function f at instant t−h(t) is
denoted by

ḟ (t−h(t)) =
d f
dt

∣∣∣
t−h(t)

(1)

where h(t) is a time-varying delay. Besides, the time derivative
of function t 7→ f (t−h(t)) reads as d

dt f (t−h(t)). By using the
chain rule given in [26, Theorem 5.5], the relation between
d
dt f (t−h(t)) and ḟ (t−h(t)) is given as

d
dt

f (t−h(t)) =
d f (v(t))

dv(t)
× dv(t)

dt
= ḟ (t−h(t))(1− ḣ(t))

(2)
with v(t) = t− h(t). The sign-function [25, equations (1.13)-
(1.14)] is defined by

sign(x) =

{
1, if x > 0
−1, if x < 0

(3)

with sign(0)∈ [−1,1]. The definition of xt(θ) reads as xt(θ) =
x(t +θ) with θ satisfies −h≤ θ ≤ 0, this notation is given in
[27, p.38]. The readers may refer to [27, Chapter 2.1] and [25,
Chapter 1] to obtain more detailed definitions and notations
of TDS and sliding mode control respectively.

B. Problem statements

Time-varying delays can arise from communication lags
which are frequently found in remote data transmission (RDT)
processes. Consider an RDT process between two nodes, one
node sends the initial signal s(t) through a communication
channel that is subject to a time-varying delay hi(t), then the
delayed signal s(t−hi(t)) is received at the other node. Next,
the delayed signal s(t−hi(t)) is sent back to the first node, due
to the other transmission delay ho(t), one receives s(t−h(t))
at the first node with h(t) defined as

h(t) = ho(t)+hi(t−ho(t)). (4)

The time-varying delays hi(t), ho(t) and h(t) are respectively
named as the input delay, the output delay and the round-trip
delay.

Remote control system [28, Chapter 3.4] is one of the
possible RDT processes mentioned above. For instance, one
considers a LTI remote control system with input-output time-
varying delays

ẋ(t) = Ax(t)+Bu(t−hi(t))

y(t) =Cx(t−ho(t))
(5)

where hi(t), ho(t) represent the transmission delays and A,
B, C have appropriate dimensions. The estimation scheme
of (5) is shown in Figure 1. The delay estimator sends the
external signal (green arrows) to the plant’s receiver through
the same channel as the one used for the control signal (black
arrows). After that, the delayed control input u(t − hi(t)) is
injected to the plant and the signal s(t− hi(t)) is transferred
to the plant’s transmitter. Next, the transmitter sends the output
Cx(t) and the delayed signal s(t−hi(t)) back to the controller
side. Finally, the controller side receives y(t) and s(t− h(t))
at the same time. Consequently, the time-delay of the received
signal s(t−h(t)) equals to the round-trip delay introduced by
the remote control system (4). Therefore, one can effectively
estimate the round-trip delay with the inner loop of s(t) (green
loop in Figure 1) that is independent of the control system
(black loop in Figure 1). Finally, the remote control system
can be stabilized1 by using the delay estimation ĥ(t) and a
predictor-based controller [29].

Remote     

Controller

Delay 

Estimator

hi(t) Receiver

Plant

ho(t) Transmitter

s(t)u(t)

s (t-hi(t) )

u(t-hi(t) )

u(t-hi(t) )

s (t-hi(t) )
s (t-h(t) )y(t)

Control Architecture
Transmission 

 Delays
Controlled System

h(t)^

Fig. 1: Delay estimation scheme of remote control system by
using external signal.

1The statements in [29, p.27] confirm that one can use the round-trip
delay (4) to design a predictor-based controller in order to stabilize the
system with input-output time-varying delays.



The main objective of this paper is the design of an online
update law ˙̂h(t) that ensures the global finite-time convergence
of ĥ(t) to h(t) by using s(t) and s(t−h(t)).

C. Test bench description
The experimental set-up is composed of two different com-

puters connected through a Wi-Fi network. Two computers run
Robot Operating System (ROS) platform [30] simultaneously
in order to actualize an RDT process with input and output
time-varying delays (see Figure 2).

Computer 2

ROS node: Transceiver with 

time-varying delay hs(t)
Wifi 5Ghz 

Computer 1

ROS node: Signal source 

& Delay estimator

Transmission delay

hi(t)

Transmission delay

ho(t)

NODE 1 NODE 2

Fig. 2: Application scheme of time-varying delay estimation
in an RDT.

In Figure 2, hi(t) and ho(t) are similar to the ones defined in
subsection II-B. Computer 1 generates the signal s(t), receives
the delayed signal s(t − h(t)), and estimates the time-delay
online. Computer 2 is used to receive the delayed signal
s(t − hi(t)) and to send it back to Computer 1. The syn-
chronization between the two computers is not required since
all the calculations are done on Computer 1. Moreover, an
additional artificial time-varying delay hs(t) can be introduced
by Computer 2 in order to create an arbitrarily long round-
trip delays. Thus, the round-trip delay of the RDT process
presented in Figure 2 is defined as

h(t) = ho(t)+hs(t−ho(t))+hi(t−ho(t)−hs(t−ho(t))). (6)

The configurations of the test bench are introduced in the
sequel. Computer 1 is a Dell Precision 5520 with an Intel
i7-6820HQ processor whereas Computer 2 is a Dell Latitude
E6410 with an Intel i7-M640 processor. The operating systems
(OS) of the two computers are Ubuntu 16.04 with ROS kinetic
(Computer 1) and Ubuntu 14.04 with ROS Jade (Computer 2).
The two computers communicate with each other through a
Wi-Fi hotspot (standard: IEEE 802.11ac) created by a router
D-Link DIR-880L (5GHz) with communication frequency
fs = 200Hz. In other words, the communication between the
two computers has a sampling period Ts = 1/ fs = 0.005s.

III. SUPER-TWISTING ALGORITHM BASED DELAY
ESTIMATOR

In this section, a super-twisting algorithm based delay
estimator is introduced to estimate the unknown time-varying
delay. Some assumptions are given in subsection III-A. The
main results of this paper are stated in subsection III-B.

A. Assumptions
Consider an external signal s(t) and a time-varying round-

trip delay h(t) that is bounded by [0,hmax] with known hmax >
0. Remind that hmax can be larger than the sampling period
Ts. The following assumptions are fulfilled.

Assumption 1. The external signal s(t) satisfies that s(t)∈C1

and ṡ(t) 6= 0 for all t ≥−hmax.

The statements of Assumption 1 guarantee that the signal
s(t) is strictly monotonic.

Assumption 2. The first and second derivatives of the signal
s(t) and the time-varying delay h(t) are bounded for all t ≥
−hmax.

Assumption 2 ensures that the super-twisting algorithm can
be designed. The bounds mentioned in Assumption 2 read as:

|ṡ(t)| ≤ ε, |s̈(t)| ≤ ε
′ (7)

and
|ḣ(t)| ≤ δ , |ḧ(t)| ≤ δ

′ (8)

for all t ≥−hmax. The boundedness (7) can be easily ensured
since the signal s(t) is generated by the user (e.g. if one sets
s(t) = kt, then one has ε = k and ε ′ = 0). In real applications,
since the round-trip delay h(t) is upper bounded by hmax, then
one can use hmax and the sampling period Ts to find the upper
bounds of δ and δ ′ with

δ ≤ hmax

Ts
, (9)

and

δ
′ ≤

hmax
Ts
− (− hmax

Ts
)

Ts
=

2hmax

T 2
s

. (10)

Indeed, (9) is obtained by considering the worst case i.e. h(t)
changes from 0 to hmax in a sampling period, and one can also
get (10) in the same way. Thus, the boundedness presented by
(8) can be ensured, and then Assumption 2 is satisfied.

B. Main results
The main results of this paper are given in Theorem 1.

Theorem 1. Consider that the external signal s(t) satisfies
Assumptions 1 and 2, and the time-varying delay h(t) satisfies
Assumption 2. Define the delay estimator dynamics

˙̂h(t) = 1− 1
ṡ(t− ĥ(t))

w(t) (11)

with w(t) defined as

w(t) =−λ |σ(t)|1/2sign(σ(t))+w1(t) (12)

where
σ(t) = s(t− ĥ(t))− s(t−h(t)) (13)

and the w1-dynamics reads as

ẇ1(t) =−α · sign(σ(t)). (14)

If the parameters α and λ are well tuned2, then the delay
estimator (11) globally converges to h(t) in a finite-time.

Proof. The proof is divided into two steps. Step 1 shows that
the finite-time convergence of σ(t) to zero induces the finite-
time convergence of ĥ(t) to h(t). Step 2 provides the finite-
time convergence of the error term σ(t) to zero.

2The choice of α and λ will be detailed in the sequel by (24) and (25).



Step 1. In this step, the relation between the convergences
of σ(t) and ĥ(t) is analyzed. As stated after Assumption 1, the
signal s(t) is strictly monotonic for all t ≥−hmax. Therefore,
s(t) is bijective for all t ≥ −hmax by using the results given
in [31, p.165, Corollary 4.9]. Assume that σ(t) converges to
zero in a finite-time T , it implies that

s(t− ĥ(t)) = s(t−h(t)), for all t ≥ T. (15)

Since s(t) is bijective, (15) is equivalent to

t− ĥ(t) = t−h(t), for all t ≥ T (16)

which implies that

ĥ(t) = h(t), for all t ≥ T. (17)

Finally, one proves that the delay estimator (11)-(12)-(13)-
(14) converges in finite-time if the error term σ(t) converges
in finite-time.

Step 2. Taking the time-derivative of the error term σ(t),
the error dynamics reads as

σ̇(t) = ṡ(t− ĥ(t))− d
dt

s(t−h(t))− ṡ(t− ĥ(t)) ˙̂h(t). (18)

Indeed, as proven in Step 1, assertions σ(t)= 0 and ĥ(t)= h(t)
are equivalent since the signal s(t) is bijective. Thus, the error
term σ(t) is a sliding variable with respect to the estimation
error ĥ(t)−h(t).
Assumption 1 implies that ṡ(t− ĥ(t)) 6= 0 for all t ≥ 0. Then,
there is no singularity in delay estimator (11). Substituting
(11) into the error dynamics (18) leads to

σ̇(t) = a(t)+w(t) (19)

where a(t) = − d
dt s(t − h(t)). Moreover, (19) equals to the

following representation

σ̈(t) = ȧ(t)+ ẇ(t) (20)

that satisfies the form [32, equation (3.30)]. Next, by using the
transformation (2), it leads to

a(t) =−ṡ(t−h(t))(1− ḣ(t)). (21)

Differentiating (21) yields that

ȧ(t) = ṡ(t−h(t))ḧ(t)− s̈(t−h(t))(1− ḣ(t))2. (22)

The bound of ȧ(t) is obtained by using (22), (7), and (8) such
that

|ȧ(t)| ≤C (23)

with C = εδ ′+ ε ′(1+δ )2. Consider the second-order system
(20) that is linearly dependent on the correction term w(t) and
consider the “control law” (12)-(14). If the gains α and λ are
sufficiently large such that

α ≥C (24)

and
λ

2 ≥ 4C
α +C
α−C

(25)

then σ(t) converges to zero in finite-time according to the
simplified super-twisting algorithm and its convergence con-
dition [32, Chapter 3.6.4, equation (3.42)]. The convergence

conditions (24)-(25) can always be satisfied due to Assumption
2. This latter ensures the existence of the parameter C; then
there always exist sufficiently large α and λ such that (24)-
(25) are satisfied. Thus, the proof of Step 2 is finished.

Consequently, Theorem 1 is proven by combining the results
stated in Step 1 and Step 2.

The proposed method has the following advantages:
• it uses an external signal s(t) (the inner loop of Figure

1) to estimate the round-trip delay: as a consequence,
this technique has no restriction on the control system as
linearity and delay identifiability;

• the existing sliding mode based delay estimators [18],
[19] can only ensure the local convergence, but the
convergence of the proposed method is global thanks to
the use of an external signal;

• one uses the super-twisting algorithm to improve the
performance rather than the standard sliding mode one;
these two approaches are compared in Sections IV-A-
IV-C;

• the hardware configuration of the proposed method is
similar to [22], but the simulation results given in Section
IV-E show that the proposed method appears to be more
robust than [22].

Remark 1. The convergence conditions (24)-(25) are derived
from the bounds on ḣ(t) and ḧ(t). If the bounds δ , δ ′ are
smaller than the overestimations hmax/Ts and 2hmax/T 2

s given
in (9)-(10), then the gains α , λ are also smaller than the over-
estimated gains derived from these two overestimated bounds.
However, conditions (24)-(25) are only sufficient conditions;
in applications, smaller gains can also ensure the finite-time
convergence (17).

Remark 2. Note that system (19) can also be stabilized in
finite-time by using a standard sliding mode “controller”

w(t) =−Ksign(σ(t)) (26)

with K > ε(1 + δ ). The control law described by (26) is
discontinuous due to the use of sign-function (3). In practice,
the imperfection in the sign-function implementation results
in a high frequency oscillation named chattering [25, p.8].
If the sampling period is small, the proposed method (11)-
(14) reduces the chattering since the term |σ |1/2sign(σ) is
continuous and the discontinuous term (14) lies in the integral
[25, p.35]. If the sampling period is large, the performances of
the two approaches are degraded [33]. A comparison between
the two sliding mode based delay estimator will be given
in Section IV with hardware-in-the-loop tests. Moreover, the
chattering effect is undesirable in applications [34, p.283].
Thus, one prefers to use the super-twisting algorithm rather
than the standard sliding mode method.

Remark 3. Notice that the external signal has to be strictly
monotonic because of Assumption 1. As a result of the mono-
tonicity, the signal could tend towards infinity and exceed
the calculation limit of the computer. A possible solution in
practice is to add a standard projector of ĥ(t) on [0,hmax] and
periodically reinitialize the signal with a period T > hmax. A



similar discussion on the choice of the period T is given in
[19, p.268] in the sense of the delay identifiability. When the
difference between t− ĥ(t) and kT is less than a sufficiently
small threshold, one sets ˙̂h(t) to zero in order to avoid
divergence. With the proposed techniques, the condition on the
strict monotonicity is relaxed and the delay estimation error
is always bounded in a small interval around zero.

IV. HARDWARE-IN-THE-LOOP TESTS AND SIMULATIONS

In this section, five tests are given to illustrate the perfor-
mances of delay estimator (11)-(12)-(13)-(14), the first four
of them are hardware-in-the-loop tests (HIL tests) that are
based on the WiFi communication (see Figure 2) between
the two computers, and the last one is a simulation. The
first three HIL tests illustrate that the performance of the
proposed method deals with arbitrarily long and fast-varying
delays. The fourth HIL test shows that the proposed method
is able to estimate discrete-time stochastic delay. Finally, the
last simulation confirms that the proposed method is robust
with respect to the channel inherent noise.

A. Transmission delay estimation
The aim of this HIL test is to evaluate the performances

of the proposed delay estimator on estimating transmission
delays of an RDT process. The artificial time-delay hs(t) (see
Figure 2) is set to zero, so the unknown round-trip delay is
defined as (4). The performances of the standard sliding mode
(SM) estimator (11)-(13)-(26) and the super-twisting (STW)
algorithm based estimator (11)-(12)-(13)-(14) are compared
in this HIL test. The external signal is set to s(t) = t. The
standard sliding mode estimator is defined by K = 1.5; the
super-twisting algorithm based estimator is defined by α = 10
and λ = 5. The initial conditions of two delay estimators are
set to ĥ(0) = 0.5s.

The results are presented in Figure 3. Remind that the
reference time-delay h(t) is obtained by a ping test3. Figures
3a and 3c show that the standard sliding mode estimator
has estimation biases, and the chattering amplitude is much
higher than the level of the transmission delay h(t). This
result implies that the standard sliding mode estimator (11)-
(13)-(26) cannot estimate the transmission delay accurately.
However, by using the proposed method (11)-(12)-(13)-(14), it
shows in Figures 3b-3d that the transmission delay is estimated
without estimation bias, and the chattering effect is reduced.
Consequently, Figure 3 highlights the benefit of the super-
twisting algorithm (12)-(13)-(14); it ensures the accuracy and
chattering limitation of the delay estimation.

B. TDE with slow-varying artificial delay
After estimating the transmission delay, some HIL tests will

be done to deal with long artificial time-delays. To produce an
arbitrarily long time-delay, hs(t) is no longer zero. However, if
hs(t) is not zero, the round-trip delay is difficult to be directly

3Ping [35] is a computer network administration software that mea-
sures the round-trip time for messages sent from the originating host to
a destination computer that is echoed back to the source.

measured by using a ping test. To overcome this problem, one
sets hs(t) much larger than hi(t) and ho(t), then the round-trip
delay (6) can be approximated by

h̃(t) = hi(t)+hs(t)+ho(t). (27)

In sections IV-B-IV-D, one uses the approximation (27) to ver-
ify the performance of the delay estimators. In this subsection,
the following slow-varying artificial time-delay is introduced:

hs(t) =



4, for 0≤ t < 5
2, for 5≤ t < 10
4, for 10≤ t < 15
10−0.4t, for 15≤ t < 20
2+ sin(0.4π(t−17.5)), for t ≥ 20

. (28)

Note that hs(t) ≥ 1 for all t ≥ 0; it means that the artificial
delay is much larger than the transmission delays. Then, it
is possible to use approximation (27) to verify the accuracy
of the TDE algorithms. The parameters are defined by α =
10, λ = 15 and K = 2.3. The initial conditions of two delay
estimators are set to ĥ(0) = 0.5s, and the external signal is set
to s(t) = t.

Due to the fact that the transmission delays are much
smaller than the time-varying delay hs(t), it is possible to
use the boundedness of hs(t) to determine the parameters.
Since the external signal is s(t) = t, then one has ε = 1
and ε ′ = 0. Following (28), the bounds given in (7)-(8) read
as δ = 1.2566 and δ ′ = 1.5791. Inequalities (24)-(25) are
satisfied by choosing the parameters C = 1.5792, α = 10 and
λ = 15. Finally, the convergence conditions (24)-(25) of the
super-twisting algorithm are satisfied. In addition, the standard
sliding mode based delay estimator is also designed with the
well-tuned gain K > ε(1+δ ).

The results are presented in Figure 4. In Figure 4b, the
round-trip delay h(t) is estimated with delay estimator (11)-
(12)-(13)-(14) whereas the results obtained by (11)-(13)-(26)
are displayed by Figure 4a. As shown by Figure 4c, if one
uses the standard sliding mode delay estimator (26), the
convergence speed is slower and the chattering effect is more
serious. This HIL test highlights the performances of the super-
twisting algorithm in practice. It provides better results than
the standard sliding mode algorithm.

C. TDE with fast-varying delay
In many engineering systems, time-delays are no longer

slow-varying (i.e. the derivative of the time-delay is larger
than 1 [36, p.273]). The control of such systems is challenging
because:
• for the continuous-time TDS, the Lyapunov-Krasovskii

theorem [1, Theorem 3.1] is difficult to deal with this
case [36, p.273];

• for the networked control systems, packet reordering
(older packet arrives at the destination after the new one)
may arise when the time-delay is fast-varying, and this
makes the control strategies more complicated [37].

Moreover, as stated in [20, p.1765], estimating such delays is
more challenging than slow-varying delays for many existing
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(a) Delay estimation ĥ(t) with sliding mode method.
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(b) Delay estimation ĥ(t) with super-twisting method.
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(c) Estimation error with sliding mode method.
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(d) Estimation error with super-twisting method.

Fig. 3: Comparison between the two approaches (SM and STW) for transmission delay estimation.

approaches as [22] and [18, Theorems 4-6]. Thus, TDE for
fast-varying delay is important to consider, and this technique
is also helpful for the stabilization of TDS with unknown fast-
varying delay.
In this subsection, a time-varying artificial time-delay

hs(t) =



3+2t, for 0≤ t < 1
7−2t, for 1≤ t < 3
2t−5, for 3≤ t < 5
2t−9, for 5≤ t < 7
2t−13, for 7≤ t < 9
4+ cos(π(t−9)), for t ≥ 9

(29)

is now introduced. Similarly, approximation (27) still holds in
this subsection. The round-trip delay is going to be estimated
by two delay estimators with parameters α = 20, λ = 15,
K = 5 and initial condition ĥ(0) = 0.5s. The same analysis
as presented in subsection IV-B can be done in order to check
that the convergence conditions (24)-(25) are verified.
The results are presented in Figure 5. Firstly, Figures 5a and

5b show that the super-twisting algorithm based delay esti-
mator (11)-(12)-(13)-(14) converges faster than the standard
sliding mode one (11)-(13)-(26). Secondly, Figure 5c illus-
trates that the super-twisting algorithm has less chattering than
the other. In conclusion, although the time-delay is no longer
slow-varying, the proposed method is still able to estimate it,
and the proposed method still has faster convergence speed
and better chattering limitation.

Remark 4. As stated in [38, p.1907], if one increases the
gain K in (26), then it results in larger chattering that makes
the delay estimation worse. However, if one decreases the
gain K in order to reduce the chattering, the analysis in
[25, equations (1.10), (1.17)] shows that the sliding variable
converges to zero more slowly. This discussion shows that the
standard sliding mode estimator cannot converge fastly and
reduce the chattering at the same time. However, as shown in
Figures 4 and 5, the super-twisting algorithm ensures a high
convergence speed and a chattering limitation at the same
time.

D. Discrete-time random delay estimation
In practice, the time-varying delay is not always differ-

entiable, that makes the TDE task difficult. For example,
the arguments in [6, p.231] show that the communication
routing of a networked control system can be changed to keep
data queuing lines below some acceptable value, that causes
delay jump phenomena. Therefore, the ability of estimating
discontinuous time-varying delay is important to consider.
As the example given in [6, Figure 6(b)], the artificial time-
varying delay hs(t) can be modeled as a discrete-time random
process D(n,Td) that changes value for each Td seconds. In this
subsection, D(n,Td) is chosen as a uniform random variable
on [0.8,1.2] with Td = 0.15s. The parameters of the delay
estimator are set to α = 10 and λ = 15.
Figure 6 illustrates that the discrete time-varying delay h(t) =

D(n,Td) is well estimated. Indeed, the proposed method can
estimate piecewise-continuous time-delay, and this HIL test
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(a) Slow-varying delay estimation with SM method.
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(b) Slow-varying delay estimation with STW method.
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(c) Chattering analysis for slow-varying estimation on in-
terval t ∈ [11.5,11.7].

Fig. 4: Comparison between the two approaches (SM and
STW) for slow-varying delay estimation.

highlights the practical use of the proposed delay estimation
approach.

E. Comparison with the measurement approach in the
presence of channel inherent noise

This subsection considers now the noise and perturbation
in the communication channel. As stated in [39], there may
exist noise (usually modeled as Gaussian noise [40, p.173])
and distortion in a communication channel or at the receiving
terminal. Then, it is necessary to consider the robustness of
the algorithms with respect to the noise and the perturbation.
The motivation of this test is to compare the estimation
performance of the three methods (the measurement approach
[22], the standard sliding mode approach, and the proposed
method).
Firstly, on assumes that the delayed signal s(t−h(t)) cannot be

0 5 10 15

Time (s)

1

2

3

4

5

S
e

c
o

n
d

s
 (

s
)

(a) fast-varying delay estimation with SM method.
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(b) fast-varying delay estimation with STW method.
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(c) Chattering analysis for fast-varying delay estimation on
interval t ∈ [10.1,10.3].

Fig. 5: Comparison between the two approaches (SM and
STW) for fast-varying delay estimation.

perfectly known due to the noise; only the following perturbed
signal is available:

sn(t−h(t)) = s(t−h(t))+n(t) (30)

with n(t) a Gaussian noise. Thus, one can only use the noised
signal sn(t − h(t)) to calculate σ(t) and ĥ(t). Secondly, one
uses the L2 norm of the estimation error e(t) = h(t)− ĥ(t)

‖e‖[t1,t2] =
(∫ t2

t1
|e(s)|2ds

)1/2

(31)

to evaluate the accuracy and the variation of the estimation
algorithm on [t1, t2]. If ‖e‖ is large, it means that the algorithm
is not accurate or the estimation error oscillates a lot. Consider
the round-trip delay

h(t) = 1+0.3sin(2t)+0.2cos(t) (32)
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Fig. 6: Discrete-time random delay h(t) = D(n,Td) and its
estimation ĥ(t) by using the proposed method.

and the external signal s(t) = t as in [22]. The parameters are
designed as K = 5, α = 10 and λ = 15. The channel inherent
noise n(t) is a Gaussian white noise with power P = 7×10−5

and switching time Tns = 0.01s.
Figure 7b illustrates that the estimation error of the proposed
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(a) Delay estimation via the three methods (delay measure-
ment approach: ĥ [22](t), standard sliding mode: ĥSM(t) and
super-twisting method: ĥSTW (t)) in the presence of channel
inherent noises.
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(b) L2 norms of the three estimation errors in the presence
of channel inherent noises.

Fig. 7: Comparison between the measurement approach [22],
the SM method and STW method in the presence of channel
inherent noise.

method has the minimum L2 norm among the three methods.
It shows that the channel inherent noise has lower effects on
the sliding mode based techniques, especially on the proposed
method.

V. CONCLUSION

In this paper, an external signal is introduced to estimate the
time-varying delays. The super-twisting algorithm is used to
improve the performances. The delay estimator is implemented
on an experimental set-up composed of two computers, and
the performances are illustrated by HIL tests and simulations.
Two improvements will be considered for future works:
• the adaptive-gain super-twisting algorithm [41] will be

considered in the future. With this method, the gains α

and λ are dynamically adapted, and they are no longer
overestimated (mentioned in Remark 1) i.e. they will just
be the smallest value that ensures the estimation accuracy.

• The stabilization of time-varying delay systems by using
the proposed delay estimator and the predictor-based
controller (for time-varying delays) [29], [42] will also
be considered for future researches.
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