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Abstract—Composite is widely used in the aircraft industry and it is 

essential for manufacturers to monitor its health and quality. The 

most commonly found defects of composite are debonds and 

delamination. Different inner defects with complex irregular shape 

is difficult to be diagnosed by using conventional thermal imaging 

methods. In this paper, an ensemble joint sparse low rank matrix 

decomposition (EJSLRMD) algorithm is proposed by applying the 

optical pulse thermography (OPT) diagnosis system. The proposed 

algorithm jointly models the low rank and sparse pattern by using 

concatenated feature space. In particular, the weak defects 

information can be separated from strong noise and the resolution 

contrast of the defects has significantly been improved. Ensemble 

iterative sparse modelling are conducted to further enhance the 

weak information as well as reducing the computational cost. In 

order to show the robustness and efficacy of the model, experiments 

are conducted to detect the inner debond on multiple carbon fiber 

reinforced polymer (CFRP) composites. A comparative analysis is 

presented with general OPT algorithms. Not withstand above, the 

proposed model has been evaluated on synthetic data and compared 

with other low rank and sparse matrix decomposition algorithms.   

Index Terms— CFRP composites, optical thermography, eigen 

decomposition, joint low rank sparse decomposition, concatenated 

matrix factorization, weak signal detection. 

I. INTRODUCTION

HE usage of CFRP in the aerospace and aircraft industry is

increasing hugely owing to its unique characteristics as lightweight, 

stiffness, and resistance to corrosion. For quality assurance to monitor 

the health and quality of the composite becomes ever more important  

[1]. The composites are manufactured by sandwiching different layers. 

For good quality, the layers should have strong bonding. However, due 

to the manufacturing limitations and installation procedure, defects 

become inevitable. The most commonly found defects in the 

composites are debonds and delaminations [2]. These defects occur on 

the inner part of the composite and are not easy to be detected. 

Therefore, nondestructive testing (NDT) and structural health 

monitoring (SHM) is necessary to be conducted.    

 In [3], Poudel et al. used the NDT technique for the defect detection 

and analysis of composite repairs. In  [4], Meola et al. reviewed the 

importance of NDT based methods for defect analysis in the 

composites. The NDT techniques usually use different external 

sources for defect analysis. Based on this principle, the NDT can be 

categorized as eddy current based NDT [5], ultrasonic based NDT [6], 

acoustic emission-based NDT [7], microwave-based NDT [8]. 

Nowadays, the popular NDT method for composite defect detection is 

the optical pulse thermography (OPT) [9]–[12]. It is a fast and wide-

area inspection technique and more detailed review of OPT system can 

be found  in [13], [14].  

In [2], Maierhofer et al. discussed two modes of  OPT i.e. reflection 

and transmission modes. A more detailed description of the type and 

usage of the excitation sources for the OPT can be found in [15], [16]. 

The OPT uses an excitation source to induce temperature variation in 

the composite. If defects exist, irregular patterns occur and are 

captured by the infrared camera. These thermal frames in raw form 

contain a large degree of noise while the defects information is not 

clear. To improve the contrast of defects and remove noise, the image 

and video processing algorithms are utilized [17]–[21]. 

The generally used image pattern analysis technique for defect 

detection by OPT system is the principal component analysis (PCA) 

[22]–[24]. It is based on low rank estimation using singular value 

decomposition (SVD). In [25], independent component analysis (ICA) 

algorithm is proposed to further enhance the thermal contrast. In [26], 

thermal signal reconstruction (TSR) algorithm is proposed. It works on 

polynomial fitting in the logarithmic domain. In [27], [28], pulse phase 

thermography (PPT) algorithm is proposed for defect detection by 

analyzing the defects information in the frequency domain. In [29], 

Yuanlin et al. proposed a novel polynomial fitting coefficient 

algorithm. It is based on the mixture of fitting time derivative and the 

coefficient algorithm. In [30], Yousefi et al. proposed a candid 

covariance-free incremental principal component thermography 

(CCIPCT) algorithm. The algorithm is an extension to the PCA by 

decreasing its computational load and increasing the performance. In 

[31], Lopez et al. evaluated the performance of the TSR algorithm 

against the partial least square thermography (PLST) technique. The 

comparison is carried out for CFRP composite debond detection. In 

[32], Junyan et al. proposed a hybrid algorithm based on the simulation 

annealing and nelder-mead simplex search. In [33], Zhang et al. 

proposed an algorithm for feature embedding. The algorithm utilizes 

the concatenated feature space to perform the low rank sparse matrix 

approximation. In [34], Ishikawa et al. proposed an extension to the 

PPT algorithm. They use phase difference between the defect and non-

defect regions at the high frequencies for defect quantification. The 

work [35], [36] proposed a novel sparse principal component 

thermography (SPCT) algorithm based on PCA [22] for defect 

detection in CFPR composites using optical thermography. The 

algorithm in [35] is quite simple and robust for flat shaped CFRP 

specimens. However, it is not validated for complex and irregular 
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shape CFRP specimens as well as the varying depths. From the aspect 

of low rank matrix factorization (LRMF), the algorithm [35] is a two-

term decomposition algorithm. However, the proposed algorithm 

optimizes the low rank and sparse data jointly in a concatenated feature 

space in a tri-decomposition framework. The proposed algorithm is 

tested for different specimens with different shapes as well as varying 

depth for CFRP specimen. In addition, the proposed algorithm is 

validated on synthetic data with comparison of other low rank sparse 

matrix decomposition algorithms. In [37], it presented and compared 

three different matrix factorization algorithms for defect detection 

using thermal NDT. The three algorithms include PCA, non-negative 

matrix factorization and archetypal analysis. All methods are tested on 

thermographic NDT data and analysis is presented. In [38], authors 

further test more algorithms on the thermal NDT data. Moreover, 

wider applications of the thermal NDT are described such as arts, 

archelogy, and civil structures. The matrix decomposition algorithms 

are evaluated for these applications and results are analyzed. In [39], 

Feng et al. proposed a hybrid algorithm based on the TSR and region 

growing technique for the task of debond detection in the CFRP 

composites. In [40], Peng et al. proposed a multilayer architecture 

utilizing the ensemble variation based tensor factorization (EVBTF). 

The algorithm is tested for debond detection in CFRP composites. In 

[41], Ahmed et al. proposed a sparse-mixture-of-gaussian (S-MOG) 

algorithm for debond detection in CFRP composites. The algorithm 

utilizes the multilayer structure to mine the features for thermographic 

image enhancement.  

The proposed algorithm falls into the category of tri-decomposition 

based algorithms. In [42], Zhou et al. proposed a three-term 

decomposition model called stable principal component pursuit. In this 

model, the noise term is modeled to be independent identically 

distributed. The model is solved iteratively by solving the sparse term 

with a difference equation and the low rank term is estimated by using 

the least square method. In [43], Aravkin et al. proposed variation of 

the stable principal component pursuit method. In this model, it 

decomposes the matrix into the two parts as they are solved 

sequentially by projected and accelerated gradient methods. In [44], 

Oreifej et al. proposed a novel model for the background and 

foreground segmentation problem in video sequences. They solve the 

three-term decomposition model in an iterative manner in the 

framework of the augmented Lagrangian multiplier method.  In [45], 

Zhang et al. proposed a tri-decomposition model in the framework of 

low-rank matrix recovery and completion. It decomposes the observed 

data into the clean data, sparse data and noise data. It is tested in a 

variety of face images and surveillance videos in the framework of 

image denoising. These algorithms utilize a single feature space for the 

optimization of the tri-decomposition model containing the observed 

raw data using the augmented Lagrangian multiplier method. The 

proposed method utilizes the concatenated feature space for the low 

rank matrix decomposition using the residual and sparse data along 

with the observed raw data. The low rank information from the 

concatenated feature space is able to extract the weak target defect 

information as the defects information lies in the low rank as well as 

sparse space. In addition, the proposed method solves the tri-

decomposition model by developing an expectation-maximization 

(EM) framework for the ensemble joint sparse low rank matrix 

decomposition (EJSLRMD). 

As the defects depth increases, the detection performance decay. 

For the composite specimen with an irregular shape, the general OPT 

algorithms give poor performance [41]. The algorithm of [41] has good 

reasonable results whereas its computational cost is quite high due to 

the multilayer sparse modelling structure. To alleviate this problem, 

we propose EJSLRMD algorithm. The proposed algorithm models the 

low rank and sparse data jointly in a concatenated feature space. Since 

the defects information mostly presents in the sparse and low rank 

space, it is possible to mine the low rank feature in a concatenated 

feature space with the raw data before sparse modeling. To reduce the 

computational cost we chose the most significant eigen-features for the 

sparse modeling. The proposed algorithm is able to detect weaker and 

deeper defects. In order to show its efficacy, the algorithm is conducted 

for debond defects detection in a different structure of CFRP 

composites. The visual analysis along with F-score [40] comparison 

are presented with generally used OPTNDT algorithms. In addition, 

the proposed algorithm is validated on the synthetic data with different 

noise configurations.  

The rest of this paper has been organized as follows: The proposed 

algorithm is described in Section 2. The experimental setup and 

information about the CFRP specimen are given in Section 3. Results 

and discussions are elaborated in Section 4. Finally, conclusions are 

drawn in Section 5. 

II. THE PROPOSED METHODOLOGY 

A. Proposed Algorithm 

Given the data tensor containing the thermographic sequences  𝐷 ∈

𝑹𝑚×𝑛×𝑘   where (𝑚, 𝑛) denote the spatial resolution of the frame and 

𝑘  represents the number of the frame. Firstly, we convert it into a 

matrix form by representing each (𝑚, 𝑛)  spatial frame as a vector for 

𝑖  frames. Secondly, this matrix can be modeled into a multilayer 

structure [40], [41] of low rank matrix  𝐿, sparse matrix 𝑆 and noise 

matrix 𝐸 as: 

𝐷1 = 𝐿1 + 𝑆1 + 𝐸1                                         (1) 

For the second layer decomposition, it can be expressed as: 

𝐷2 = 𝑓1(𝐷1) + 𝐿2 + 𝑆2 + 𝐸2                               (2) 

In general, for the 𝑖𝑡ℎ layer, the deep decomposition can be written 

as: 

𝐷𝑖 = 𝑓𝑖−1(𝐷𝑖−1) + 𝐿𝑖 + 𝑆𝑖 + 𝐸𝑖                              (3) 

where 𝑓𝑖(𝐷𝑖) is the activation used in the multilayer low rank sparse 

data modelling. This structure is portrayed in Fig. 1. 

 Fig. 1 shows the overall schematic block diagram of the proposed 

model. It is divided into four core parts for better interpretation. The 

orange blocks represent the input thermal sequences. The blue blocks 

represent the concatenated feature space eigen decomposition. The 

green blocks represent the model for the probabilistic robust matrix 

factorization algorithm. Finally, the red block is the output. Given the 

input data and initializations of the sparse matrices, the concatenated 

eigen decomposition is performed as shown in the blue blocks on the 

top of Fig. 1. In the next step, the sparse matrix decomposition is 

performed and its probabilistic model is shown by the green block in 

Fig. 1. This process of ensemble joint sparse low rank matrix 

decomposition is solved in an iterative manner where the concatenated 

low rank component is solved by eigen decomposition and sparse 

component is solved by expectation maximization approach as shown 

in the middle blocks of the Fig. 1. Finally, the overall process is 

represented as a multilayer ensemble architecture of the low rank and 

sparse factorization as shown in the bottom blocks of Fig. 1. The whole 

structure is applied to extract the weak defect information on CFRP 

composites using the optical thermography. 

The previous study does not involve or leverage the sparse factors 

for the spatial resolution of the thermal data. Sparseness refers to a 

representational scheme where only a few units (out of a large 

population) are effectively used to represent typical data vectors. In 

effect, this implies most units taking values close to zero while only 



  

few take significantly non-zero values. The sparse factors enforce the 

solution to consider only the significant region where the defect may 

lie within the surrounding background. For data with sparse outliers 

are partially contaminated by noise of overwhelming magnitude, sheer 

low-rank assumption cannot fully capture its complex structure. 

Therefore, (1) can be considered as combination of sparse patterns (e.g. 

hot spots) and non-sparse patterns. Thus, to extract the defect 

information from the thermographic data, we propose the following 

optimization problem [44], [45]: 

min
𝐿,𝑆

{‖𝐿𝑖‖
∗

+ 𝛬‖𝑆𝑖‖
2

+ ‖𝐷𝑖 − 𝐿𝑖 − 𝑆𝑖‖
𝐹

2
}                        (4) 

where 𝛬 is the regularizing parameters for 𝑆, ‖. ‖2  represents the 𝑙2 

norm, ‖. ‖∗  represents the nuclear norm for low rank term 𝐿, and‖. ‖𝐹 

represents the Frobenius norm. Using the regularizing framework, we 

relax the above problem using convex proxies. In addition, for any 

non-singular matrix, 𝑆 = 𝐴𝑆−1𝑆𝐵𝑇  holds. The problem (4) can be 

reformulated as: 

min
𝐿,𝐴,𝐵

{ ‖𝐿𝑖‖
∗

+ 𝛬𝑎‖𝐴𝑖‖
2

2
+ 𝛬𝑏‖𝐵𝑖‖

2

2
+ ‖𝐷𝑖 − 𝐿𝑖 − (𝐴𝐵𝑇)𝑖‖

𝐹

2
}      (5) 

where 𝛬𝑎, 𝛬𝑏  are the regularizing parameters for 𝐴, 𝐵. The problem of 

(5) is solved in two steps. In the first step, we solve for the 𝐿 which is 

the low rank term. In the second step, we solve for 𝑆 = 𝐴𝐵𝑖  which 

represents the sparse term. The steps are elaborated in graphical form 

as shown in Fig.1. For the low rank term, given the data matrix 𝐷 and 

initial matrices of 𝐴, 𝐵 , we propose a concatenated eigen 

decomposition for the low rank term: 

𝐿𝑖 = [
𝐷𝑖

𝐷𝑖 − (𝐴𝐵𝑇)𝑖−1

(𝐴𝐵𝑇)𝑖−1

]                                    (6) 

where  𝑖  represents the layer number. For the problem of defect 

detection in the CFRP composite structure by using optical 

thermography, the thermal video sequences contain multiple frames of 

the same specimen on different transient responses. Based on the 

analysis in [41] and [40], the defect information is mostly present in 

the sparse and low rank components of the decomposition. By 

concatenating the original data with residual and sparse data for the 

eigen decomposition, it is able to extract more information of the 

defects as compared to the simple eigen decomposition without 

concatenation which can be seen in the results of PCA [22] Fig. 4. In 

particular, this data goes into the sparse decomposition algorithm of 

[46] which further removes the noise and modifies the sparse data in 

an iterative manner. By using the concatenated feature space in a joint 

sparse and low rank decomposition, it significantly enhances the 

extraction of weak defect information.  

 By concatenating the sparse data, two benefits can be achieved. 

Firstly, we keep intact the original raw features in the low rank 

estimation. This enforces that the estimated low rank features do not 

significantly deviate from the original features. Secondly, we use the 

sparse data and residual data for low rank estimation. It significantly 

embeds the sparse information into the low rank space which 

subsequently allows the algorithm to extract the target weak defect 

information from both low rank space and sparse space in a joint 

optimization framework by using the concatenated feature space. We 

solve the problem of (6) by using eigen decomposition technique as: 

𝐿𝑖 = 𝑈𝛤𝑉𝑇                                           (7) 

where 𝑈, 𝑉 are the left and right eigenmatrices and 𝛤 is the diagonal 

matrix containing the eigen values. The first six principal eigenvectors 

are chosen to represent the low rank term. This setting is based on 

repeated experimental analysis and it is observed that six eigenvectors 

can already contain the most useful low rank information, namely: 

𝑌𝑖 = (𝑈𝛤𝑉𝑇)1 𝑡𝑜 6                                    (8) 

For  𝑆 = (𝐴𝐵𝑇), we solve the following optimization problem [46]: 

(𝐴𝐵𝑇)𝑖 = arg 𝑚𝑖𝑛𝐴,𝐵 {‖𝑌𝑖 − (𝐴𝐵𝑇)𝑖−1‖
𝐹

2
+ 𝛬𝑎‖𝐴𝑖−1‖

2

2
+ 𝛬𝑏‖𝐵𝑖−1‖

2

2
}   (9) 

It should be noted that the most expensive step is sparse modelling. As 

only six principal eigenvectors are used to represent the low rank term, 

the computational cost will be significantly reduced. We solve the 

problem of (9) for each layer 𝑖 by using the probabilistic robust matrix 

factorization (PRMF) algorithm of [46]. The algorithm of [46] utilizes 

the conditional expectation minimization (CEM) algorithm of [47] to 

update the 𝐴, 𝐵  in an iterative manner. First, we decompose 𝑌 

containing the concatenation information as following matrix 

factorization problem [46]: 

𝑌 = 𝐴𝐵𝑇 + 𝐸                                         (10) 

𝑎𝑖𝑗|𝛬𝑎~ℵ(𝑎𝑖𝑗|0,𝛬𝑎
−1)                                  (11) 

𝑏𝑖𝑗|𝛬𝑏~ℵ(𝑏𝑖𝑗|0,𝛬𝑏
−1)                                  (12) 

where 𝐸 is the noise matrix and 𝑎𝑖 be the 𝑖𝑡ℎ row of 𝐴 and 𝑏𝑗  be the 

𝑗𝑡ℎ row of 𝐵. Assuming noise follows the Laplacian distribution. This 

implicates: 

𝑝(𝐸|𝛬) = (
𝛬

2
)𝑚𝑛  𝑒𝑥𝑝{−𝛬‖𝐸‖1}                       (13) 

Let 𝐴, 𝐵 be the parameters to be estimated. 𝛬, 𝛬𝑎and𝛬𝑏 are the hyper 

parameters. The MAP theory and Bayes theorem: 

 

Fig. 1. The proposed model description 

 

Fig. 2. Block diagram of the OPT system 

 



  

𝑝 ∝ 𝑝(𝑌|𝐴, 𝐵, 𝛬)𝑝(𝐴|𝛬𝑎)𝑝(𝐵|𝛬𝑏)                      (14) 

where 

𝑙𝑜𝑔𝑝(𝐴, 𝐵|𝑌, 𝛬, 𝛬𝑎, 𝛬𝑏) = −𝛬‖𝑌 − 𝐴𝐵𝑇‖1 − 𝛬𝑎‖𝐴‖2
2 − 𝛬𝑏‖𝐵‖2

2 +

𝐶 (15) 

where 𝐶  is the constant term. The problem of (15) is the same as 

minimizing the following problem: 

 

min
𝐴,𝐵

‖𝑌 − 𝐴𝐵𝑇‖1 + 𝛬𝑎‖𝐴‖2
2 + 𝛬𝑏‖𝐵‖2

2                (16) 

To solve this problem, a leveled hierarchical form of a Laplacian 

distribution is used. Let 𝑦  be the Laplacian random variable, its 

probability density function (pdf) can be given as: 

𝑝(𝑦|𝑎, 𝑙2) =
𝑙2

2
exp(−𝑙2|𝑦 − 𝑎|)                     (17) 

The Laplacian distribution can be represented as a mixture-of-

gaussians as: 

𝐿(𝑦|𝑎, 𝑙2) = ∫ ℵ(𝑦|𝑎, 𝑚)
∞

0
𝐸𝑥𝑝𝑜𝑛(𝑚, 𝑙2)𝑑𝑚              (18) 

where 𝐸𝑥𝑝𝑜𝑛(𝑚, 𝑙2)  is the exponential distribution term. To 

accommodate this, a matrix 𝑀 = [𝑚𝑖𝑗] ∈ ℝ𝑚×𝑛 is used whose each 

element follows exponential prior. This variable relates the 𝑙1 term to 

the 𝑙2 term and hence we can have a closed form solution. 

 

 Let 𝑎𝑖 be the 𝑖𝑡ℎ row of 𝐴 and 𝑏𝑗  be the 𝑗𝑡ℎ row of 𝐵. The matrix 

factorization can be formulated as: 

𝑦𝑖𝑗|𝐴, 𝐵, 𝑀~ℵ(𝑦𝑖𝑗|𝑎𝑖
𝑇𝑏𝑗 , 𝑚𝑖𝑗)                          (19) 

𝑎𝑖𝑗|𝛬𝑎~ℵ(𝑎𝑖𝑗|0,𝛬𝑎
−1)                                (20) 

𝑏𝑖𝑗|𝛬𝑏~ℵ(𝑏𝑖𝑗|0,𝛬𝑏
−1)                                (21) 

𝑚𝑖𝑗|𝛬~ 𝐸𝑥𝑝𝑜𝑛(𝑚𝑖𝑗| 𝛬 2⁄ )                            (22) 

To estimate 𝐴, 𝐵 , conditional EM algorithm is used [47]. The EM 

algorithm iterates between two steps, E-step and M-step. For the E-

step, the Q-function is solved. Given the initial estimates be 𝜃 = [�̂�, �̂�], 

namely 

𝒬(𝐵|𝜃) = 𝐸𝑀[𝑙𝑜𝑔𝑝(𝐵|𝐴,̂ 𝑌, 𝑀)|𝑌, 𝜃]                (23) 

 

Taking log on both sides and ignore the terms which do not relate to 

𝑄. 

log 𝑝(𝑌|𝐵, �̂�, 𝑀) + log 𝑝(𝐵) 

= −
1

2
∑ ∑ {𝑚𝑖𝑗

−1(𝑦 − �̂�𝑖
𝑇𝑏𝑗)2} − 𝛬𝑏

𝑛
𝑗 ∑ 𝑏𝑗

𝑇𝑏𝑗 + 𝐶𝑛
𝑗

𝑚
𝑖           (24) 

 

It can be seen that 𝑚𝑖𝑗
−1 obeys an inverse Gamma distribution.  

𝐸[𝑚𝑖𝑗
−1|𝑌, �̂�, �̂�] =

√𝛬

|𝑢𝑖𝑗|
≜ 〈𝑚𝑖𝑗

−1〉                       (25) 

 

where  𝑢𝑖𝑗 = 𝑦𝑖𝑗 − (𝑎𝑏𝑇)𝑖𝑗 .  Next, in the M-step, the parameter𝐵  is 

updated. This is done by maximizing the Q-function.  To achieve this 

take the partial derivative of Q-function with respect to 𝑏𝑗  and set it to 

zero. The update rule can be set as: 

𝑏𝑗 = (�̂�𝑇𝛺𝑗�̂� + 𝛬𝑏𝐼𝑢)
−1

�̂�𝑇𝛺𝑗𝑦.𝑗                     (26) 

where  𝛺𝑗 = 𝑑𝑖𝑎𝑔(〈𝑚1𝑗
−1〉, ⋯ , 〈𝑚𝑚𝑗

−1 〉) and 𝑦  is the 𝑗𝑡ℎ  coloumn of 𝑌. 

Following the same convention, the update formula for 𝑎 can be found 

as: 

𝑎𝑖 = (𝐵𝑇𝛬𝑖�̂� + 𝛬𝑎𝐼𝑢)−1�̂�𝑇𝛬𝑖𝑦𝑖 .                      (27) 

where 𝛬𝑖 = 𝑑𝑖𝑎𝑔(〈𝑚𝑖1
−1〉, ⋯ , 〈𝑚𝑖𝑛

−1〉) and 𝑦𝑖 . is the 𝑖𝑡ℎ row of 𝑌.  As 

the data 𝑌 consists of only six principle eigenvectors, the CEM 

algorithm based on experimental analysis updates 𝐴, 𝐵  in only two 

iterations.  

The stopping condition for the proposed EJSLRMD problem is set as: 

∑
(𝑢𝑖𝑗

𝑖 −𝑢𝑖𝑗
𝑖−1)

𝑢𝑖𝑗
𝑖−1𝑖 <∈                                   (28) 

The term ∈ represents the tolerance level which has been selected 

to be 10−6based on the independent Monte-Carlo test. The complete 

step-by-step description is tabulated in Table. 1. 

 

III.  EXPERIMENTAL SETUP  

A. Experiment set-up and specimen details 

In an experimental evaluation, Fig. 3 shows the OPT system with 

the reflection mode configuration [48]. Halogen lamps are used as the 

source of excitation with the power of 2𝑘𝑊. At the back hand, optical 

excitation source of ITECH-IT6726G is used which is a 𝑍𝑌 − 𝐵 type 

source. It comes with adjustable DC power mechanism which can go 

up to  3𝑘𝑊 . The distance between the specimen under test and 

excitation source is set around 80𝑐𝑚. The 𝐴655𝑠𝑐 infrared camera is 

used to capture the time series temperature variations of the specimen.  

The resolution of the camera is 640 × 480. The thermal sensitivity of 

the camera is 0.05°𝐶 . In our experiments, we have utilized the 

sampling frequency of 50𝐻𝑧. 

 OPT technology utilizes an external heating source and an infrared 

camera. The specimen is excited using external sources and the 

temperature variations are captured. These temperature variations are 

represented as the time series of the thermographic images. The pulse 

generator is used to control the frequency of excitation and a computer 

is applied to store the results. The configuration of the reflection mode 

is used with the halogen lamps as the source of heating. The halogen 

lamps and the infrared camera are placed facing the same direction of 

TABLE I  

THE PROPOSED ENSEMBLE JOINT SPARSE LOW RANK 

MATRIX DECOMPOSITION (EJSLRMD) 

1. Input Data 𝑫 ∈ 𝑹𝒎×𝒏×𝒌 

2. Convert the tensor D into matrix form. 

3. Initialize the parameters 𝜦𝒂, 𝜦𝒃 as 1 and  𝑨, 𝑩 randomly. 

4. For each layer do; 

5. Solve for 𝑳using the (6) to (7). 

6. Solve for A and B using CEM algorithm. 

7. E-Step: for A and B   〈𝒎𝒊𝒋
−𝟏〉 =

√𝜦

|𝒖𝒊𝒋|
 

8. M-Step:  

9. 𝒃𝒋 = (�̂�𝑻𝜴𝒋�̂� + 𝜦𝒃𝑰𝒖)
−𝟏

�̂�𝑻𝜴𝒋𝒚.𝒋 

10. 𝒂𝒊 = (𝑩𝑻𝜦𝒊�̂� + 𝜦𝒂𝑰𝒖)
−𝟏

�̂�𝑻𝜦𝒊𝒚𝒊. 

11. Check the stopping criteria using (28) or go to step 5. 

12. End for 

13. Output 𝑳, 𝑺 

The Matlab demo code can be linked: 

http://faculty.uestc.edu.cn/gaobin/zh_CN/lwcg/153392/list/index.ht

m 

 

Fig. 3. The optical pulse thermography system  



  

the specimen as the reflection mode as shown in the schematic block 

diagram of OPT in Fig. 2. 

 

Five different CFPR composite specimen are prepared for the 

experimental validation of the proposed algorithm. The CFRP 

composites were acquired from the Chengdu Aircraft Design Institute 

which is a part of the China Aviation Industry. These specimen were 

used in the design and manufacturing of the aircraft components. The 

first two specimens are flat surface with a rectangular shape. The 

remaining three samples have the 𝑉 shape irregular surface. All the 

specimen have debond defects of different diameters and depths. The 

more detailed information about the specimen and defects can be found 

in Table. 2.  

  

 

TABLE II  

INFORMATION ABOUT THE CFRP SPECIMEN 

 

Number Defect Profile Dimension(mm) 

Defect 

Information(mm) 

Top Depth, Bottom 

Diameters 

Picture 

1 

 

 

250×250×24.2 

1, 2 

2,4,6,8,10,12,16,20 

 

2 

 

 

250×250×22.2 

2, 2.5 

2,4,6,8 

 

3 

 

 

100×100×80 

2, 2.25, 2.5,2.75 

2, 3 

 

4 

 

 

100×100×80 

0.5,0.75,1,1.25,1.5,1.75 

2, 3 

 

5 

 

 

100×100×80 

1.5,1.75,2,2.25,2.5,2.75 

9, 10 

 



  

IV. EXPERIMENTS ANALYSIS 

The visual results along with the quantitative results are presented. 

The comparative analysis is carried out with the general OPT 

algorithms to show the efficacy and efficiency of the proposed 

algorithm. The quantitative comparison parameters used are F-score 

and the running (computation) time. The general OPT based NDT 

algorithms under comparison are PCA [22], PPT [27], TSR [26], 

EVBTF [40] and S-MoG [41]. All the experiments are carried out in a 

corei7 computer with a Windows-10 operating system having 8GB 

RAM. MATLAB2017b software is utilized for all the algorithms 

evaluation. The comparative results for all specimen are summarized 

in Table. 3. 

The visual comparative results are shown in Fig. 4 in a tabular form. 

Row 1 shows the comparison results for specimen 1. It is a flat surface 

rectangular shape specimen. The defect depths are 1𝑚𝑚 𝑎𝑛𝑑 2𝑚𝑚. 

For this specimen, almost all the algorithms perform well. However, 

from Fig. 4 (row 1) left to right, it can be seen that strong noise is still 

present and all algorithms fail to detect the defect with the smallest 

diameter defects on the right end corner.  Nonetheless, the proposed 

algorithm gives better contrast and resolution result. It detects all the 

debond defects present on the specimen. Fig. 4 (row 2) shows the 

results of the second sample with a flat surface and rectangular shape. 

The defect depths are 2𝑚𝑚 𝑎𝑛𝑑 2.5𝑚𝑚. In comparison, the proposed 

algorithm gives better contrast and resolution and quantifies more 

defects than the other algorithms. 

Fig.4 (row 3) shows the comparative results for the specimen 3. It 

is a 𝑉  shaped irregular surface specimen. The defect depths are 

(2,2.25,2.5,2.75)𝑚𝑚 . From Fig. 4 (row 3) left to right, most 

algorithms fail in detecting the debond defects. The proposed 

algorithm is able to give reasonable contrast and resolution results. The 

proposed algorithm detects all the defects present in the specimen.  

Fig. 4 (row 4) shows the visual results for CFRP specimen 4. Here, 

the number of defects are 6.  The depths are 

(0.5,0.75,1,1.25,1.5,1.75)𝑚𝑚 . Because of the irregular shape and 

surface, the performance of these algorithms is quite poor. The 

proposed algorithm gives better resolution with good contrast results. 

All the debond defects are successfully detected.  

Fig. 4 (row 5) shows the visual results for specimen 5. The number 

of defects here are 5. The depth of the defects are 

(1.5,1.75,2,2.25,2.5)𝑚𝑚. The diameter of the defects are 

9𝑚𝑚 𝑎𝑛𝑑 10𝑚𝑚.  In the comparative analysis, the proposed 

algorithm detects all the debond defects present on the specimen and 

shows good resolution and contrast.  

The quantitative comparison based on F-score and computation 

time are tabulated in Table. 3. The last row shows the average percent 

F-score for all the algorithms along with the average computation time 

in seconds. On average, the PPT algorithm has the detection efficiency 

of 63%  with 208  seconds in average running time. The average 

detection rate in terms of percent F-score for the TSR algorithm is 

76% with the average time consumption of 494 seconds. The PCA 

algorithm has the fastest running time of 56 seconds with a reasonable 

detection rate of 76%. The algorithm of EVBTF gives the highest 

running time of 970 seconds with a poor detection capability of 40%. 

The S-MoG algorithm takes an average time of 190  seconds to 

produce the results with the percent efficiency of 71%. The proposed 

algorithm gives on average the highest detection rate of 99%. The 

proposed algorithm takes around on average 76  seconds to be the 

second-fastest algorithm to PCA. By jointly optimizing the low rank 

and sparse data in a concatenated manner, it can remove the noise, 

improve the resolution and increase the detection efficiency.   

 

 PPT[27] TSR[26] PCA[22] EVBTF[40] S-MoG[41] EJSLRMD 

1 

      

2 

      

3 

      



  

4 

      

5 

      

Fig. 4. The comparative analysis of different algorithms. 

TABLE III  

COMPARATIVE RESULTS F-SCORE (LEFT) AND TIME TAKEN (RIGHT IN SECONDS). 

Specimen Number PPT[27] TSR[26] PCA[22] EVBTF[40] S-MoG[41] EJSLRMD 

1 0.94 135 0.94 271 0.94 43 0.94 1342 0.94 173 1 51 

2 0.66 564 0.66 642 0.93 153 0.30 1019 0.93 466 0.93 52 

3 0.4 129 0.66 241 0.66 15 0.00 766 0.4 86 1 90 

4 0.4 124 0.66 631 0.4 30 0.00 1039 0.4 120 1 93 

5 0.75 146 0.88 601 0.88 47 0.75 753 0.88 125 1 95 

Average 63% 208 76% 494 76% 56 40% 970 71% 190 99% 76 

 

The proposed model uses the PRMF [46] algorithm for the sparse 

decomposition step. However, there are other similar algorithms in the 

literature. In [49], Xiang et al. proposed a matrix factorization 

algorithm called direct robust matrix factorization algorithm (DRMF). 

The block coordinate descent approach is proposed to solve the low-

rank decomposition problem which is a variation of the singular value 

decomposition (SVD) and efficient thresholding. In [50], Wang et al. 

proposed a Bayesian extension to the PRMF [46] model for the image 

and video processing applications. In [51], Zhao et al. proposed a 

model for the low rank matrix factorization (LRMF) problem which 

utilizes the inference based variational Bayes framework. It has been 

found that these class of algorithms have high computational cost for 

the problem of defect detection in CFRP composites. In [52], Meng et 

al. proposed a novel model for the LRMF problem, where they assume 

the noise to have an unknown probabilistic distribution and estimate it 

by using mixture of Gaussian (MoG) model. In [53], Cao et al. 

improved the model of [52] by assuming the noise has mixture of 

exponential power (MoEP) distribution and propose an expectation 

maximization algorithm to solve the problem. In [54], Kim et al. 

proposed a novel algorithm for the LRMF problem which utilizes the 

orthogonal matrix decomposition algorithm in the augmented 

Lagrangian framework. In [55], Lin et al. proposed a majorization 

minimization approach for the problem of LRMF. A surrogate function 

is used to replace the original problem and the algorithm of linearized 

alternating direction method with parallel splitting and adaptive 

penalty (LADMPSAP) is used for its solution owing to its low 

computation cost. 

The algorithm of [49] is a simple and easy way to implement 

whereas its performance is normal. The algorithms of [50], [51] are 

based on the Bayesian framework. The class of variational Bayes 

framework based algorithms for the problem of defect detection in 

CFRP composites using optical thermography have been analyzed by 

[40]. These algorithms have poor performance and high computation 

cost for irregular shape CFRP specimen. The algorithms of [52]–[55] 

are quite robust and assume the noise has a more complex distribution 

rather than the Gaussian distribution. These class of algorithms were 

analyzed in [41]. It has been found that these algorithms for the defect 

detection problem with the irregular shape specimen fail to perform 

well. In addition, these algorithms are quite complex and lots of 

parameters need to be tuned for the solution of a particular problem. 

Based on this analysis, the PRMF [46] algorithm was selected owing 

to its simple implementation, less parameter tuning and robustness to 

fit in the framework of EJSLRMD. In the multilayer architecture of 

EJSLRMD, it requires more parameters and complex architecture 

which increases the computational cost as referred in [40] and [41]. 

The PRMF algorithm in the proposed framework converges 

significantly fast and simultaneously it is able to recover the signal 

more accurately with complex noise distributions. 

 Fig. 5 shows the comparative results on specimen 4 with irregular 

shape who has six defects on varying depths. Fig. 5 (a) shows the 

results of the matrix factorization algorithm of [52]. It can be observed 

from the results that it is difficult to distinguish the defects and 

background. The computational cost is 156 seconds. Fig. 5 (b) is the 

result of Bayesian robust matrix factorization algorithm of [50]. The 

results are over smooth and defects are not clearly visible. The 

computational cost is significant high of 1986 seconds. Fig. 5 (c) 

 

Fig. 5. Comparative results for specimen 4 on different algorithms 

and their computation time in seconds (a) [52] (156sec) (b) [50] 

(1986sec) (c) [53] (340sec) (d) [55] (420sec) (e) [42] (464sec) (f) 

[35] (29sec) (g) [38] (14sec) (h) proposed (93sec) 



  

shows the result of exponential power distribution based algorithm 

[53]. Here the noise is assumed to have a more complex distribution. 

However, the algorithm is unable to detect the defects clearly. The 

computational cost of this algorithm is 340 seconds. Fig. 5 (d) shows 

the result of matrix factorization algorithm in [55]. However, it is 

unable to detect the defects and its computational time is 420 seconds. 

Fig. 5 (e) shows the result of tri-decomposition model of [42] called 

the stable principal component pursuit. The computational cost is 464 

seconds. The result is over smooth and defects are hidden in the 

background and blurry. Fig. 5 (f) shows the results of state-of-the-art 

algorithm of [35] called the sparse principal component thermography. 

The computational time is very less 29 sec. However, as the CFRP 

specimen has an irregular shape and varying depth the algorithm is 

unable to detect the defect more clearly. Fig. 5 (g) shows the results of 

non-negative matrix factorization algorithm in [38]. This algorithm has 

least computational cost of 14sec. The algorithm is able to detect at 

most 3 defects out of 6 with a strong noise present. The last figure 

shows the result of the proposed algorithm. The computational time is 

93 seconds. It can be seen that the proposed algorithm is able to detect 

all defects clearly with good resolution and reasonable computational 

cost. For the case of debond detection in CFRP composites with 

irregular shape and varying depth, the proposed ensemble joint sparse 

low rank matrix decomposition algorithm provides better quality and 

detection results under comparison with recent matrix factorization 

and other infrared non-destructive testing (IRNDT) state-of-the-art 

algorithms. 

  

 

TABLE IV  

EXPERIMENTAL ANALYSIS ON SYNTHETIC DATA WITH DIFFERENT NOISE CONFIGURATIONS 

Rank(10)  PCA[22] RPCA[56] BRPCA[57] VBRPCA[58] PRMF[46] MoG[59] S-MoG[41] Proposed 

No Noise 
RRE 1.80e-15 1.76e-8 0.196 1.18e-3 1.56e-5 1.52e-4 2.33e-6 1.98e-8 

Time(s) 0.0019 0.0961 46.61 0.0190 0.342 0.160 0.280 0.190 

Sparse Noise 
RRE 0.789 3.39e-3 7.99e-2 0.863 7.11e-5 8.44e-5 6.60e-6 7.48e-7 

Time(s) 0.0041 0.187 40.11 0.116 0.710 0.310 0.417 0.380 

Gaussian Noise 
RRE 3.10e-2 5.10e-2 3.19e-2 4.96e-2 3.91e-2 3.14e-2 1.16e-3 6.48e-4 

Time(s) 0.0037 0.179 88.69 0.120 0.640 0.310 0.569 0.480 

Mixture Noise 
RRE(s) 1.07 0.109 7.66e-2 1 7.44e-2 2.64e-2 4.56e-3 9.04e-3 

Time 0.0036 0.180 28.66 0.862 0.622 1.36 1.98 1.56 

The proposed algorithm is tested on the synthetic data for modeling 

different types of noise and results as presented in Table. 4. A series of 

matrix decomposition based algorithms are compared. The results are 

quoted in terms of the relative reconstruction error (RRE) and time in 

seconds. Table. 4. shows that the proposed algorithm is able to recover 

the mixture of noise more accurately as compared with the other 

algorithms of PCA[22], robust principal component analysis 

(RPCA)[56], Bayesian robust principal component analysis 

(BRPCA)[57], variational Bayesian principal component analysis 

(VBRPCA)[58], PRMF [46], mixture of Gaussian (MoG) [59], and S-

MoG[41]. The best results are highlighted in bold. It can be seen that 

the proposed algorithm is able to recover the signal with least error 

when the noise is considered as the complex noise also the time taken 

is reasonable as compared with other algorithms. 

Fig .6 shows the inherent layering results for specimen 1. The proposed 

algorithm is able to detect and quantify the defects up to layer 4 for 

this specimen. Further layering induces overfitting of the data and the 

results get worse as can be seen from Fig. 6. (e) and (f). 

V. CONCLUSION 

In this paper, a joint low rank sparse modelling algorithm is 

proposed. The algorithm is evaluated for inner debond defects as well 

as on synthetic data for modelling the complex noise. By optimizing 

the low rank and sparse data using the concatenated feature space helps 

boost the computation speed, estimate the complex noise and detect 

weaker information defects hidden in background. The quantitative 

results based on F-score and RRE prove that proposed model performs 

well in modelling complex noise and quantifying weaker debond 

defects who presented on the irregular shape CFRP composites. The 

comparative analysis with general OPTNDT and low rank sparse 

modelling algorithms proves the efficacy of the proposed model.  

In future works, the proposed model will be validated on more 

challenging CFRP specimen with irregular shape and varying depth. 

The proposed method will be applied across wider infrared 

measurement technology such as eddy current pulsed thermography 

(ECPT). The computational complexity of the model will be further 

improved for online NDT. 
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