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Abstract—Learning to recognize novel visual categories
from a few examples is a challenging task for machines
in real-world industrial applications. In contrast, humans
have the ability to discriminate even similar objects with
little supervision. This paper attempts to address the few-
shot fine-grained image classification problem. We propose
a feature fusion model to explore discriminative features
by focusing on key regions. The model utilizes the focus-
area location mechanism to discover the perceptually sim-
ilar regions among objects. High-order integration is em-
ployed to capture the interaction information among intra-
parts. We also design a Center Neighbor Loss to form
robust embedding space distributions. Furthermore, we
build a typical fine-grained and few-shot learning dataset
miniPPlankton from the real-world application in the area
of marine ecological environments. Extensive experiments
are carried out to validate the performance of our method.
The results demonstrate that our model achieves compet-
itive performance compared with state-of-the-art models.
Our work is a valuable complement to the model domain-
specific industrial applications.

Index Terms—Computer vision; Few-shot learning; Rep-
resentation learning

I. INTRODUCTION

IN RECENT YEARS, we have witnessed significant
progress in computer vision [1], [2]. Thanks to large-scale

of labeled training data, e.g., ImageNet, deep convolutional
neural networks (ConvNets) are able to successfully learn
robust feature representations and achieve excellent perfor-
mance in recognition tasks. Although it has high accuracy
in various labeled datasets, the generalization ability of the
ConvNet model is still weak. In particular, the ConvNet model
is difficult to quickly identify a novel category using only
one or a few labeled samples. However, humans are able to
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Fig. 1: A brief illustration of fine-grained few-shot recognition.

recognize new objects easily with very little supervision [3].
For example, kids have no problem to generalize the concept
of “panda” from only one picture. Furthermore, experts will
be faster to understand novel concepts with prior professional
knowledge. This work focuses on the task that recognizing
novel visual categories after seeing just a few labeled ex-
amples. Research on this subject is often termed few-shot
learning.

In contrast to the common image classification problem
in daily life, most of the real-world scenarios face few-shot
problems. For example, marine biologist pays great attention
to the phytoplankton recognition problem which is a typical
fine-grained and few-shot learning issue. The change of their
abundance, e.g. eutrophication, is a significant indicator of
the oceanic ecosystem’s health. It is therefore very important
to automatically identify phytoplankton in a certain area of
the ocean. However, collections of phytoplankton images are
very difficult. It is commonly accomplished by professional
instruments such as electron microscope. Only a few samples
of valuable categories can be discovered in one expensive
sampling task. Therefore, the fine-grained and few-shot model
is critical for domain-specific issues and has become one of
the important topics in computer vision.

Most of the few-shot learning methods fall under the
umbrella of metric-learning. The metric-learning approaches
try to solve these problems by placing new classes in a
metric space (e.g., Euclidean or cosine distances) that can
easily separate classes. For instance, Matching Networks [4]
can be interpreted as a nearest-neighbor classifier which can
be trained end-to-end over the cosine distance. Notably, the
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training procedure has to be chosen carefully so as to match
inference at the test stage. Each episode is designed to mimic
the few-shot tasks by subsampling classes as well as data
points (e.g., every episode sampling 5 classes and each class
has 5 labeled samples). Prototypical Networks [5] handles the
few-shot tasks by calculating the Euclidean distance between
the embedding points of query set and prototype representation
of support set. Meanwhile, the pre-defined metric is no longer
used in Relation Networks [6]. It uses concatenated feature
maps from the query and support images to distinguish similar
and dissimilar samples.

It is very important to explore the relationship between
feature representation of template images and that of the query
image. Thus, to succeed in few-shot metric tasks, we shall
make sure two aspects. First, we shall have a well-trained
feature extractor. The other is an effective classifier including
good metrics. However, the above-mentioned methods are not
conducive to ConvNets for extracting robust features and can
sacrifice the accuracy of initial categories [7]. Most of the
few-shot methods pay attention to learning a deep distance
metric to compare query images with the labeled images, while
ignoring the importance of mining the better features from
the existing few categories. That means it is critical to mining
rich information from the labeled samples of few categories.
Motivated by the above observation, we propose a Feature
Fusion Model for obtaining more discriminative information
from focus areas. We also design a loss function (Center
Neighbor Loss) to help the whole architecture to learn better
feature space distributions.

For the special fine-grained few-shot visual problem, we
further build a microimage dataset of phytoplankton, i.e.,
miniPPlankton. Unlike toy datasets for few-shot learning in
literature, the miniPPlankton dataset comes from the real-
world tasks and can be used to evaluate fine-grained and few-
shot methods. It illustrates a typical fine-grained and few-shot
problem in marine biological science.

The main contributions of this paper are as follows:

1) We propose a feature fusion model to explore the features
by focusing on the key regions. It utilizes the focus-
area location mechanism to discover the similarity regions
between objects. Meanwhile, high-order integration is used
to capture the intra-parts discriminative information.

2) We design a Center Neighbor Loss function to form robust
feature space distributions for generating discriminative
features, to accomplish the fine-grained few-shot visual
categorization task.

3) We build a domain-specific fine-grained and few-shot
dataset miniPPlankton for the real-world phytoplankton
recognition problem. Experiments on the miniPPlankton
show the superiority of the proposed model compared with
other models.

The rest of this paper is organized as follows. Section II sum-
marizes the related works. Section III formally describes our
model. Section IV presents the experimental results. Finally,
we conclude in Section V.

II. RELATED WORK

Deep convolutional neural networks have made significant
achievements for a wide range of visual tasks [8]–[10].
Nevertheless, for fine-grained image categorization [11], it
remains quite challenging to obtain the discriminative rep-
resentations. In particular, it is a novel challenge to classify
fine-grained images using only a few labeled sample images .
The convolutional neural networks usually require thousands
of labeled examples of each class to saturate performance.
However, it is impractical to collect large amounts of annotated
data, especially the domain-specific industrial applications that
requires expert knowledge, such as oceanography [12], [13].
Recently, there is a resurgence of interest on few-shot learning
[4]–[6]. And a few research works are already pay attention
to the fine-grained few-shot visual problem [14]–[17].

Among the recent literature of few-shot learning, the metric
learning and attention mechanism are most relevant proposed
method. Metric learning has been successfully applied to face
recognition [18] and fine-grained image classification [11].
The core idea is to learn an embedding function that the
samples of the same category are closer than those of different
classes. Once the embedding function is learned, the query
images will be classified. Siamese network [19] consists of two
identical sub-ConvNets that minimize the distances between
paired data with the same labels while keeping the distances
with different labels far apart. Triplet loss [20] attempts to
focus on relative distances rather than absolute pair-wise
distances. It has been widely implemented in fine-grained
tasks [21]. However, the problem of triplet loss is dramatic
data expansion when selecting triplets. Furthermore, center
loss [22] can obtain highly discriminative features for robust
face recognition. And it is unnecessary to design the sampling
strategy carefully as contrastive loss and triplet loss do. The
center loss has shown benefits in face identification. However,
its performance is unknown for the fine-grained few-shot tasks.
Then we further design a Center Neighbor Loss for achieving
a robust embedding space.

It is critical to know which part of the images worth paying
attention to. To acquire the attention feature representation,
Li et al. [23] proposed a zoom network which utilized the
candidate region to crop the original images. Wei et al. [24]
adopted the unsupervised object discovery and co-localization
mechanism by deep descriptor transformation to discover the
attention area. The attention mechanism is a possible way for
learning robust representation. In this work, we introduce the
focus-area location mechanism Grad-CAM [25] to find regions
with discriminative features, which are critical for fine-grained
classification.

Few-shot learning is critical in model industrial applications,
such as novel species discovering. In this work, we take one
typical real-world industrial problem to verify our method,
i.e., phytoplankton classification. Marine phytoplankton is the
foundation of the marine ecosystem [26]. It is an ecological
concept that refers to tiny plants that float in the water. Plank-
ton image classification 1 is becoming critically important for

1We no longer distinguish the image classification of phytoplankton
and zooplankton separately.
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marine observations and aquaculture.
The research of phytoplankton detection mainly relies on

people to manually identify and count through the microscope.
Current monitoring systems (e.g. ZooScan and FlowCAM
[12], [13]) yield large amounts of images every day. They
are usually time-consuming, labor-intensive and needs strong
professional knowledge. Schroder et al. [27] also notice the
importance of classifying plankton only using a few labeled
samples. They directly use weight Imprinting [28] to enable a
neural network to recognize small classes immediately without
re-training.

III. METHODOLOGY

A. Notation
For few-shot classification, there is a base train dataset

Dbase = {(xi, yi)}Ni=1 consisting of N labeled images, where
yi is the label of image xi. Crucially, the model must dis-
tinguish a set of novel categories Q = {(xj , yj)}

Nq

j=1 with a
few training examples per category. These training examples
are called support set, i.e., S = {(xsi , ysi )}Ns

i=1(Ns = K ∗ C)
which contains K labeled examples for each of C unique novel
classes. Q acts as the unlabeled query set. Here S

⋃
Q =

Dnovel and Dbase

⋂
Dnovel = ∅. This target few-shot task is

named C-way K-shot.

B. Model
An overview of our method is illustrated in Fig. 2, which

mainly consists of three parts.
1) ConvNet-based feature extractor: A feature extractor

fϕ, which parameterized by a ConvNet (e.g., ResNet [29]),
maps an input image x ∈ RN to a d-dimensional feature
vector fϕ(x) ∈ Rd. As a classification model, fϕ has a dot-
product based classifier C(.|W ) (i.e., Last linear layer), where
W = {wi ∈ Rd}Ki=1 is the set of weight vectors of the K
base classes. We can get the probability scores of the base
training categories by calculating C(fϕ(x)|W ) and optimize
the feature extractor by back-propagation.

2) Feature fusion module: For few-shot learning, it is
pivotal to mine the largest support information from the
support set S. We propose a feature fusion model which
utilizes the focus-area location and high-order integration to
generate feature representation for the few-shot tasks. As
shown in Fig. 2, it consists of two components: (1) high-order
integration, and (2) focus-area location.

High-order integration. The recent progress of fine-
grained classification demonstrates that the high-order repre-
sentations with ConvNets can greatly improve its performance
[30], [31]. Intuitively, the key for fine-grained few-shot tasks
is to represent the regions within same category that have a
closer appearance and to exhibit discriminative areas between
the different categories.

We assume that X ∈ RK×M×N is a 3D feature map from
the convolutional layers, where x ∈ X is a K-dimensional
descriptor of one particular location region p ∈ M ×N . The
linear predictor W on the high-order statistics of X could be
formulated as follow.

f(X ) =<W,
∑
x∈X

φ(x) > (1)

where
∑
x∈X

φ(x) denotes the high-order statistics characterized

by a homogenous polynomial kernel [32]. The W can be
approximated by rank-one decomposition. The tensor rank
decomposition expresses a tensor as a minimum-length linear
combination of rank-1 tensors. The outer product of vectors
u1 ∈ RK1 , . . . ,ur ∈ RKr is the K1 × . . .×Kr rank-1 tensor
that satisfies (u1 ⊗ . . . ⊗ ur)k1...,kr

= (u1)k1
. . . (ur)kr

. The
W can be rewritten as W =

∑D
d=1 a

dud
1⊗ . . .⊗ud

r , where ad

is the weight for d-th rank-one tensor and D is the rank of the
tensor if D is minimal. Thus, Equation 1 can be reformulated
as follow.

f(X ) =
∑
x∈X

{〈
w1,x

〉
+

R∑
r=2

Dr∑
d=1

ar,d
r∏

s=1

〈
ur,d
s , x

〉}
,

=

〈
w1,

∑
x∈X

x

〉
+

R∑
r=2

〈
ar,

∑
zr∈Zr

zr

〉 (2)

where the zr = [zr,1, . . . , zr,D
r

]> with zr,d =
∏r

s=1 〈ur,d
s ,x〉

characterizes the degree-r variable interactions under a single
rank-1 tensors, and ar is the weight vector. The zr can be
calculated by performing r-th 1 × 1 convolutions with Dr

channel [33], i.e., Zr = {zr} =
∏r

i=1 conv
i
1×1×Dr (X ) . In

our feature fusion operation as shown in Fig. 2, we integrate
2nd-order representations to capture more complex and high-
order relationships among parts. After that, we perform global
average pooling (GAP) [34] to further aggregate features.

Focus-area location. Existing studies show that learning
from object regions could benefit object recognition at image-
level [23]. Such focus-area in an image which benefit few-shot
learning. During the training procedure, fϕ can generate focus-
areas of images by Grad-CAM [25], as formulated below.

Lc
Grad−CAM = ReLU(

∑
k

αc
kA

k) (3)

where αc
k denotes the weight of the k-th feature map for

category c. αc
k can be calculated by the following formula.

αc
k =

1

Z

∑
i

∑
j

∂yc

∂Ak
ij

(4)

where Z is the number of pixels in feature map, yc is the
classification score corresponding to the category c, and Ak

ij

denotes the pixel value at the location of (i, j) of the k-th
feature map.

Grad-CAM has the ability to locate the focus areas that
belong to the corresponding category. As shown in Fig. 2,
the dot line is a diagram of Grad-CAM, which represents
the focus-area is obtained by weighted summing the feature
maps. In this work, we utilize Grad-CAM to generate base
categories’ focus regions Hbase = {(xhi , yi)}Ni=1. However,
the ConvNet extractor can not give a correct response of c in
formula (4), when a novel category appears. To our delight, we
find that the model has accumulated lots of meta-knowledge in
the domain field (e.g., Ornithology) during the training process
ofDbase = {(xi, yi)}Ni=1. The concepts of novel categories can
be made up of various meta-knowledge, which are already
embedded in the neural networks. For example, if someone
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Fig. 2: The overview framework of our method. It consists of a ConvNet-based feature extractor fϕ , a feature fusion model
which is formed by focus-area location mechanism and high-order integration , and a cosine-similarity based classifier. During
the testing process, we classify unlabeled samples by comparing the cosine similarities of support set S and query set Q.

has never seen the tiger, she/he might think it has many close
parallels to a cat (learned before). The reason is that the
attention locations of human on the new category tiger and
the known category cat are similar to each other. Although
we don’t know the ground truth of the novel samples for
the fine-grained few-shot tasks, the unseen class always has
similar regions to the Dbase, such as bird’s mouths and wings.
And the base classifier will classify the new sample into the
most similar class in Dbase. Therefore, it is possible to utilize
Grad-CAM tp generate good focus-area location Hnovel on
the unseen categories for enhancing feature representation.

Telling the neural network the regions of rich discriminative
information will form a more robust representation. This step
is similar to the data augmentation of input space. However
we only mine the available information on the input data itself
without using the extra data augmentation.

3) Classifiers: Generally, the ConvNet’s classifier uses the
dot-product operator to compute classification scores: s =
zT ∗wb

k, where z is the feature vector extracted by ConvNets
and wb

k is the k-th classification weight vector in Wbase. It
is trained from scratch by thousands of optimization steps
(e.g., SGD). In contrast, the Wbase is not adapted to the new
categories and it is difficult to find the proper classification
weights Wnovel with only a few samples and optimization
steps. To address this critical problem, a classifier should be
implemented to distinguish the new categories. To the best of
our knowledge, current researches commonly choose one of
the following classifiers to gain their best performance, i.e.,
SVM [35], cosine-similarity [28] and nearest neighbor.

SVM. SVM classifier has achieved excellent performance
for small training data in few-shot learning [35]. Essentially,
unlike deep learning methods which need large-scale training
data to learn generalization ability within classes, SVM is
a classical transductive inference method aiming to build a
model that is applicable to the problem domain.

Nearest neighbor. The Euclidean-based nearest neighbor

method uses feature vector zs to build a prototype represen-
tation of each novel class for the few-shot learning scenario.
Then it classifies the unlabeled data by calculating the distance
from each query embedding point to the prototype.

Cosine classifier. The cosine classifier has been well estab-
lished as an effective similarity function for few-shot tasks [4],
which classifies samples by comparing the cosine similarity
between zs and zq .

C. Objective function
The loss function is important to let the neural network

generate separable representations for the unseen classes. For
example, Siamese Nets [36] applies contractive loss to few-
shot tasks, so that neural networks can learn to distinguish sim-
ilarities from dissimilarities. For fine-grained few-shot tasks, it
is critical to develop an effective similarity constraint function
to improve the discriminative power of the feature representa-
tions. Center loss [22], which was first proposed for the face
recognition problem, simultaneously learns a center for deep
features of each class and penalizes the distances between the
deep features and their corresponding class centers. Suppose
there are K classes for samples, ki is the category of the image
xi and zi = fϕ(xi) denotes the deep features extracted from
xi. Here is the formulation for center loss:

Lc =
1

2

n∑
i

‖zi − cki‖22. (5)

The ck ∈ RK denotes the k-th class center of deep features.
The formulation effectively characterizes the intra-class varia-
tions. However, all training samples are treated equally when
a center loss function minimizes the intra-class variations,
regardless of whether the sample is easy or hard to pull into
the center point. Intuitively, for the fine-grained tasks, the
difference among classes is extremely small. It is not enough
to form a good distribution by simply pulling the feature vector
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√

Fig. 3: The center loss is simply pulling the samples into
the class-center (entagram). While CN loss adds additional
penalties to the sample of the wrong classification (red fork
symbol) using nearest-neighbor.

into the class center. It is critical to impose special penalties
on the samples which are difficult to approach the center
during the training process. To this end, we further propose the
Center Neighbor Loss (CN Loss) function Ls to form robust
embedding space distribution as following.

Ls = Lc + β · LN (6)

β is the balance parameter for penalty term LN . LN is a
negative log-probability for samples that are not classified
to the correct class center. The LN can be formulated as
following.

LN = − log
exp(−E(z̄k, ck))∑

k′∈K exp(−E(z̄k′ , ck′))
(7)

z̄k = Avg(
∑

xk
i ∈Dbase

fϕ(xki )) is the k-th class average
feature vector contained in every batch, and E(·, ·) denotes
the Euclidean distance.

The schematic is shown in Fig. 3. We take the center
points learned from the last iteration as support points and
use Euclidean-based nearest neighbors to classify the current
batch of samples. With the penalty LN , each cluster will gather
faster and perform robustly.

Ideally, the class center ck should be updated as feature
vectors change. That means we should take the entire training
set into account and average the deep features of each class
in each iteration, which is not feasible in practice. To solve
this problem, we implement the solution suggested for center
loss [22]. First of all, we perform the update procedure based
on mini-batch. The centers are computed by averaging the
features of every category in each iteration. Secondly, we
use the centers learned from the last iteration to classify the
current batch samples by Nearest Neighbor Algorithm and
punish the mislabeled samples. At last, we fix the learning
rate of the centers as 0.5 to avoid large perturbations caused
by mislabeled samples [22].

IV. EXPERIMENTS

A. Experimental design

For rare categories, it’s extremely difficult to collect suf-
ficient and diverse training images. Currently, most of the

previous few-shot learning methods take the miniImageNet
dataset [4] to test their performance with 5-way 1-shot or 5-
way 5-shot assumptions. However, the miniImageNet consists
of 60,000 color images with 100 classes of which 64 classes
for training. The training data is enough to learn a good feature
extractor for a common few-shot classification task, and nearly
80% accuracy has been already achieved recently [35]. In
this paper, we focus on the fine-grained few-shot classification
tasks. To this end, we design three different experiments on
Caltech-UCSD Birds [37] datasets, miniDogsNet [38] and
miniPPlankton.

For the miniDogsNet dataset [38], we only use 10 classes for
training, and conduct 5-way experiments with both 1-shot and
5-shot settings. We will compare our method with other well
known techniques [4], [5], [6], [39], [40]. All methods are also
training on these 10 classes. In order to ensure the fairness of
comparison, we unify the MatchingNets [4], PrototypicalNets
[5] and Imprint [28]’ feature extractor to ResNet. As the meta-
learning training strategy of the Relation Networks [6] and
MAML [39] is difficult to be trained via deep ConvNets, we
keep their original network architecture.

In real-world scenarios, humans face a large number of
novel categories to be recognized. 5-way experiments only
for toy examples in papers. Currently, one state-of-the-art
research work Imprint [28] implemented the Caltech-UCSD
Birds dataset [37] for 100-way few-shot learning problem,
which is much practical. Here we will carry out experiments
with the same setting of Imprint [28]. That means we inves-
tigate the accuracy on all the novel classes. As the above-
mentioned methods including RelationNets [6] are designed
for only 5-way experiments, it is difficult to accomplish the
100-way procedure. For example, RelationNets [6] requires
huge GPU memory spaces for the 100-way training. Therefore,
we only set the recent work Imprinted Weights [28] as the
comparison. For few-shot tasks, the Imprinted Weights [28]
described how to add a similar capability to ConvNet classifier
by directly setting the weights of the final layer from novel
labeled samples. Essentially, the core of Imprinted Weights
method is cosine similar function. Therefore, in the following
experiments, the baseline (ResNet + cosine classifier) here is
the same as the Imprint.

In a real-world scenario application, for miniPPlankton, we
will compare our method with MatchingNets, Prototypical-
Nets, Relation Net, MAML and Imprint. All of above the
methods are re-implemented with ResNet as the backbone
feature extractor.

B. Implementation details

ResNet18 [29] is employed as the feature extractor fϕ.
Following the similar strategy of Wen [22], we train the
feature extractor with the joint supervision of softmax loss and
CN loss. We initialize the learning rate of the softmax loss as
0.001 and half it every 20 epochs. And we only use the last
feature map as the input of high-order integration. During the
testing phase, for miniDogsNet and Caltech-UCSD Birds, raw
support image and zoomed focus-area are uniformly resizing
into 224*224 and be sent to fϕ to form a robust feature
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Fig. 4: The distribution of deeply learned features under Center loss and CN loss. Different colors denote different classes.

vector using element-sum operation. For miniPPlankton, due
to the specificity of the phytoplankton image, e.g., the target is
scattered shape. Therefore, slightly differing from the structure
Fig. 2, we do not use the backbone network to extract the
focus-areas’ feature. Here we resize focus-area into 84*84
to train a shallow CNN (four convolution blocks). Through
the shallow CNN, the testing focus-area’s feature will be
concatenated with the original image’s feature.

C. Configuration variants
CN Loss. Fashion-MNIST is commonly used to evaluate

the the loss function [22], [41]. We conduct similar experi-
ments as suggested [22], [41] to visualize the performance of
Center loss and CN loss on Fashion-MNIST. Fashion-MNIST
consists of 60,000 training examples and 10,000 for testing.
Each example is a 28x28 gray-scale image, associated with a
label from 10 classes. The space distribution results are shown
in Fig. 4. We can see that, CN loss can quickly form the
cluster of each class. A more robust feature space distribution
usually means a better feature extractor. And from the Table I,
the CN loss shows better performance on classification tasks.

Loss Function Accuracy(%)

Softmax Loss 89.5 ± 0.2
Center Loss 90.0 ± 0.2

CN Loss 91.42 ± 0.3

TABLE I: The general classification performance of the three
loss functions on the Fashion-MNIST dataset.

In addition, the hyperparameter β in (6) is the balance for
penalty term LN . We investigate the performance of our model
with different hyperparameter β on miniDogsNet’s validation
set. As shown in Fig. 5, it is very clear that the center loss
(i.e., β = 0) is not a good choice for few-shot classification
problem. The best performance can be achieved in the case of
β ∈ [0.4, 0.6].

High-order integration. The high-order integration could
help us capture more complex and high-order relationships
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Fig. 5: The verification accuracy with different β.

among different intra-parts to get better attention maps. As
shown in Fig. 6, it helps to focus on the discriminative regions
of the image. We have conducted experiments with different
orders on the performance of our method. And we found that
2-order performs stable on the novel classes classification. For
instance, the accuracy of 2-order (49.52%) is higher than 1-
order (48.56%) and 3-order (47.00%) on the CUB-200-2011
dataset for 5-way setting.

w
/H

O
w

/o
H

O
ra

w

Dbase Dnovel

Fig. 6: Visualization results with Higher-order Integration and
without it. The left three columns show the focus regions on
the Dbase, while the right three denote focus regions of novel
samples from Dnovel.

Focus-area location. We investigate the role of Focus-
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Fig. 7: The accuracy of three classifiers with and without
Focus-area Location under 1 shot and 5 shot assumptions.

area Location on our fine-grained tasks. Section III-B3 briefly
described the cosine classifier used in our task. We will also
illustrate the performance of different classifiers on the fine-
grained few-shot classification. Figure 7 shows the accuracy on
different tasks with the same feature extractor setting. For the
miniDogsNet dataset, the cosine classifier could achieve the
highest accuracy on the validation set. And focus-area location
achieves positive improvement. For the Caltech-UCSD Birds,
both cosine classifier and SVM can achieve nice performance.
Especially, we also find that the focus-area location greatly
improves the accuracy of SVM classifier.

D. Caltech-UCSD Birds

The Caltech-UCSD Birds dataset [37] includes 200 fine-
grained categories of birds with 11,788 images. We take the
pre-trained ResNet18 [29] with ImageNet as the feature ex-
tractor fϕ. Train/test split setting is followed the suggestion of
Imprinted Weights [28]. Here, 100 novel classes are required
to be distinguished, which is very challenging and similar to
the real-world scenario. The cosine classifier is employed to
recognize the novel categories.

As shown in Table II, for all novel categories classification,
we observe that the high-order module and CN Loss function
are beneficial to our tasks. In particular, the information of
focus-areas brings considerable improvement in accuracy on
the 5-shot setting. It is also important to illustrate the capability
of recognition performance on all the categories [7]. We
further evaluate the performance on dataset of Dbase ∪Dnovel

[28]. Table II and table III show that our model achieves
promising accuracies on the novel categories while at the same
time it does not sacrifice the recognition performance of the
base categories Dbase.

N -shot 1 2 5

Imprint (ori) [28] 21.26% 28.69% 39.52%
Imprint + Aug (ori) 21.40% 30.03% 39.35%

Imprint (re) 28.77% 39.25% 49.33%

ResNet + H 30.14% 38.46% 49.83%
ResNet + CNloss 29.86% 39.45% 50.68%

ResNet + CNloss + H 30.17% 40.10% 50.78%
ResNet + CNlos s + H + Att 30.82% 40.85% 51.95%

TABLE II: The top-1 accuracy measured across all 100 novel
classes of Caltech-UCSD Birds. ’H’ denotes the High-Order
Integration and ’Att’ means Focus-area Location. ’(ori)’ means
the original data in the paper and ’(re)’ represents the data we
re-implement with ResNet as backbone.

N -shot 1 2 5

Imprint(ori) [28] 44.75% 48.21% 52.95%
Imprint + Aug (ori) 44.60% 48.48% 52.78%

Imprint(re) 44.68% 52.19% 59.27%

ResNet + H 45.72% 52.64% 59.96%
ResNet + CNloss 45.06% 51.69% 58.73%

ResNet + CNloss + H 47.23% 54.38% 60.27%
ResNet + CNloss + H + Att 47.89% 54.83% 61.30%

TABLE III: Top-1 accuracy measured across base plus novel
categories of Caltech-UCSD Birds.

E. mini DogsNet
Hilliard et al. [38] created a miniDogsNet which consists

images of dog categories from the ImageNet to test the model’s
fine-grained ability. They selected 100 of those classes and
use the 64/16/20 random classes split for training, validation,
and testing. In our work, we further increase the difficulty by
random selecting 10 of 64 classes to form our training set.
That means only 10 classes are used for training the feature
extractor and 20 novel classes should be distinguished. And
we train the ResNet18 [29] from scratch.

We conduct 5-way experiments with both 1-shot and 5-shot
trials. Table IV shows that our model could achieve promising
performance both on 1-shot and 5-shot tasks. To verify the
effectiveness of our different modules, we use the ResNet18
and cosine classifier as the baseline. To our surprise, the
baseline can also achieve nice performance. Relation Nets uses
the deep non-linear metric to capture the similarity between
samples and is well performed even using 10 classes training
data. For our method, we can see that CN Loss and high-
order integration can bring promising improvements. And the
focus-area location mechanism is still beneficial to the task.

F. mini PPlankton
For a real-world task in specific domain such as phytoplank-

ton classification, it is infeasible to collect large-scale samples
and it always requires experts to label the data. Meanwhile,
it is also quite difficult to search for the relevant open-
source web-data. Current monitoring systems (e.g. ZooScan
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5way N -shot Dist. 1 5

Matching Net [4] Cosine 30.39% 37.97%
Prototypical Net [5] Euclid. 31.37% 39.33%

Relation Net [6] Deep metric 32.42% 38.53%
MAML [39] - 26.66% 35.60%
Imprint [28] Cosine 30.14% 38.31%

Resnet + H Cosine 30.17% 38.77%
ResNet + CNloss Cosine 31.25% 40.63%

ResNet + CNloss + H Cosine 31.95% 41.40%
ResNet+CNloss+H+Att Cosine 33.13% 42.53%

TABLE IV: The top-1 accuracy on the test set of miniDogsNet,
all accuracy results are averaged over 100 test episodes and
each episode contains 100 query samples from 5 classes. All
results are reported with 95% confidence intervals.

and FlowCAM [12], [13]) yield large amounts of images every
day. It requires many marine biologists to manual classify
the sample images. Nevertheless, new and scarce categories
are valuable for marine science. PPlankton is a large-scale
public dataset for machine learning with the help of marine
biologists [42]. And for few-shot tasks, we further construct a
phytoplankton dataset miniPPlankton. It is a particular image
dataset for few-shot fine-grained classification problem.

Some examples of the dataset are shown in Fig. 8. To
construct the dataset, we collect seawater samples from the
Bohai Sea, and we photograph phytoplankton images con-
tained in the sampled seawater by optical microscopes. With
the help of marine biologists, we label each object with its
confident catergory. The miniPPlankton includes 20 classes
each of which contains about 70 samples. From Fig. 8, we
can observe that our dataset faces the challenge problem of
fine-grained classification. For example, their shapes between
different categories are similar, such as tripos and trichocero.

N -shot Dist. 1 5

Matching Net [4] Cosine. 48.76% 60.78%
Prototypical Net [5] Euclid. 50.84% 66.67%

Relation Net [6] Deep-metric 46.79% 58.48%
MAML [39] - 46.0% 60.63%
Imprint [28] Cosine 57.72% 72.99%

ResNet + CNloss Cosine 59.0% 74.84%
ResNet + CNloss + H Cosine 56.29% 70.8%

ResNet + CNloss + Att Cosine 60.03% 75.56%

TABLE V: The top-1 accuracy on the test set of
miniPPlankton.

For this dataset, we conduct 5-way experiments with both 1-
shot and 5-shot trials on the Dnovel and we use the ResNet18
with cosine-classifier as the baseline (the same as Imprint).
We randomly selected 10 classes as the basic training classes,
and the remaining classes as the novel classes to evaluate
few-shot tasks. As shown in table V, we can see that the
proposed model with CN loss outperforms the baselines by a

Class Name Sample Images

Tripos

Biddulphia

Frauenfeldii

Nitzschioides

Trichocero

Dinophysis-caudata

Protoperidinium

Fig. 8: Random samples of nine categories from our Phyto-
plankton dataset. The morphological differences among differ-
ent categories are very small (such as the first two categories).
It is a typical dataset for fine-grained challenge problem.

significant margin, from 72.99% to 74.84% in the 5-shot trial.
However, to our surprise, the high-order module does not work
for this dataset, and even leads to decline of test accuracy. The
reason is that phytoplankton images are not ”closed-shape”
(target and background are separate) like normal images. For
example, as shown in Fig. 8, the object of Biddulphia is
interspersed with the background.

We further illustrate the improvement of classification per-
formance for each category. Fig. 9 shows the confusion
matrices of the baseline and our method on Dnovel of
miniPPlankton. We can see that our model greatly improves
the accuracy of category 1 (pleurosigma-pelagicum) and cat-
egory 6 (nitzschioides). At the same time, we reduce the
possibility of misclassification of category 5 into category
6. However, it is still very challenge for some categories.
Moreover, we visualize the focus area of some examples in
Fig. 10. We can see that our method can capture the key
area of the object. It helps the model to extract discriminative
features for classification. Fig. 11 shows the most difficult
category pairs. For instance, samples of category 8 are usually



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

0 1 2 3 4 5 6 7 8 9

Predicted label

0

1

2

3

4

5

6

7

8

9

T
ru

e 
la

be
l

46.15% 15.38% 1.54% 4.62% 6.15% 7.69% 18.46%

21.54% 64.62% 7.69% 4.62% 1.54%

52.31% 3.08% 3.08% 1.54% 6.15% 13.85% 20.00%

4.62% 7.69% 27.69% 3.08% 7.69% 13.85% 16.92% 6.15% 12.31%

1.54% 3.08% 20.00% 1.54% 40.00% 27.69% 1.54% 4.62%

12.31% 1.54% 9.23% 6.15% 6.15% 23.08% 20.00% 20.00% 1.54%

1.54% 4.62% 27.69% 3.08% 63.08%

6.15% 3.08% 15.38% 4.62% 6.15% 23.08% 12.31% 29.23%

1.54% 10.77% 1.54% 4.62% 10.77% 35.38% 35.38%

1.54% 3.08% 6.15% 4.62% 15.38% 16.92% 52.31%

0

20%

40%

60%

80%

100%

(a) Imprint

0 1 2 3 4 5 6 7 8 9

Predicted label

0

1

2

3

4

5

6

7

8

9

T
ru

e 
la

be
l

63.08% 1.54% 3.08% 10.77% 18.46% 3.08%

20.00% 69.23% 3.08% 1.54% 4.62% 1.54%

49.23% 1.54% 9.23% 4.62% 15.38% 20.00%

3.08% 7.69% 33.85% 1.54% 12.31% 7.69% 20.00% 9.23% 4.62%

3.08% 3.08% 12.31% 4.62% 41.54% 26.15% 3.08% 6.15%

6.15% 9.23% 3.08% 13.85% 35.38% 9.23% 1.54% 20.00% 1.54%

1.54% 4.62% 1.54% 7.69% 83.08% 1.54%

4.62% 13.85% 4.62% 3.08% 27.69% 18.46% 27.69%

16.92% 1.54% 4.62% 6.15% 50.77% 20.00%

1.54% 6.15% 1.54% 6.15% 15.38% 13.85% 55.38%

0

20%

40%

60%

80%

100%

(b) Ours

Fig. 9: The confusion matrix of the baseline (ResNet with
cosine classifier, also equivalent to Imprint [28]) and our
methods.

Base classes Novel classes

Fig. 10: The focus-area on some examples of the phytoplank-
ton dataset.

classified into category 9. It can be seen from Fig. 11 that
the difference between these categories are very small. Such
similarity even confuses marine biologists to distinguish them
from each other.

true confused true confused
8

8 9

9

0

0 6

6×

×

×

×

Fig. 11: The blue number in the lower right corner of the image
represents the ground-truth category, and the red number
represents the wrongly predicted category.

V. CONCLUSION

In this paper, we focus on the challenge of the domain-
specific few-shot fine-grained classification problem via ex-
ploring the attention features from a few labeled examples. The
Feature Fusion Model and CN Loss are our two contributions
on mining features for such a challenge task. The fusion model
utilizes the focus-area location and high-order integration
to generate features from discriminative regions. High-order
integration has the ability to capture the intra-parts discrim-
inative information. And Grad-CAM can generate focus-area

locations for the novel labeled samples. For few-shot learning,
we want to learn a more robust feature extractor through basic
training classes. As the fine-grained visual categories are quite
similar to each other, we design CN Loss to penalize the
special samples which are difficult to approach class centers in
each iteration. Furthermore, we build a typical fine-grained and
few-shot learning dataset miniPPlankton from the real-world
application in the area of marine ecological environment. We
not only build a few-shot phytoplankton dataset but also design
an universal model to accomplish the few-shot classification
task of natural images and phytoplankton images in the real-
world industrial applications. Extensive experiments are car-
ried out to investigate the effects of these proposed modules.
We believe that our method is a valuable complement to few-
shot classification problem and the new miniPPlankton is
attractive for the marine industrial applications.
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