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Cluster-based Vibration Analysis of Structures
with Graph Signal Processing

Federica Zonzini, Student Member, IEEE, Alberto Girolami, Luca De Marchi, Member, IEEE
Alessandro Marzani and Davide Brunelli, Senior Member, IEEE

.

Abstract—This work describes a divide-and-conquer
strategy suited for vibration monitoring applications.
Based on a low-cost embedded network of Micro-
ElectroMechanical (MEMS) accelerometers, the proposed
architecture strives to reduce both power consumption
and computational resources. Moreover, it eases the sen-
sor deployment on large structures by exploiting a novel
clustering scheme which consists of unconventional and
non-overlapped sensing configurations. Signal processing
techniques for inter and intra-cluster data assembly are
introduced to allow for a full-scale assessment of the struc-
tural integrity. More specifically, the capability of graph
signal processing is adopted for the first time in vibration-
based monitoring scenarios to capture the spatial relation-
ship between acceleration data. The experimental valida-
tion, conducted on a steel beam perturbed with additive
mass, revealed high accuracy in damage detection tasks.
Deviations in spectral content and mode shape envelopes
were correctly revealed regardless of environmental factors
and operational uncertainties. Furthermore, an additional
key advantage of the implemented architecture relies on its
compliance with blind modal investigations, an approach
which favors the implementation of autonomous smart
monitoring systems.

Index Terms—graph signal processing, operational
modal analysis, sensor networks, structural health moni-
toring.

I. INTRODUCTION

THE implementation of vibration-based structural health
monitoring (SHM) systems is receiving increasing atten-

tion due to the widespread necessity to continuously control
the integrity of aging structures [1]–[3]. In the vast field of
vibration engineering, solutions built on MEMS accelerom-
eters can be chosen for their suitability to capture dynamic
features in quite a broad frequency range [4]. Consequently,
the deployment of low-cost and versatile sensor networks,
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consisting of miniaturized devices embedding digital signal
processing capabilities, has progressively been adopted as a
viable strategy compliant with long-term and real-time moni-
toring [5]–[7].

The analysis of structural vibrations provides a set of modal
parameters which characterize its free and forced dynamic
response [8]. Since vibration properties are closely connected
to the existence of structural damages or faults [9], they can be
used to assess the current health status. In this process, syn-
chronization between measurements is fundamental because
a lack of synchronicity generates unacceptable phase shifts
which strongly impinge on the accuracy of the reconstructed
modal features. Authors in Ref. [10] pointed out that the
maximum tolerable delay to not alter the accuracy of signal
processing outcomes should be inferior to dozens of µs.
Correspondingly, Krishnamurthy et al. [11] found that the
detrimental effect of synchronicity faults can even exceed
the sensor noise or intrinsic oscillations in internal clocks. In
particular, it was demonstrated that the major consequences of
these uncertainties are associated to higher modes of vibration
[12], which are extremely sensitive to time synchronization
errors independently from the sensors’ positions.

Besides synchronization, the extraction of modal parameters
is complicated in large scale or hazardous scenarios, where
the high amount of data and sensing devices, combined with
the inherent structural complexity and the possible difficulties
in powering the sensor network, requires advanced and ver-
satile hardware solutions. In such a context, thanks to their
capability to easily adapt to the geometric characteristics of
the inspected structure, clustered sensor networks have been
gradually developed to reduce the computational and energy
budget associated to the gathering of sensor data and their
transmission to a central processing unit.

In this work, an energy-efficient and low-cost system is
proposed which exploits a network of clustered MEMS sensors
to perform modal analysis of vibrating structures. In order to
tackle the limitations of state-of-the-art clustered strategies,
which consist of overlapped sensor configurations where at
least one sampling location is shared among neighboring
sub-networks, a novel approach is introduced. In the pro-
posed procedure, vibration data fusion between different, non-
overlapped clusters relies on the intrinsic capability of Graph
Signal Processing (GSP) techniques to model the inherent ge-
ometrical connectivity. Several application fields have recently
benefited from this emerging signal representation domain,



including smart cities, traffic n etworks a nd environmental 
processes [13]. The GSP solution presented in this paper 
overcomes already existing methodologies in terms of energy 
efficiency and flexibility in the deployment of sensor networks 
on complex structures. In fact, the achieved reduction of 
sensing positions lessens the energy demand, supporting more 
efficient p ower m anagement s trategies. I n t he s ensor network 
deployment, the advantage is twofold. First of all, since it 
is based on non-overlapped clusters, the difficulties i n wiring 
sensor nodes on complicated or hazardous scenarios can be 
easily bypassed. Secondly, as an immediate byproduct of the 
implemented processing, the minimal cluster size that can be 
selected is uniquely dictated by the level of structural detail 
necessary to ensure a reliable inspection process and not by 
the divide–and–conquer strategy itself.

Furthermore, the proposed approach proves to be robust 
against operational uncertainties, such as temperature fluc-
tuation and asynchronicity among clusters. Combining the 
versatility of the circuitry with the advantages of graph sig-
nal processing, the resulting system is suitable for different 
and complex application-fields, r evealing t o b e a  competitive 
alternative to traditional monitoring frameworks.

The paper is organized as follows. The main principles 
behind vibration analysis are firstly r eviewed i n S ection II. 
Alongside, a literature survey is reported, describing some 
of the most representative clustered sensor networks previ-
ously proposed for modal investigation. In Section III, the 
hardware and software characteristics of the developed low-
cost architecture, as well as the discussion of its benefits 
for vibration-based inspection, are presented. The novel GSP-
driven vibration analysis procedure and its compliance with 
structural integrity assessment are illustrated in Section IV, 
focusing on the correlation between natural frequencies, mode 
shapes and damage metrics. Section V is dedicated to the 
experimental validation of the implemented solution. The 
designed monitoring system was tested on a pinned-pinned 
steel beam, both in pristine and damaged conditions, where 
faulty configurations were mimicked by adding a dead mass to 
the system. Modal parameters extracted from different clusters, 
consisting of overlapped and stand-alone sensor networks, are 
investigated, revealing a great level of structural coherence 
with respect to numerical prediction. Such results strengthen 
the potential of the proposed graph-based merging strategy 
to actually represent a valid alternative to already existing 
methodologies. Finally, conclusions are drawn in Section VI.

II. OMA PRINCIPLES AND RELATED WORKS

Operational Modal Analysis (OMA) targets the reconstruc-
tion of the dynamic properties from vibration signals (e.g. 
accelerations and rotations), and it is considered as a powerful 
tool to perform real–time and on–condition monitoring of 
structures exhibiting a vibrating behaviour [8]. The compar-
ison of the actual dynamic features with those extracted in 
pristine conditions allows the detection of potential damages, 
thence to estimate their severity and position [14].

The dynamic characterization of structures is defined in 
terms of modal parameters, among which the set f of P

natural (modal) frequencies, i.e. the frequency components
carrying most of the total structural energy, is very useful for
structural integrity characterization purposes. The estimation
of natural frequencies is conventionally performed by identi-
fying the dominant peaks appearing in the spectral profile of
the gathered data for each sensor of the network. Typically,
the extraction of three to five modal components is sufficient
in order to detect global changes (e.g. changing load path, loss
in global stiffness) [15].

Besides, the specific spatial patterns of vibration exhibited
by the monitored structure at the different natural frequencies
are usually referred to as modal shapes, which are mathe-
matically arranged as vectors (Φp) whose dimension is equal
to the number of sensing devices. For the sake of clarity,
the modal shape matrix Φ = [Φ1 . . .ΦP ] is a column–wise
entity generated by vertically aligning the modal shapes curves
associated to the inspected modes. It is worth noting that, by
processing modal shapes, it is possible to implement defect
localization procedures. In this sense, the information provided
by modal shapes is richer w.r.t. the one provided by natural
frequencies.

Among the available methods to extract modal param-
eters, eigenvector-based algorithms, such as the Frequency
Domain Decomposition (FDD) [16], simultaneously provide
both modal frequencies and shapes. FDD is based on the
computation of the Singular Value Decomposition (SVD) of
the cross-power spectral density matrix associated to collected
data. Alternatively, the Second Order Blind Identification
(SOBI) approach can be adopted. SOBI is a strategy which
tackles the feature extraction process as a blind source es-
timation problem. Its fundamentals rely on the assumption
that the observed signals are obtained as a linear combination
of unknown sources by means of a mixing matrix, whose
columns coincide with the sought modal shapes [17].

To be applicable, both SOBI and FDD requires the syn-
cronization of the acquired data. Moroever, high spatial reso-
lution of sensors is beneficial for a precise damage assessment.
Therefore, the optimization of computational and communica-
tion resources is of the utmost importance. To this aim, three
main strategies were presented in the literature [10] for OMA–
based SHM scenarios:

• centralized data processing: acceleration data acquired
at different sensing positions by peripheral sensor nodes
are transferred with the proper timestamp to a central
processing unit. Either wired sensor networks or com-
plex wireless synchronization protocols are required. This
strategy, often adopted in the past for its architectural
simplicity, may become unfeasible in current scenarios,
where an increasing number of devices are simultane-
ously connected [18], [19].

• stand-alone schemes: each sensor acts both as a sensing
and processing unit, hence minimizing the effects of
limited bandwidth and communication constraints. Never-
theless, this solution hampers the possibility to perform
data cross-correlation between surrounding nodes, thus
limiting the possibility to extract structural modal shapes
[20].



• ”divide-and-conquer” strategies [11], [21]: taking advan-
tage of a hierarchical design, data collection is performed
by leaf devices, subsequently forwarding locally elab-
orated features to a corresponding cluster head (CH).
These latter devices execute preliminary processing steps
on data pertaining to their controlled area and finally
transmit structural parameters to a common aggregat-
ing unit, which is used to combine cluster–dependent
information and to globally evaluate the structural in-
tegrity. Data fusion techniques, feature compression and
communication protocols, if effectively combined and
customized in such a distributed paradigm, may achieve
the best possible compromise between inspection perfor-
mances and bandwidth [22], [23].

It is worth noting that the last strategy perfectly handles
the mode shapes reconstruction process. Specifically, although
the processing is performed by multiple sub-networks referred
to correspondent sub-structures, the presence of an additional
assembly step is crucial to extract the global features of the
monitored structure [24]. A plurality of schemes, which differ
in terms of topology and task assignment, were implemented
obeying to this hierarchical logic. In the following, some of
the most noticeable solutions are reviewed, whereas additional
examples are extensively described in [25]–[27].

The multilevel cyber-physical system proposed in [28] is
based on three main components: (i) cluster members col-
lect raw vibration samples and, after carrying out power
spectrum analysis, transmit local modal features to their (ii)
CH, which aggregates information concerning its controlled
area; finally, (iii) a unique Sink Node (SN) calculates all-
embracing modal parameters. A similar, decentralized data
aggregation procedure was implemented using a cluster-based
wireless sensor network deployed on a truss structure [29].
Analogously, a study of a 14-bay girder was conducted with a
two-layered cluster network [23], evidencing a favorable trade-
off between the energy requirements and the quality of modal
information. Alongside, a multi-channel monitoring architec-
ture was exploited in [30] for the localization of impacts in
aircraft composite structures. The hierarchical interoperability
of several leaf nodes, few CH nodes and one multi-radio SN
enabled the resulting architecture to achieve a reliable global
assessment of structural integrity. A different variant of akin
configurations is reported in [31], in which the authors im-
plemented a parallel processing architecture based on clusters
of sensors which collaborate to compute structural dynamics
under the orchestration of a central node. Their solution is
characterized by a voting step, necessary to prevent local
drifts which may contribute to the misestimation of vibrating
frequencies. Conversely, the system in [32] exploits a different
distribution of the computational tasks between CHs and a
SN. In detail, CHs alone are in charge of feature extraction
and decision making about structural health, whereas a SN
coordinates them to ensure highly synchronized samples.

In this context, designing a network of partially overlapped
clusters is a widely adopted strategy [23], [24] because it leads
to two main benefits: i) the possibility to make the monitoring
system fault tolerant and resilient; ii) the exploitation of native
correlation between sampling points which simplifies the task

Fig. 1. Example of clustered architecture

of concatenating modal data for the extraction of the global
structural signature with minimal data transfer among CHs.
Mode shape concatenation in case of overlapped clusters
leverages algorithms such as the Post Separate Estimation Re-
scaling (PoSER) [33]. According to this approach, two con-
secutive branches can be re-scaled by minimizing in a least-
squares sense [34] the discrepancies between modal shape
estimations at common reference positions. Other methods
have recently been proposed to address the same issue, basing
on the second-order statistical properties of measured data,
such as [35]. However, all these strategies strictly rely on
reference measurement positions shared by multiple clusters,
a requirement which represents their main limitation.

In fact, the presence of overlapping sampling positions
unavoidably implies an increase in the number of devices to be
installed. More importantly, in practical application scenarios
it might be impossible to have geometrically overlapped
clusters due to the complexity of the structure itself [36].
The development of alternative and more effective solutions
should cope with spatially-disjoint sub-networks conformable
to the structural characteristics and capable of minimizing both
the architectural costs and the electrical and communication
constraints.

III. SYSTEM DESCRIPTION

The developed infrastructure includes linked chains of
connected sensors forming different clusters, each of them
coordinated by a gateway which acts as a corresponding cluster
head (Fig. 1). A first and low-level complexity (single cluster)
version of the employed architecture was formerly presented
in [37], whose topology is upgraded in the present work to be
compliant with large-scale and harsh monitoring scenarios.

Three orthogonal axes signals are acquired from
LIS344ALH, a MEMS accelerometer with the lowest
noise density on its class (50 µg/

√
Hz). This device is

characterized by a maximum band of 1.8 kHz operating in
a dynamic range of ±2 g. The signal acquisition chain is
organized as follows. Each Linked Sensor Node (LSN), shown
in the bottom left corner of Fig. 1, uses a 32-bit ARM Cortex
M4 microcontroller to digitally filter the samples coming
from the accelerometer, precisely employing a Finite Impuslse
Response (FIR) filter implemented with the Floating Point



Unit (FPU), as presented in [38]. Consequently, the gateway 
collects filtered s ignals p rovided b y t he s ensors a nd forwards 
data to a cloud server by means of a wireless channel. At 
this common data-aggregation level, a corresponding virtual 
sink node is in charge of feature extraction and data merging.

The most relevant functionality of the gateway is the 
synchronization of the set of peripheral sensors, which are 
connected through a CAN bus. This protocol is used for the 
communication from the linked sensor nodes to the CH, allow-
ing for a native synchronization between clocks on different 
nodes that may have drifts otherwise. Therefore, the CAN bus 
permits simultaneous acquisitions from the various LNSs at a 
regular and high data rate of 250 000 baud over 40 m cable; 
these transmission properties are enough for instrumenting 
most of the residential and industrial buildings in case of 
vibration analysis. As such, each cluster automatically embeds 
its own timestamp and no-coordination between different 
groups of sensors is still necessary.

In case of civil structures, where principal modal frequen-
cies are typically below 30 Hz, using a data rate of 100 Hz 
is reasonable for elaborating all the fundamental modes of 
vibration. Hence, in order to optimize the performances of the 
circuitry and to meet the same features of expensive piezo-
electric accelerometers characterized by a high full-scale to 
noise-floor ratios, an oversampling strategy with multiplication 
factor of 256 was implemented. In this way, the 12-bit analog-
to-digital conversion (ADC) resolution of the microcontoller 
unit was improved up to 16-bit, correspondingly incrementing 
the signal to quantization noise ratio (SQNR). The procedure 
was practically realized by setting an ADC sampling frequency 
of 25.6 kHz in conjunction with an internal DMA data man-
agement, configured to move 12-bit conversion from the ADC 
to a circular buffer in the memory. Finally, a digital low-pass 
multistage decimation FIR filter w as d eveloped t o generate, 
at the desired sampling frequency (i.e. 100 Hz), the final 
stream of three-axes 16-bit acceleration data. According to the 
capacity of the transmission channel at the above-mentioned 
LSN sampling frequency for all the three axes, a maximum 
number of 19 sensors can be connected to each CAN port 
provided by the gateway. In terms of power consumption, 
when powered at 5 V in normal operating mode, the current 
drawn by each node and the gateway device amounts to 
32.5 mA and 340 mA respectively.

On the other hand, the sensor network design depends on 
three major factors: energy efficiency, computational complex-
ity and structural properties. From an electronic point of view, 
two quantities mainly contribute to the total energy budget, 
namely the power adsorbed by active nodes for sampling 
and transmitting data and the gateway communication costs. 
The computational cost is a function of the total volume of 
samples to be collected within a specific t ime-frame (which 
is an application-dependent quantity) and of the cluster size. 
More specifically, the sensor network can be described through 
the following set of parameters: the total amount of available 
devices Ntot and the number of clusters Nc. The correspond-
ing cluster size Ns and the overlapping factor No need to be 
optimized taking into account the practical difficulties which 
can be associated to the installation of sensors, the maximum

admitted distance between the devices and the presence of
antinodal points of modal curves. In particular, the lower
bound for Ns is given by the number P of modes which
are sufficient to characterize the dynamic behaviour of the
structure under test [23], i.e. Ns ≥ P . For the overlapping
factor, the cases of No = 0 and No = 1 are the ones which
correspond to the minimal sensor redundancy and, for this
reason, these cases have been evaluated in the results section.

IV. GSP CLUSTER–BASED MODAL ANALYSIS

The cluster-based monitoring process adopted in this work
is schematically depicted in Fig. 2. The primary step consists
in defining the most suitable cluster topology and consequently
gathering vibration signals ai(t) from the chosen sensing
positions (clustered sampling) which form the input of the
following feature extraction phase. According to the designed
divide–and–conquer architecture, this step is sub–divided into
two different stages. Firstly, the identification of modal param-
eters pertaining to each cluster (local evaluation) is comprised.
To this end, the FDD and SOBI methodologies mentioned in
Section II can be applied.

If Nc is again the number of clusters, Nc sets of P natural
frequencies (f cip ) and mode shapes (Φci

p ) are obtained in the
local evaluation step; then, a merging procedure has to be
executed in order to characterize the whole monitored structure
(global evaluation) in terms of global natural frequencies (f =
[f1 . . . fP ]) and global modal shapes (Φ = [Φ1 . . .ΦP ]).

Two different procedures are performed in parallel to com-
pute f and Φ:
• the computation of the cumulative P -tuple of natural

frequencies is simply performed by averaging cluster–
related frequency values around each p − th modal
component.

• the estimation of Φ is performed by concatenating the
mode shape portions extracted within adjacent clusters
and by properly setting a scaling factor αcip for each clus-
ter ci at each mode p. i.e. Φ̃p = [αc1p Φc1

p , . . . , α
cNc
p Φ

cNc
p ]

A novel, GSP-based algorithm was purposely designed to
extract the scaling factors for mode shape concatenation.
Indeed, the analysis of signals defined on graphs has been
gaining increasing attention due to its capability of modeling
inherent patterns coded in the acquired data as similarities
between adjacent vertices [39], [40].

A graph is a mathematical entity described by a set of
vertices connected by edges, whose algebraic representation
is expressed through the Adjacency and Degree matrices [39].
The weighted Adjacency matrix W expresses the vertex
connectivity between two generic nodes n and m by means
of a correspondent edge weight wnm. Conversely, each entry
of the Degree matrix D is given by the sum of all the weights
incident on a specific vertex.

In the presented approach, the topology of the MEMS
sensor network is used to define a graph in which modal shape
values corresponding to the different sensor node locations are
mapped as graph signals associated to graph vertices and edge
weights are defined as the inverse of the sensor nodes’ spatial
distances.



Fig. 2. Schematic representation of the proposed cluster-based and
GSP-driven monitoring architecture for vibration analysis.

The proposed modal–to–graph mapping is inspired by the
idea to move the smooth modal pattern of modal shapes into
the smoothness assumption (i.e. smooth changes between con-
nected vertices) [41] inherent in graph signals. This similarity
led to the formalization of the modal shape smoothness λp
defined as

λp =
1

2

Ntot∑
n=1

Ntot∑
m=1

wnm(Φ̃p(n)− Φ̃p(m))2 = Φ̃T
p LΦ̃p (1)

where Φ̃p is the p− th modal shape, and L = D−W is the
so-called graph Laplacian operator.

Indeed, considering the quasi-sinusoidal dynamic regime
typical of vibrating structures, modal curves are supposed
to be smooth. However, when modal shapes are assembled
from the pure concatenation of the values collected from
different clusters (i.e. when the scaling factors are all equal
to 1), discontinuities or abrupt jumps may result. In order to
compensate these discontinuities and to maximize the mode
shape smoothness, an algorithm to tune the scaling factors
αcip for every raw modal frame Φci

p was purposely conceived.
Given a generic p modal shape, such an algorithm involves

the following steps:
1) During the initialization phase, scaling factors

α
(0)
p = [αc1p , . . . , α

cNc
p ] are set to 1.

2) Then, modal shapes are assembled and the smoothness
function λp is computed according to (1)

3) Hence, a prediction phase updates the scaling co-
efficients: the values α

(k)
p at iteration k are com-

puted as α
(k)
p = α

(k−1)
p − r(k)p ∇λp(α(k−1)

p ), in which

r
(k)
p = r

(k−1)
p

(
1 +

λk
p−λ

k−1
p

max{λk
p,λ

k−1
p }

)
and ∇λp(·) are the

updating ratio and the smoothness gradient, respectively.
4) Steps 2) and 3) are repeated until the smoothness vari-

ation between subsequent iterations is smaller than a
predefined tolerance ε. Apart from the setting of ε, the
process is therefore fully automated.

The same procedure is executed for every modal shape to be
reconstructed. Thus, the matrix of assembled modal shapes
Φ = [Φ̃1 . . . Φ̃P ] represents the final output provided by the
GSP–based algorithm.

After the global parameters are computed, the presence of
damage can be assessed (damage detection phase) by com-
paring the extracted modal parameters with reference values,
which can be derived either from the structural response in
healthy (baseline) conditions [42] or as a result of numerical
simulations for the designed (undamaged) structure. In partic-
ular, when the difference between fref and f (i.e. the vectors
of resonant frequencies estimated in pristine and current in-
operation conditions, respectively) is more than 5%, this is
considered as a remarkable deviation in the expected modes
of vibration and a possible indication that the investigated
structure is damaged [43]. However, such information alone
is usually considered to be insufficient, since environmental
and operational conditions may generate strong variations too.
For this reason, a more accurate assessment of the structural
integrity is achieved when the analysis of frequency deviations
is complemented with damage detection metrics based on
modal shapes.

In particular, the consistency between experimental and
baseline modal shapes is evaluated via the Modal Assurance
Criterion (MAC) [44]. If variations in environmental condi-
tions and/or structural defects are absent, the MAC factor



returns a value of 100%; therefore, mode shape-driven damage 
identification strategies track reductions in modal fitting. More 
precisely, when MAC falls below 90%, the structural integrity 
may be significantly compromised.

V. EXPERIMENTAL RESULTS

The performance of the developed GSP cluster-
based monitoring system was evaluated on a 
2142 mm × 10 mm × 60 mm pinned-pinned steal beam, 
with L = 2052 mm being the effective distance between 
the supports. Such a setup represents a widely adopted 
vibration analysis test-bed, because it enables for the use of 
simple numerical model to predict frequencies and associated 
mode shapes in nominal dynamic regime. At the same time, 
numerical models can be easily developed for this structure 
also in damaged conditions, allowing for the computation 
of such quantities which are useful for validation purposes. 
Moreover, regardless of its structural simplicity, the dynamics 
of a simply supported beam can also be representative of 
that exhibited by many larger structures, including precast 
concrete beams and small bridges [23].

The sampling frequency fs = 100 Hz, which imposed a 
Nyquist bandwidth of 50 Hz, was sufficient t o r etain the 
first three modes; accordingly, the parameter P  was set equal 
to 3. Assuming the nominal mechanical properties already 
described in [37], the first t hree fl exural fr equencies of  vi-
brations, f1 = 5.32 Hz, f2 = 21.32 Hz, f3 = 47.92 Hz, and 
the first t hree m ode s hapes ( Φ1, Φ 2, Φ 3) w ere analytically 
predicted by using closed form formulae. Experimentally, the 
structure was excited with impact hammer and accelerations 
were acquired for 100 s allowing the beam to oscillate under 
free vibration.

Afterwards, faulty conditions were mimicked by hanging 
a dead mass on the beam at different positions, thus sim-
ulating the formation of localized damages. Changes in the 
dynamic response of the structure were consequently induced, 
primarily due to the non symmetric mass distribution. This 
extra weight, in fact, causes variations in mode shapes which 
scatter across the mass placement. Correspondingly, spectral 
shifts with respect to mass-free frequencies of vibration occur, 
proportionally to the induced perturbation.

The effects of the mass position xa and the mass val-
ues ma were evaluated. In detail, three different positions 
xa,1 = 200 mm, xa,2 = 400 mm and xa,3 = 600 mm 
were considered. Beside, the following mass values were 
hanged step by step at location xa,2: ma,1 = 1.078 kg, 
ma,2 = 1.847 kg, ma,3 = 2.591 kg. The deviations induced in 
natural frequencies and mode shapes were a priori estimated 
through an in-house developed finite element numerical model, 
taking into account the effect of the added mass on the stiffness 
and rigidity of the beam. To this end, the numerical model 
discussed in [37] was revised including the impingement 
of the electronic equipment (e.g., sensor mass).Accordingly, 
experimental modal parameters were extracted and compared 
to simulation results in order to validate the suitability of the 
proposed scheme under potential defective conditions.

TABLE I
RELATIVE ERROR IN FDD-DRIVEN NATURAL FREQUENCIES ESTIMATION

BETWEEN EXPERIMENTAL DATA AND THEORETICAL PREDICTION FOR
DIFFERENT SCENARIOS.

Fixed mass ma,1 Fixed position xa,1

xa,1 xa,2 xa,3 ma,2 ma,3

Mode [%] [%] [%] [%] [%]

f1 2.003 1.525 1.235 1.109 1.186

f2 0.957 0.687 0.938 0.006 1.436

f3 0.710 1.279 1.436 1.222 1.348

A. Clustering scheme
In the considered experiments, a sensor network constituted

by two clusters (specifically labeled by red and blue markers)
was designed, whose grouping schemes are depicted in Fig. 3.
In particular, case Ov sketches a network with overlapped
clusters, each consisting of 5 sensor nodes (A1,...,5 and A5,...,9,
respectively) installed at nine different positions uniformly
distributed along the entire length of the beam. In this case,
modal parameters were extracted with the PoSER procedure,
and accelerometer A5 was used as the reference point for re-
scaling. Cases A-D are conversely referred to non-overlapped
clusters with different (and irregular) sensor spacing to ex-
amine the influence of sensor placement in modal parameter
estimation. In particular, case D is a particularly unfavourable
arrangement with minimal clusters’ size and significant inter-
cluster distance, while case A is the most redundant and denser
configuration.

Resilience against thermal fluctuations, excitation uncer-
tainty and measurement a-synchronicity were additionally in-
vestigated. For this purpose, the experiments were designed to
acquire acceleration signals separately with the two clusters in
two different moments: sensors at positions A1,...,5 (cluster c1)
were activated at operating conditions characterized by high
temperatures (29 ◦C) and low input force, whereas sensors
A5,...,9 (cluster c2) worked at relatively low temperatures
(17 ◦C) and stronger excitation energy.

B. Feature extraction
A frequency-based assessment was firstly conducted. The

spectral profiles depicted in Fig. 4 were generated with
the FDD algorithm and demonstrate the capability of the
system to identify variations in natural frequencies due to
the presence of added masses. In fact, the results reveal
good vertical alignment between experimental spectral peaks
and numerically predicted modal components. The relative
differences with respect to theoretical simulations under the
same operating conditions are reported in Table I. For all the
tested configurations, an average discrepancy of 1.183% is
observed considering all the three modes of interest.

The analysis was then extended to the reconstruction of
mode shapes. The signal processing techniques (FDD, SOBI)
mentioned in Section II were applied to extract the modal
parameters related to each cluster. The modal shapes were
thereafter concatenated according to the algorithmic proce-
dures detailed in Section IV. For each inspected configuration,



Case A

Case B

Case C

Cluster 1

Cluster 2

A1 A2 A3 A4 A5 A6 A7 A8 A9

Case Ov

Case D

Fig. 3. Experimental setup with two clusters of sensors (red and blue-labelled chains): overlapping networks in correspondence of node A5 (case
Ov) and non-overlapping (case A, B, C, D) configurations. Unhealthy conditions were induced by means of a concentrated roving mass laterally
hanged at positions xa,1, xa,2, xa,3.
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Fig. 4. Spectra of signals acquired with sensor cluster c1 (top graph)
and c2 (bottom graph). The damaged configuration (continuous line)
corresponding to operating conditions perturbed with additive mass
ma = 2.591 kg at xa = 400mm is superimposed to the nominal case
(dotted line). Numerical predictions in both situations are also included.

MAC percentages computed between numerically expected
and experimentally estimated mode shapes were employed to
quantify the correspondent degree of structural coherence.

1) Overlapped configuration: The performance of the
PoSER approach [33] in case of overlapped clusters is reported
in Table II (case Ov). Noticeably, an almost perfect superimpo-
sition to theoretical predictions is achieved in modal envelope
extraction, attested by modal correlation indexes which are
always above 98% even in the worst case, associated with
strongly perturbed tests performed with the heaviest mass. It
is worth highlighting that even the SOBI-based modal shape
estimation fits the model nearly perfectly in all the scenarios,
showing its robustness for modal analysis purposes in spite of
its fully unsupervised approach.

2) Non-overlapped configurations: The performances of
the non-overlapped network configurations (case A, B, C
and D) were tested under the same damaged conditions. In
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Fig. 5. Assembled mode shapes for the altered beam with additive
mass ma = 2.591 kg at xa,2 under non-overlapped configuration of
case C. Raw modal coordinates are extracted by means of the FDD
reconstruction method. Theoretical predictions in nominal (NP) and
damaged status (DP) are also provided.

these cases, modal coordinates were extracted by means of
the already discussed graph smoothness maximization method
presented in Section IV. A tolerance error ε = 10−4, an initial
updating ratio r(0) = 0.5 and a starting smoothness gradient
∇λp = 1 were empirically estimated to achieve the best trade-
off between the resulting modal accuracy and the algorithmic
convergence velocity.

The potential of GSP tools elicits from their intrinsic
capability to derive the proper graph topology compliant to
the best graph signal smoothness in all the considered sensor
arrangements. An example of graph-combined mode shapes
(black dots) is drawn in Fig. 5, where raw modal coordinates
(black stars) are extracted through the FDD technique for
case C. The numerical values drawn above arches connecting
adjacent vertices represent the corresponding edge weights.
Going deeper into the analysis, an evident greater level of
superimposition is achieved after GSP operators are applied



TABLE II
MAC VALUES COMPARING NUMERICAL PREDICTION AND ASSEMBLED

MODE SHAPES IN IN PRESENCE OF ALTERED CONDITIONS WITH
OVERLAPPED CLUSTERS (CASE Ov-POSER APPROACH) AND

SPATIALLY INDEPENDENT CLUSTERS (CASE A, B, C, AND D-GSP
APPROACH).

Fixed mass ma,1 Fixed position xa,2

Case Mode xa,1 xa,2 xa,3 ma,2 ma,3

Ov

FDD
f1 99.93 99.92 99.82 99.94 99.94
f2 99.15 99.25 99.46 99.13 98.21
f3 99.49 99.72 98.44 99.27 99.11

SOBI
f1 99.96 99.93 99.91 99.95 99.95
f2 99.25 99.16 99.21 94.15 98.85
f3 99.75 99.41 98.84 99.00 97.40

A

FDD
f1 99.83 99.63 99.58 99.54 99.58
f2 99.17 97.31 96.62 97.01 98.55
f3 98.56 98.54 99.16 97.20 97.49

SOBI
f1 99.95 99.92 99.89 99.85 99.90
f2 99.18 98.18 97.31 97.83 96.87
f3 98.86 98.66 98.89 97.21 96.04

B

FDD
f1 99.90 99.82 99.66 99.54 99.81
f2 99.61 99.41 98.13 98.53 97.36
f3 99.13 98.73 98.27 96.71 97.00

SOBI
f1 99.92 99.88 99.85 99.83 99.88
f2 99.78 99.43 98.80 98.64 97.46
f3 99.57 98.74 98.68 97.09 96.25

C

FDD
f1 99.95 99.92 99.76 95.77 95.84
f2 99.33 99.49 98.29 98.48 97.40
f3 99.30 99.51 95.42 99.11 99.39

SOBI
f1 99.97 99.95 99.92 96.07 99.97
f2 99.40 99.43 98.48 98.64 97.35
f3 98.65 99.44 95.61 98.69 93.06

D

FDD
f1 97.13 97.54 96.79 96.64 97.72
f2 99.15 99.06 97.68 98.18 96.90
f3 99.33 98.96 98.74 96.38 94.87

SOBI
f1 97.00 97.39 97.35 97.33 97.63
f2 99.11 99.18 98.48 98.29 97.02
f3 99.29 98.58 98.72 95.86 90.13

for the reconstruction of the complete modal curves. In order
to perform a quantitative evaluation, cases A-D in Table II
synthetically report computed MAC values between numeri-
cal expectations and graph-assembled modal coordinates, the
highly accurate fitting among them being proved by modal
correlation indexes averagely above 95%. Another aspect
should further be underlined: despite isolated cases related to
the reconstruction of the third vibration mode subjected to
the heaviest added masses, the effectiveness of the proposed
GSP algorithm attains very high scores both starting with
supervised (FDD) and unsupervised (SOBI) modal inspection
methods. In particular, the maximum deviation between these
two categories amounts to less than 7 point percentages,
without exceeding the tolerance interval of 90% considered as
a damage threshold. Furthermore, conducting a comparative
analysis with respect to already existing methodologies, albeit
a slight decrease in modal fitting occurs among traditional
overlapped solutions and unconventional disjoint configura-

tions, the coherence of the GSP method averagely worsens
for less than 1.1% compared to covariance-based alternatives.
As a matter of fact, it is reasonable that the worst performance
is associated to sparser sampling configurations, longer intra-
cluster distances, and minimal cluster sizes (i.e. Ns = P ).
Nevertheless, the proposed processing achieved a maximum
deviation of approximately 7% (related to the reconstruction
of the third mode for sensing case D, again in the tolerance
range), hence showing its suitability for damage monitoring
tasks.

VI. CONCLUSION

In this paper, a novel cluster-based vibration monitoring sys-
tem, suitable for structural integrity assessment, is described.
The system stands out for its modularity, level of integration,
and versatility, derived by a novel divide-and-conquer strategy
for modal analysis. In particular, a dedicated graph signal
processing method was proposed for non-overlapped sensor
clusters, hence easing the sensor deployment in complex struc-
tures and overcoming electrical and geometrical constraints.

The accuracy of the monitoring system was evaluated
through an experimental validation, designed to take into
account non-stationary phenomena, such as the effect of ther-
mal excursions, blind excitation, and lack of synchronization
between clusters. In addition, the nominal properties of the
structure were altered by simulating the presence of a defect
through the insertion of concentrated masses. The properties of
the developed hardware and software solutions proved to out-
put reliable results. In fact, in all the considered experimental
conditions, the spectral and modal signatures estimated by the
monitoring system showed a significant concordance to theo-
retical predictions. For this reason, the presented mode shape
assembly procedure appears to be a promising strategy to
overtake the current limitations of state-of-the-art overlapped
clustered solutions. Further developments will include the
application of the proposed network on mesoscale structures.
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