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Abstract—In current power system, the conversion be-
tween DC and AC is widely existing and dc side harmonic 
problem is prominent. To suppress the second-harmonic 
current (SHC) at the dc side of single-stage single-phase in-
verter, a dc hybrid active power filter (DC-HAPF) structure 
is presented, which composes of bidirectional dc-dc circuit 
based active power filter and CL passive filter. Here, the CL 
passive filter is used to mitigate the high frequency har-
monics and the active power filter is applied to compensate 
the low frequency harmonic current. Meanwhile, the influ-
ence of filter parameters on harmonic suppression is ana-
lyzed based on the average switching model. In addition, 
for the control of the DC-HAPF, a nonlinear unified control-
ler via feedback linearization is proposed, where the volt-
age and current dual-loop control is converted to a single-
loop control of energy. By analyzing the control system sta-
bility and DC-HAPF’s performance, appropriate control pa-
rameters are selected. To verify the feasibility of the pro-
posed topology and control strategy, a 500W single-stage 
single-phase inverter with the DC-HAPF is built and a good 
performance of dc side harmonic suppression has been 
achieved. 

Index Terms—Second harmonic current, hybrid active 
power filter, feedback linearization, single-stage single-
phase inverter. 

I. INTRODUCTION 

ARMONIC elimination is great significance for improv-
ing power quality, reducing power loss and enhancing grid 
reliability. Power electronic based inverters are widely 

used in current power systems. According to the topology, the 
inverters can be classified into the single-phase inverters and 
the three-phase inverters. Compared with the three-phase in-
verters, the signal-phase inverters are mainly used in systems 
that with low power range (<10kW) [1]. As for the low-voltage 
small-power micro-grids, such as home micro-grids generally 
adopt single-phase power supply structure, and it is easily vul-
nerable to external devices. So the improvement of power qual-
ity for single-phase power supply is important. According to the 

instantaneous power theory, there is power ripple at twice the 
fundamental frequency (2fo) for the output power of the single-
phase inverter, which results in the second-harmonic current 
(SHC) at the dc-side of the single-phase inverter [2]. The SHC 
will cause additional power loss and higher current stress. 
Moreover, for the dc voltage sources, such as batteries, photo-
voltaic cells and fuel cells, the SHC will shorten their lifetime 
and reduce energy conversion efficiency. A large capacitor is 
usually used to suppress the dc-side harmonics of single-phase 
inverter, but it has the disadvantages of large size and poor per-
formance. Therefore, it is necessary to further study the dc-side 
harmonic suppression for the single-phase inverters. 

Moreover, according to the structure, the single-phase invert-
ers can be categorized into the single-stage inverters and the 
two-stage inverters. [1] and [2] offered an overview of the low 
frequency power decoupling of single-phase inverters and the 
dc-side harmonic suppression methods. For the two-stage sin-
gle-phase inverters, the SHC is mainly mitigated by improving 
control methods [3]-[14]. In [3], a SHC reduction method is 
proposed for the dc–dc converters, which regulates the dc-bus 
voltage. A virtual series impedance, which has high impedance 
at 2fo while low impedance at other frequencies, is presented for 
increasing the impedance of the boost-diode branch or the 
boost-inductor branch at 2fo [4]. Various control schemes have 
been presented for mitigating the SHC in the buck-derived 
front-end dc–dc converter [5]-[10] and the SHC is suppressed 
in the control link of dc-dc converter. In [11]-[14], different 
control strategies are presented for mitigating the low frequency 
current ripples, where a boost-type differential inverter made up 
of two bidirectional boost converters is adopted. For the single-
stage single-phase inverters, the SHC can be suppressed by add-
ing filter [15]-[21]. In [15], a ripple power port is designed to 
manage energy storage and decouple capacitor ripple from 
power ripple. In [16], a bidirectional buck-boost converter is 
used as the ripple energy storage circuit, which can effectively 
reduce the energy storage capacitance. A current pulsation 
smoothing parallel active filter (CPS-PAF) is used for the ad-
vantage that it requires a small film capacitor [17]. In [18], an 
integrator is added into the control loop to inject the ripple cur-
rent into the dc-link and restrain the dc component of the current 
reference. In [19], a rectifier is designed for the mitigation of 
power ripple at twice the line frequency and the dc power is in 
series with an inductor. A new power decoupling circuit applied 
to the single-phase current source converter (SCSC) is proposed 
[20]. An active buffer without a large inductor and capacitor in 
the dc-link part is designed [21]. An in all, to deal with the SHC, 
different ways are proposed based on the different structures. 
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However, the cooperative working mechanism and control per-
formance between the dc active power filter and the passive fil-
ter for suppressing the dc-side harmonics are rarely studied. 

Feedback linearization is an advanced nonlinear control 
method without neglecting the higher order terms in the linear-
ization process. This technique has been successfully applied to 
the areas of power electronic converters [22-24]. By applying 
exact feedback linearization theory, a nonlinear control strategy 
is presented for single-phase active power filter [25]. A new 
feedback linearization approach is proposed, which yields a de-
coupled linear induction motor (IM) model with two state vari-
ables: torque and stator flux magnitude [26]. In [27], a simpli-
fied feedback linearization of single-phase active power filter 
using sliding mode control is proposed. An innovative simpli-
fied feedback linearization (SFL) control strategy is designed 
for the PV inverter with the LCL filter [28]. For achieving ex-
cellent performance under various operating conditions, a con-
troller based on the partial feedback linearization is proposed 
[29]. A controller is designed based on the partial feedback lin-
earization to regulate the line voltage by providing reactive 
power compensation [30]. In [31], a nonlinear damping control-
ler is designed based on partial feedback linearization for miti-
gating sub-synchronous oscillation. Compared with traditional 
controller, the controllers based on feedback linearization have 
a good dynamic and steady performance. However, owing to 
the different circuit structures and control targets, the feedback 
linearization-based controllers also are different. Therefore, it 
is usually necessary to design the appropriate controller based 
on the specific application scenarios. 

In this paper, for distinguishing the traditional ac hybrid ac-
tive power filter (HAPF), the concept of dc hybrid active power 
filter (DC-HAPF) is presented. In addition, to suppress the SHC 
and high frequency harmonics at the dc side of single-stage sin-
gle-phase inverters, a DC-HAPF topology composed of bidirec-
tional dc-dc circuit based active power filter and CL filter, is 
proposed. For the control of DC-HAPF, a nonlinear unified 
controller using feedback linearization is proposed. The rest of 
this paper is organized as follows. The single-stage single-phase 
inverter with the proposed DC-HAPF is introduced in Section 
II. In addition, the characteristics of the DC-HAPF are analyzed 
based on the average switching model. After that, Section III 
introduces the nonlinear unified controller via feedback linear-
ization and the design method of control parameters. Experi-
mental results are presented in Section IV. 

II. DC HYBRID ACTIVE POWER FILTER AND ITS FILTERING 

CHARACTERISTICS 

Fig.1 shows the configuration of single-stage single-phase 
inverter with the designed DC-HAPF. The CL filter composes 
of C1 and L1, where C1 is also the dc-bus capacitor for the sin-
gle-stage inverter. The dc active power filter is based on the bi-
directional dc-dc converter, which composes with L2, C2, S5 and 
S6. The current iinv contains a lot of harmonic components, es-
pecially the SHC and high frequency harmonics associated with 
the switching frequency. The CL filter can suppress the high 
frequency harmonic currents effectively, but it has a poor effect 
on the SHC. After CL filtering, the harmonic current in iL1 is 
mainly low-frequency harmonic current, which can be compen-
sated by the APF. 

 
Fig.1. Configuration of single-stage single-phase inverter with DC-HAPF. 

According to Fig.1, by using state-space average method, the 
mathematical model of APF can be expressed as, 

  '
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            (1) 

where iapf is the output current of APF; vin is the input voltage 
for APF; vc is the voltage of C2; Dk is the duty-cycle of S6 in the 
switching period k, and D’

k +Dk =1, expressed as, 

1 in
k

c

v
D

v
                                        (2) 

Applying the Laplace Transformation, (1) can be rewritten 
as, 

   
 

'
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'
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i v D v v D sL
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

            (3) 

According to two-port network theory, the bidirectional dc-
dc circuit based APF at the dc side of single-phase inverter can 
be equivalent to an impedance. According to (3), the equivalent 
impedance of the APF can be obtained as, 

 
2 '2

2 2

2

in k
apf

apf

v L C s D
Z s

i sC


                      (4) 

By setting L2 =1mH, C2 =2mF and Dk =0.1, the Bode diagram 
for Zapf (s) is depicted, as shown in Fig.2. 

 
Fig.2. Bode diagram of Zapf (s). 

Seen from Fig.2, the magnitude of Zapf (s) is very low at 2fo, 
which likes a notch filter. This implies that the equivalent im-
pedance of the APF is very small at 2fo. At other frequencies, 
the magnitude of Zapf(s) is much bigger than that of Zapf (s) at 
2fo. It means that the APF can provide a channel for SHC and 
hinder the passing of dc current. 
 According to (4), the characteristics of Zapf(s) are determined 
by three parameters L2, C2 and Dk. Because C2 not only is a filter 
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capacitor, but also the dc-bus capacitor for the single-stage in-
verter. So, C2 is designed based on the dc voltage fluctuation 
requirement. In order to better design the parameters L2 and Dk, 
the amplitude-frequency characteristics of Zapf(s) under differ-
ent L2 and Dk are showed in Fig.3.  

  
(a)                                                         (b) 

Fig.3. Amplitude-frequency characteristics of Zapf(s) under different parameters. 
(a) Under different Dk. (b) Under different L2. 

 According to Fig.3(a), the amplitude of Zapf(s) increases sig-
nificantly with the decrease of Dk in the low-frequency part 
(lower than 2fo). Similarly, according to Fig.3(b), the amplitude 
of Zapf (s) raises rapidly with the increase of L2 in the high-fre-
quency part (higher than 2fo). No matter the increase of Dk or 
L2, the amplitude ratio of Zapf (s) is always low at the frequency 
2fo. Hence, the impedance characteristics of Zapf (s) can be im-
proved by designing the value of Dk and L2. 
 Replacing the APF with the equivalent impedance Zapf (s), the 
simplified circuit topology of Fig.1 can be depicted in Fig.4, 
where Vin is the dc voltage source and R0 is its internal resistance. 
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Fig.4. The simplified circuit topology of single-stage single-phase inverter with 
DC-HAPF. 

 It is well known that the downstream single-phase inverter 
can be equivalent to a dc current source Idc in parallel with an 
SHC source ISHC if neglecting the switching harmonics. The cir-
cuit topology of the single-stage single-phase inverter with dif-
ferent filters can be further simplified, as shown in Fig.5.  
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Fig.5. The simplified circuit of the single-stage single-phase inverter with dif-
ferent filters. (a) With filter C. (b) With filter CL. (c) With filter C+APF. (d) 
With filter CL+APF. 

According to Fig.5, the equivalent control diagrams of sin-
gle-stage single-phase inverter with different filter can be de-
picted in Fig.6.  
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Fig.6. Equivalent control diagrams of single-stage single-phase inverter with 
different filters. (a) With filter C. (b) With filter CL. (c) With filter C+APF, (d) 
With filter CL+APF. 

According to Fig.6(a), the transfer function from iinv to i1 can 
be expressed as, 

1
1 0

1

1 invi i
sC R




                             (5) 

Similarly, from Fig.6(b), the transfer function from iinv to i1 
can be expressed as, 

 1
1 1 0

1

1 invi i
sC sL R


 

                     (6) 

Similarly, from Fig.6(c), the transfer function from iinv to i1 
can be expressed as, 

1
0 1 0

apf
inv

apf apf

Z
i i

R Z sC R Z


 
                     (7) 

Similarly, from Fig.6(d), the transfer function from iinv to i1 
can be expressed as, 

   1 2
1 1 0 1 01

apf
inv

apf apf

Z
i i

s L C Z R sC R Z

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By setting L1 =0.1mH, C1=1.5mF, L2 =1mH, C2 =2mF, 
R0=0.01ohm, and Dk =0.1, the Bode plots for (5), (6), (7) and (8) 
are depicted in Fig.7. 

 
  (a)                                                         (b) 

Fig.7. Bode diagrams of the transfer functions from iinv to i1. (a) Bode diagrams 
of (5) and (6). (b) Bode diagrams of (7) and (8). 

As seen from Fig.7(a), the magnitude of (5) is higher than 
that of (6) in the high frequency part. It shows that CL filter has 
a good effect on suppressing the high-frequency harmonic cur-
rent. Seen from Fig.7(b), the magnitude of (7) and (8) are very 
low at the frequency 2fo and it shows that the APF can suppress 
SHC effectively. In addition, the magnitude of (7) is higher than 
that of (8) in the high-frequency part, and it shows that CL+APF 
has a better control effect than C+APF for high frequency har-
monics. Therefore, the proposed DC-HAPF integrates the mer-
its of both active power filter and passive filter.  

Seen form (8), the internal resistance R0 can affect the filter-
ing effect. Similarly, the values of Dk and L1 also have a great 
influence on the performance of DC-HAPF. To better analyze 
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the influence of the Dk, L1 and R0 on the filtering effect, the am-
plitude-frequency characteristics of (8) under different Dk, L1 
and R0 can be depicted in Fig.8. 

  
(a)                                                      (b) 

  
  (c) 

Fig.8. Amplitude-frequency characteristics of (8) under different parameters. (a) 
Under different Dk, (b) Under different L1, (c) Under different R0. 

Seen from Fig.8(a), the trap frequency of (8) gradually in-
creases with the decrease of Dk in the low frequency part. Sim-
ilarly, according to Fig.8(b), the amplitude of (8) significantly 
decreases with the increase of L1 in the high-frequency part but 
rapidly increases in the low frequency part. No matter the L1 

increases or not, the amplitude of (8) stays the same at the fre-
quency 2fo. Hence, the SHC can be improved by designing the 
values of Dk and L1. In addition, as shown in Fig.8(c), the am-
plitude of (8) decreases with the increase of impedance R0. It 
shows that the increase of the resistance R0 can suppress the 
harmonic current. However, the resistance R0 is determined by 
the characteristics of the dc voltage source Vin, and artificially 
increasing the resistance R0 will increase the additional power 
loss. 

III. NONLINEAR UNIFIED CONTROL VIA FEEDBACK 

LINEARIZATION 

In order to improve the control performance of system, the 
nonlinear unified controller using feedback linearization is de-
signed in Fig.9. Applying feedback linearization theory, the ap-
propriate new state variables are obtained and the inverse func-
tion is established. According to the new state variables, the 
nonlinear system can be converted into the linear system. Then, 
a linear system controller is designed based on the obtained lin-
ear system. Finally, according to the inverse function, the pri-
mary control variable can be obtained by the state variables and 
control variable of the linear system, which can realize the con-
trol of the nonlinear system. 
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Fig.9. Design of the nonlinear unified controller using feedback linearization. 

Replacing the duty-cycle Dk by the input variable u, (1) can 
be rewritten as, 
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                       (9) 

According to (9), selecting x=[x1, x2]=[iapf, vc] as state varia-
bles, yx=h(x)=x1 as output and u=Dk as the input, the single-in-
put single-output (SISO) nonlinear system based on differential 
geometry method can be obtained as, 
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where, f(x) and g(x) are controllable matrices. According to (11), 
(12) and Lie derivatives [28], there is, 
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Combining (12) and (13), there is, 
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Seen from (14), the rank of matrix (14) is 2, and the order of 
system (10) is also 2. Based on feedback linearization theory 
and differential geometry method, the system (10) can be pre-
cisely linearized. Thus, it can be determined that there is an out-
put function making the relative order of the system be equal to 
the dimension of the system. The characteristic of system (10) 
is that it is nonlinear for the state variable x, but linear for the 
control variable u. 

Applying Lie derivatives [28], according to (10)-(12), there 
is, 

     
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
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            (15) 

According to (15), the relative order of the system (10) is 1, 
not equal to the dimension of the system. The original system 
(10) cannot be precisely linearized owning to the output func-
tion. It is necessary to reconstruct a new output function to re-
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alize the precise feedback linearization. Supposing the new out-
put function is ω(x), it needs to satisfy the following differential 
equation, 

    0
x

g x
x





                                (16) 

According to (12) and (16), there is, 
       

2 1
1 2 2 2

1 1
0

x x x
g x x x

x x L x C
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     (17) 

For (17), a solution can be obtained, 
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2 1 2 2

2

L x C x
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Clearly, the new output function is APF's energy function, 
which has a clear physical meaning. 

According to (11) and (18), there is, 
  1f inL x v x                              (19) 

Combing (18) and (19), the coordinate transformation can be 
derived as, 
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By coordinate transformation, (10) can be described as, 
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where z1 and z2 are the state variables of the linear system and 
σ is the new control variable, satisfying, 
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where Lf
2ω(x) and LgLf ω(x) can be expressed as, 
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Since the APF is used to compensate harmonic currents, the 
current iapf must follow the reference signal ix fast and precisely. 
Meanwhile, the voltage vc should follow the reference value vref. 
Similarly, for the system (21), z should follow the reference sig-
nal zref fast and precisely. When the system is stable, according 
to (20), there is, 
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From (25), there is, 
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2
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ref
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
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                                  (26) 

where x2 have two solutions, but only one is positive. In the 
practical system, x2 is the voltage of C2 and is positive. So, when 
z follows zref, it can guarantee that iapf can follow the reference 
current ix, and vc can follow the reference voltage vref. Finally, 
the two control goals (vref and ix) can be translated into a control 
target zref.  

In order to ensure that z follows the reference signal zref, a 
state error vector is defined as follows, 

1 1 1

2 2 2

ref

ref

e z z

e z z

 
  

                                (27) 

where z1ref is the reference signal of z1, and z2ref is the reference 
signal of z2.  

According to (21) and (27), there is, 
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Defining the control law, 

1 1 2 22ref k e k ez                           (30) 

According to (28) and (30), there is, 
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According to (31), the characteristic equation can be obtained 
as,  

  2
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where λ is the characteristic root. 
When k1>0 and k2>0, λ possesses negative real part, the sys-

tem (31) is stable and the proposed nonlinear unified controller 
via feedback linearization can follow the target accurately. To 
analyze the effect of parameters k1 and k2 on the controller per-
formance, according to (31), the state variables e1 and e2 curves 
can be obtained as follow, 

 
(a)                                                  (b) 

Fig.10. State variables e1 and e2 curves under different parameters k1 and k2. (a) 
k2 =2000. (b) k1 =500. 

Seen from Fig.10(a), when k2=2000, with the increase of k1, 
the convergence rate of error e1 gradually increases. The error 
e2 first increases then decreases and the fluctuation is bigger 
when k1 is bigger. From Fig.10(b), when k1=500, with the de-
crease of k2, the convergence rate of error e1 gradually increases. 
The error e2 first increases then decreases and the fluctuation is 
bigger when k2 is smaller. Seen from Fig.10, the error e1 gradu-
ally decreases from 50 to 0 and the error e2 gradually converges 
to 0 after an oscillation. As the error e2 is the derivative of error 
e1 and the error e1=e2=0 when the system is stable, under the 
proposed controller, the system can follow the target accurately 
and the stability is better. When k1 is smaller and k2 is bigger, 
the convergence rate of error e1 is smaller. In order to improve 
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the tracking speed and accuracy of the target, k1 should be 
smaller and k2 should be larger since e2 is the derivative of error 
e1.  




1refz
1k





1z




2refz
2k

1z

1z

  
 

2
f

g f

L x

L L x

 


  u




refv
PI


refi



cv apfi


u

(a)

(b)

Deadbeat Control

 
Fig.11. Controller structure of DC-HAPF. (a) The traditional double loop con-
trol. (b) The proposed nonlinear unified control. 

Based on the analysis above, the traditional double loop con-
trol and the proposed nonlinear unified controller via feedback 
linearization of DC-APF can be shown in Fig.11. Seen from 
Fig.11(a), for the traditional dual-loop control, the voltage outer 
loop is generally controlled by PI controller and current inner 
loop usually adopts the deadbeat control or other control. From 
Fig.11(b), the proposed nonlinear unified controller is con-
trolled based on the APF’s energy, which can realize the unified 
control of APF’s voltage and current. Compared with the tradi-
tional double loop control, the proposed nonlinear unified con-
troller is controlled based on the tracking error and the deriva-
tive of error simultaneously, and it has better dynamic and 
steady performance. 

Moreover, to analyze the robustness of the proposed control-
ler to the circuit parameters L2 and C2, a Lyapunov function is 
defined as follow, 
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where 𝑒̃ଵ and 𝑒̃ଶ are the real state error, expressed as follows, 
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where  z̃1 and z̃2 are the real state variables of z1 and z2, respec-
tively. According to (33), due to k1>0, 𝑒̃ଵ

ଶ ≥ 0  and 𝑒̃ଶ
ଶ ≥ 0 , 

there is V≥0. 
Differentiating (33), there is, 

1 1 2 2
1

1
V e e e e

k
                                       (35) 

According to (28), (30) and (34), there is, 
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Substituting (36) into (35), there is, 
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See from (37), only when the 𝑒̃ଶ = 0, there is V̇=0. There-
fore, according to the Lyapunov theory, the system is stable. 
When the system is stable, there is, 
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  (38) 
where ∆L2 and ∆C2 are the parameter errors of L2 and C2, re-
spectively. 

From (38), when 𝑒̃ଶ=0, there is iapf = iref ; when 𝑒̃ଵ=0, there 
will be a fixed error for the dc voltage vc. Moreover, when the 
real circuit parameter L2 or C2 is bigger, the dc voltage vc will 
be slightly smaller than vcref; when the real parameter is smaller, 
the dc voltage vc will be slightly bigger than vcref. Based on the 
analysis above, the circuit parameter error only affects the con-
trol of the dc voltage vc and it does not affect the harmonic 
suppression effect of the DC-HAPF. Therefore, the proposed 
controller can suppress the harmonic current effectively, and 
has a strong robustness to circuit parameters L2 and C2. 

IV.  EXPERIMENTS 

To validate the feasibility of the proposed DC-HAPF and 
nonlinear unified controller via feedback linearization, a proto-
type for single-stage single-phase inverter with DC-HAPF is 
built in lab for verification, and the proposed control strategy is 
implemented in TMS320F28335. Fig.12 gives the schematic di-
agram of this single-stage single-phase inverter with DC-HAPF. 
The parameters of circuit are shown in Table I and the parame-
ters of controllers are shown in Table II. The experimental re-
sults are shown as follows.  
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Fig.12. Schematic diagram of the prototype. 

Firstly, the harmonic suppression performances of four dif-
ferent kinds of filters are compared and shown in Fig.13. Com-
pared with Fig.13(a) with filter C, the current i1 in Fig.13(b) 
with filter CL mainly has the SHC and less high-frequency har-
monic currents. So, the switching harmonic currents can be ef-
fectively suppressed by CL filter. Seen from Fig.13(c) with fil-
ter C+APF, the SHC is suppressed. As the active power filter is 
difficult to suppress the high-frequency harmonics, the current 
i1 still has lots of high frequency harmonic components. From 
Fig.13(d) with filter CL+APF, the SHC and switching harmon-
ics in the current i1 are greatly suppressed and the current i1 are 
much better than that of Fig.13 (b) and (c). So, the proposed 
DC-HAPF can effectively suppress the harmonic currents at the 
dc-side of single-phase inverter. Note that the current THD with 
C+APF is lower than that with filter C and higher than that with 
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filter CL since there are lots of high frequency switching har-
monics. However, with the work of filter CL+APF, the THD of 
dc current i1 is less than 5% and is the lowest. From Fig.13, the 
passive filter CL can effectively suppress the high-frequency 
harmonics, and it is helpful for the active power filter to com-
pensate the low frequency harmonic currents. Therefore, the 
DC-HAPF can effectively suppress the lower- and high-fre-
quency harmonic currents at the dc-side of single-phase inverter, 
which integrates the merits of active power filter and passive 
power filter. 

TABLE I 
  PARAMETERS OF CIRCUIT 

Parameter Value 
Voltage of DC voltage source Vin /V 48 
Internal resistance of DC power R0/Ω 0.01 
Capacitance of CL filter C1 /mF 1.5 
Inductance of CL filter L1 /mH 0.1 

Capacitance of active power filter C2/mF 2 
Inductance of active power filter L2/mH 1.5 
AC voltage vac/V 50 
Inductance L3 /mH 2 

TABLE II 
 PARAMETERS OF CONTROLLERS 

Parameter Value 
Rated active power Pset /W 500 
Rated reactive power Qset /W 0  
PI controller parameter KP 0.001 
PI controller parameter KI 1 
PR controller parameter KPP 0.5 
PR controller parameter KPR 500 
Capacitance voltage vref/V 65 
PWM switching frequency fpwm/kHz 10 
Sampling frequency fs/kHz 10 

Controller parameter k1 1 
Controller parameter k2 20000 
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Fig.13. Experimental waveforms with different filters. (a)With filter C. (b) With 
filter CL. (c) With filter C+APF. (d) With filter CL+APF. 

Fig.14 shows the experimental waveforms when the DC-HAPF 
is controlled by different control methods. Seen from Fig.14(a), 
adopting the traditional deadbeat control, the current i1 has two 
oscillation processes when the power changes suddenly. When 
the power doubles suddenly, there will be a big input error and 

a longer response time since the voltage outer loop is controlled 
by PI controller. Fig.14(b) shows the experimental waveforms 
under the sliding mode control, where the current inner loop is 
controlled by sliding mode controller and the voltage outer loop 
is controlled by PI controller. As seen from Fig14(b), although 
the sliding mode control has good dynamic performance, the 
current i1 also has an oscillation process because of the current 
reference is affected by the voltage PI controller. From Fig14(c), 
adopting the nonlinear unified controller, since the voltage and 
current dual-loop control is converted to a single-loop control 
of energy, the current i1 basically has no oscillation process 
when the power changes suddenly. In addition, as the proposed 
controller is designed based on the tracking error and the deriv-
ative of error, the DC-HAPF can attenuate the tracking error 
fast, and the THD of dc current i1 is 2.87% and the lowest. 
Based on the analysis above, the steady and dynamic perfor-
mances of the proposed nonlinear unified control are better than 
the ones of traditional deadbeat control and sliding mode con-
trol. 
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Fig.14. Experimental waveforms under different control methods. (a) Deadbeat 
control. (b) Sliding mode control. (c) Proposed nonlinear unified control. 

Fig.15(a) shows the experimental waveforms under the dif-
ferent parameter k1. When k1 increases from 1 to 20000 sud-
denly, the THD of waveform of dc current i1 decreases from 
4.92% to 3.49%. Fig.15(b) shows the experimental waveforms 
under the different parameter k2. When k2 increases from 2000 
to 20000 suddenly, the THD of waveform of dc current i1 de-
creases from 4.94% to 2.87% and the waveform is smoother. 
No matter increase k1 or k2, the THD of dc current i1 will de-
creases. Since the parameter k2 is the coefficient of e2 in the con-
troller and e2 is the derivative of e1, the target tracking error e1 

reduces faster and the steady state error is smaller when k2 is 
bigger. Therefore, the THD of dc current i1 is smaller when k1=1 
and k2=20000. In addition, to analyze the influence of the pa-
rameter Dk on filtering performance, as the duty ratio of con-
verter is directly proportional to vref, here it will change vref to 
show the influence on the operation performance of DC-HAPF. 
Seen from Fig.15(c), when vref is decreased from 100V to 60V, 
the high-frequency harmonic current in iapf decreases gradually 
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and the waveform of dc current i1 becomes better gradually. 
When the system is stable, the capacitor voltage vc will be equal 
to vref. With the decrease of voltage vc, the change value of cur-
rent iapf will decrease in the same switching cycle, and then the 
distortion of current iapf will be narrow. Therefore, the wave-
form of dc current i1 is better when vref=60V. 
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Fig.15. Experimental waveforms under different control parameters. (a) Under 
different k1when k2=2000. (b) Under different k2 when k1=1. (b) Under different 
vref. 

In DC-HAPF, the inductance L1 is very important for the high 
frequency harmonic current suppression. The experimental 
waveforms with different L1 can be obtained, as shown in 
Fig.16.  

As seen from Fig.16(a), when the value of L1 is changed from 
0.1mH to 1mH, the waveforms of iapf and i1 both occur oscilla-
tion. According to Fig16(b), when the value of L1 is changed 
from 0.1mH to 0.01mH, the current i1 also becomes worse and 
it has large amount of high frequency harmonic current. When 
the value of L1 is bigger, L1 will hinder the transmission of elec-
trical energy. When the value of L1 is smaller, L1 cannot effec-
tively filter out the high frequency harmonic current. So, no 
matter the value of inductance L1 is too big or too small, the 
quality of current i1 will be deteriorated. When the value of L1 
changes, the current iL1 changes and it will affect the harmonic 
control effect of active filters. To better suppress harmonics, an 
appropriate inductance L1 is important. 
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Fig.16. Experimental waveforms under different L1. (a)Increase L1 from 0.1mH 
to 1mH. (b)Decrease L1 from 0.1mH to 0.01mH. 

Fig.17 shows the experimental waveforms under the disturb-
ance of parameter L2 or C2. Seen form Fig.17(a), when L2 is 
increased by 20% suddenly, the changed value of current iapf 
will decrease at the same switching cycle, and then the output 
harmonic current will slightly decrease. Therefore, the har-
monic suppression effect of DC-HAFP becomes better and the 
THD of dc current i1 becomes lower. Seen form Fig.17(b), 
when L2 is decreased suddenly, the changed value of current iapf 
will increase at the same switching cycle, and then the output 
harmonic current will slightly rise. Therefore, the harmonic 
suppression effect of DC-HAFP becomes worse and the THD 
of dc current i1 becomes higher. From Fig.17(a) and Fig.17(b), 
no matter parameter L2 is bigger or smaller than normal value, 
the harmonic currents can be effectively suppressed by DC-
HAPF and the system is stable. As seen from Fig.17(c), when 
C2 is increased by 20%, the fluctuations of dc voltage vc will 
decrease, and then the harmonic suppression effect of DC-
HAPF will be slightly better. Meanwhile, the dc voltage vc be-
comes slightly smaller, which is consistent with the robustness 
analysis in Section III. Seen from Fig.17(d), when C2 is de-
creased by 20%, the fluctuations of dc voltage vc will increase, 
and then the harmonic suppression effect of DC-HAPF will be 
slightly worse. Meanwhile, the dc voltage vc slightly becomes 
bigger, which is also consistent with the robustness analysis in 
Section III. From Fig.17(c) and Fig.17(d), no matter parameter 
C2 is bigger or smaller than normal value, the harmonic currents 
can be effectively suppressed by DC-HAPF. Compared with the 
parameter C2, the parameter L2 has a greater impact on the per-
formance of the controller. Therefore, the DC-HAPF with non-
linear unified controller via feedback linearization has a strong 
robustness since the proposed controller is regulated based on 
the tracking error and the derivative of error. 

2 1.8L mH

THD=2.13%

2 1.5L mH

 10A/ divapfi

 1 5A/ divi

 10Time : ms/ div

THD=2.87%

 

2 1.5L mH

 10 A/ divapfi

 1 5A/ divi

 10Time : ms/ div

THD=2.87%

2 1.2L mH

THD=3.46%

 
(a)                                                           (b)     

2 2C mF 2 2.4C mF

 10V / divcv

 1 2 A/ divi

 10Time : ms/ div

THD=2.87% THD=2.73%

 

2 2C mF 2 1.6C mF
 1 2 A/ divi

 10Time : ms/ div

THD=2.87% THD=3.01%

 10V / divcv

 
(c)                                                           (d)        

Fig.17. Experimental waveforms under different L2 or C2. (a) +20% change of 
L2. (b) -20% change of L2. (c) +20% change of C2. (d) -20% change of C2. 

V. CONCLUSION 

In order to solve the dc side harmonic problem and distin-
guish traditional ac hybrid active filter, this paper proposed the 
concept of DC-HAPF. For suppressing the harmonic current at 
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the dc side of the single-stage single-phase inverter, a dc hybrid 
active power filter structure is presented, which integrates the 
merits of active power filter and passive power filter. Moreover, 
a nonlinear unified controller is proposed by applying feedback 
linearization theory, where the voltage and current dual-loop 
control is converted to a single-loop control of energy. Since 
the proposed controller is controlled based on the tracking error 
and the derivative of error, the DC-HAPF can attenuate the 
tracking error fast, and the robustness of the proposed controller 
is good. The proposed energy-based controller also has poten-
tial application value in other scenarios, which can improve the 
controller’s performance by converting the typical voltage and 
current dual-loop control into a single-loop control of energy. 
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