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Abstract—The use of artificial neural networks (ANN) for
the selection of weighting factors in cost function of the
finite-set model predictive control (FS-MPC) algorithm can
speed up selection without imposing additional computa-
tional burden to the algorithm and ensure that optimum
weights are selected for the specific application. In this pa-
per the ANN based design process of the weighting factors
is used for predictive torque control (PTC) in a motor drive.
In the design process the weighting factors in the cost
function and the reference flux value are obtained using
different fitness functions. The results show that different
operating conditions of the drive will have new optimum
parameters of the cost function, therefore sweeping param-
eters like load torque or reference speed can optimize the
PTC for the whole operating range of the drive. A good
match of the performance metrics predicted by the ANN and
the simulation model is also observed. The experiments
demonstrate that the selected cost function parameters can
provide a fast drive start and good performance during
different loading conditions and also in reversing of the
drive.

Index Terms—artificial neural network (ANN), drives,
model predictive torque control, voltage source converter
(VSC), weighting factor design

I. INTRODUCTION

MODEL predictive control algorithms have gained a lot
of interest from power electronics control designers due

to their simple design and the possibility to include multiple
objectives in one cost function [1], [2]. Its ability to easily
adapt to different power converter topologies, starting from
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simple buck or boost converters [3], two level converters
[4], [5], multilevel converters [6], [7] and modular multicell
converters (MMC) [8] has helped this algorithm to spread to
various fields of power electronics applications that have been
dominated by traditional linear control algorithms. However,
although the design might seem simple, the optimization of
the cost function is more challenging than it looks. Each
objective in the cost function is paired with a weighting
factor that defines the contribution of this objective in the
final control decision. If empirical methods like branch and
bound search [9] are used, the optimization can be a very
time consuming task and the complexity of this problem will
increase exponentially with each added objective into the cost
function. Therefore, a couple of different solutions have been
proposed to solve this problem, from completely removing
the weights in the cost function [4]–[7], [10]–[17], methods
for online weighting factor adaptation [18]–[21] and also for
offline adaptation based on ANN [22], [23] and even genetic
algorithms [24], [25].

The most common approach to avoid using the weighting
factors in the cost function for motor drives is to unify the
dimensions of the control objectives as shown in [11], [12].
The methods do not impose any additional computational
burden as they don’t increase the complexity of cost function.
Nevertheless, the methods are limited to use objectives that
can be converted into a joint reference. An application of a
weightless function with current control and neutral point (NP)
voltage balancing was presented for three level converters in
[6], [7]. In this application, first the voltage vector is selected to
minimize the primary objective and then the redundant vectors
are employed to control the secondary objectives. Controlling
the secondary objectives only by redundant vectors can limit
their control capability and is not applicable to all systems.

Recent PTC cost functions designs propose the splitting
of the control problem into multiple cost functions, where
each one of them has only one objective and the weighting
factors are no longer needed [4], [5], [13]–[16]. For example
in [4] the two cost functions, one for torque and one for
flux, are evaluated in a sequence and in [5] in parallel.
The authors of [13]–[16] also use a sequential structure for
different converter topologies. It needs to be mentioned that
multiple cost functions will also require the implementation of
a ranking approach [15], [16]. In simulations and experimental
results a better dynamic performance and stronger robust-
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ness to parameter mismatch is demonstrated for parallel cost
functions compared to conventional cost functions with fixed
weighting factors [5]. However, it remains unclear if more
control objectives can effectively be included in the proposed
cost function structures for PTC [4], [5].

The online based optimization methods proposed by the
authors in [18], [19] are using fuzzy decision making and a
ranking approach. Although the methods have demonstrated
good performance, the authors have pointed out that it imposes
an additional computational burden, which is expected to
increase even more for multilevel converter applications or
longer prediction horizons in the control. In [20] the online
adaptation method adjusts the weights with the aim to prior-
itize the minimization of the objective with the largest error,
but there is no analytical validation that the selected weights
are optimally selected. A similar approach is also presented
in [26] for a system with a parameter mismatch, where the
autotuning algorithm will increase the weighting factor for the
objective with an error larger than the set threshold. However,
no guidelines were given how to set these thresholds. Another
way to calculate the weighting factors online was shown
in [27], where the weights are adjusted in every sampling
period for each control criteria. Due to the weighting factor
calculations the execution time of the algorithm is higher.

The ANN based methods in [22], [23] both use offline
obtained training data from multiple simulations of the system
model, though the optimization is performed differently. Au-
thors in [22] use dynamic adaptation of the weighting factors.
In each sampling step the trained ANN is fed with measured
performance metrics to find the weighting factors that will
keep the performance metrics in the defined limits for the
system’s safe operation. In [23] the weighting factors are static.
Compared to [22] they are not chosen only to keep the system
operating within the limits of safe operation, moreover they are
optimized with certain analytical performance guarantee. The
optimization is performed for the steady state, thus only static
performance metrics are used in the optimization. For drives
application, steady state performance metrics like THD of the
controlled variable and switching frequency are not sufficient
for optimization, dynamic parameters also need to be included.
Multi-objective genetic algorithms (MOGA) are used to solve
the problems that have more than one minimization goal, and
therefore they can be utilized to optimize the weighting factors
in the cost function with multiple conflicting objectives as it
was demonstrated in [25].

An ANN based method for cost function parameter design
with the goal to achieve optimal control of the motor will be
presented in this paper. This paper will go one step further
than [25] and also include the flux reference value in the
optimization problem as well as evaluate the dependency of
the cost function weighting factors on the different load values.
It needs to be mentioned that none of the before mentioned
weighting factor design methods has been used on such high
complexity optimization problem. ANN based design method
has not yet been applied for PTC and due to the fact that the
cost function will have multiple conflicting objectives (3) it
would be interesting to see if this method can also show a
good performance as multi-objective optimization algorithm
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Fig. 1: Predictive torque control for a three phase voltage
source converter feeding an 3-phase induction motor.

like in [25] and outperform the traditional heuristic methods.
Dynamic performance factors will be used for optimization
in order to have an analytical guarantee that the selected cost
function parameters will lead to a successful drive start and
operations under different loading conditions. We will show
in the paper that the proposed approach:

1) Can be applied to cost functions with multiple conflicting
objectives.

2) Can be applied for objectives, which can not be unified
e.g. switching frequency and torque error.

3) Is not imposing any additional computational burden
(tuning is performed offline).

4) It is analytically validated that the selected weights are
the optimum combination with guaranteed dynamic per-
formance.

5) The correlation of the predicted performance metrics
from the trained ANN is very good both with the simu-
lation and experimental results.

6) The design process is straightforward and has a large
potential to be applied in the industry for tuning the PTC.

The paper is structured as follows. In Section II the system
model and the control algorithm are introduced. How the ANN
design method can easily be adapted to select the weighting
factors of the PTC is shown in Section III. Moreover, rec-
ommendations are given which performance metrics should
be used to train an accurate ANN that will represent the
drive system and how a fitness function should be structured.
The validation of the design can be found in Section IV.
Conclusions and future work research aspects are given in
Section V.

II. SYSTEM MODEL

In Fig. 1 a simplified scheme of the motor drive control that
will be used for the weighting factor design is presented. For
implementation of the PTC, measurements of the inverter cur-
rents iks and motor speed ω are needed. The torque reference
is obtained from the PI speed controller. To control the motor
torque, predictions of the future stator current (ik+1

s ), torque
(T̂ k+1) and stator flux (Ψ̂k+1

s ) values have to be calculated for
all possible switching states of the two level voltage source
converter using the discretized system equations:
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ik+1
s = k1i

k
s +

Ts
Lσ

vks + k2Ψ̂k
r (1)

T̂ k+1 =
3

2
p=
{

Ψ̂k+1∗
s · ik+1

s

}
(2)

Ψ̂k+1
s = Ψ̂k

s + Tsv
k
s − TsRsiks (3)

where:
k1 = (1− (RσTs/Lσ)) (4)
k2 = (Lm/Lr)Ts/Lσ((Rr/Lr)− jωk) (5)
Rσ = Rs + (LmRr/Lr)

2Rr (6)

and Rs,Ls,Rr,Lr,Lm, p are the parameters of the induction
machine. Stator and rotor flux estimations (Ψ̂k

s , Ψ̂
k
r ) are cal-

culated as presented in [19]. A forward-Euler discretization is
used with a sample period Ts to obtain the discrete system
equations. The effects of the computational delay have been
compensated as shown in [19]. In Table I the system param-
eters which are used to build a simulation model are shown
and they correspond to the parameters in the experimental set-
up too. The sampling frequency was selected by finding a
trade-off between the control performance and the computing
power of the DSP platform. To execute the PTC algorithm, the
controller in the available experimental platform, requires 25
µs. Considering the calculation time and performance, the PTC
algorithm is suitable for operation with a sampling frequency
range between 10 kHz and 30 kHz to avoid the overruns. For
the Ts in Table I we have observed in the experiments that
the selected frequency can provide a good dynamic controller
response and strong steady state operation.

A. Cost function

Typically, the cost function used in PTC has two objectives:
torque and flux control. However, due to the lack of modulator
in the control scheme (Fig. 1) the switching frequency is
variable. In order to limit the average switching frequency
per device i.e. reduce the commutation number between two
consecutive sampling periods, an additional objective is added
to the cost function. Thus, the cost function will have the
following structure:

g =
∣∣∣T ∗ − T̂ k+2

∣∣∣+λΨ

∥∥∥‖Ψ∗
s‖ − ‖Ψ̂k+2

s ‖
∣∣∣ +λsw′ ·nsw+hlim,

(7)
where:

hlim =

{
0, if |̄is| ≤ imax
∞, if |̄is| > imax

(8)

nsw =
∑

x=a,b,c

|Sx(k)− Sx(k − 1)| (9)

λsw′ =
Tnom
Ψnom

λsw (10)

hlim is limiting the current to maximal allowed stator current
of the machine imax and n defines the number of switches
that changed the state. Therefore, Sx(k) is the switching state
that will be applied to the device and Sx(k−1) is the applied
switching state in the previous sampling period. λΨ, λsw are
the weighting factors; T ∗,Ψ∗

s are the torque and flux reference
values and Tnom,Ψs nom are the nominal values.

TABLE I: System parameters.

Description Parameter Value
Stator and rotor resistance Rs, Rr 2.68 Ω, 2.13 Ω

Stator and rotor inductance Ls, Lr 283.4 mH, 283.4 mH

Mutual inductance, pole pairs Lm, p 275.1 mH, 1

Nominal torque and power Tnom, Pnom 7.5 Nm,

Nominal flux and speed ψs nom, nnom 0.99 Wb, 290 rad/s

Supplied DC-link voltage Vdc 582 V

Speed PI controller gains Kp,Ki 10, 10

Controller sampling frequency Ts 62.5 µs

B. Problem complexity

For the defined cost function (7) three parameters need
to be designed: λΨ, λsw and Ψ∗

s . If 10 different values are
assigned to each of these parameters, the complexity of the
design problem is 103 = 1000. It is evident that using the
traditional branch and bound method introduced in [9] would
be time consuming with this problem complexity as the cost
function has two equally important terms (T ∗ and Ψ∗

s) and one
secondary term (nsw). It is also possible to end into a local
minimum, as the tuning will be done hierarchically. Moreover,
the method would need to be performed several times in order
to obtain the weighting factors for different Ψ∗

s values.

III. WEIGHTING FACTOR DESIGN USING ANN

In the weighting factor design process the ANN network
will serve as a surrogate of the system model presented in
Fig. 1. The design approach is illustrated in Fig. 2, where
it can be seen that the ANN is trained using the performance
metrics obtained from multiple simulations for various weight-
ing factor combinations. After the training, a fitness function
(fANN ) can be constructed using the performance metrics to
find the optimum combination of parameters. A feed-forward
ANN structure will be used with a back-propagation training
algorithm as suggested in [23]. The structure of the ANN is
the following: 3 neurons in the input layer, 12 neurons in the
first hidden layer, 5 neurons in the second hidden layer and 5
neurons in the output layer. The design steps can be followed
in the flow-chart shown in Fig. 3.

The sweeping range for the parameters in the cost function
(7) was selected as follows: λΨ = [1.6, 2.8...10], λsw =
[0, 0.1, ...0.7], Ψ∗

s = [0.65, 0.7, ...1]. It can be noticed that the
range was adjusted to sweep only the combinations that can
lead to a successful start and steady state operation of the drive
e.g sweeping the Ψ∗

s for values below 0.65 (reference flux
below 65% of the Ψs nom ) or λsw for values above 0.7 would
not result in a stable operating points. In total 512 different
parameter combinations were sweeped in 12 min using Parallel
Computing Toolbox from MATLAB with 24 processor cores.

The user can of course beforehand fix the flux reference
and sweep only the weighting factor values if the Ψ∗

s needs
to be kept constant. However, in dynamic conditions such as
acceleration and deceleration of the drive, the flux reference
can be selected to optimize the torque for its maximum
value or minimum value. For this selection criteria Tmean
performance metrics can also be used in the fitness function.
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Trained 
ANN
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Fig. 2: Block scheme of the cost function parameter design for PTC using the ANN approach.
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training algorithm)

 λΨ [Nx1],  λsw[Nx1], Ψs[Nx1]

Train the ANN and check the regression plot

Plot the fitness function

Fig. 3: Flowchart for design of the PTC cost function
parameters using the ANN approach.

Moreover in the field weakening operation of the drive the
flux reference is reduced, thus it makes sense to also include
the flux reference in the cost function optimization process.

According to the cost function in (7), which has three
objectives, the following performance metrics will be used
to train the ANN: mean torque (Tmean); torque, stator and
current rms errors (Terror, ψs error, Is error), time needed to
reach 98% of the ωref at drive start (trise) and the average
switching frequency per device (fsw avg).

A. Design for drive start

To find the cost function parameters for the fastest drive
start, using trise metrics in the fitness function is sufficient:

fANN = t2rise (11)

Fig. 4: Plot of the fitness function in (11). Obtained optimum
parameter values: λΨ = 1.6, λsw = 0 and Ψ∗

s = 0.81.

The plot of the fitness function in Fig. 4 shows the area of
optimum cost function parameters. For the selected optimum
parameters [λΨ = 1.6, λsw = 0 and Ψ∗

s = 0.81] the ANN
predicted that the drive can reach 98% of the reference speed
in 0.158 s with a Tload = 1 Nm, while the simulation for the
same parameters showed that 0.159 s are necessary. However,
in the current waveform of the simulation model it can be
observed that the distortion is high when the reference speed is
reached, see Fig 5. It can also be noticed that the stator current
limiter in the cost function hlim will limit the amplitude
of the inrush current. Thus, for a better performance in the
loading operation different fitness function needs to be used
for selecting the parameters in loading operation.

B. Design for loading operation
Following fitness function for different loading conditions

is recommended:

fANN = ψ2
s error + I2

s error +T 2
s error + (f1− fsw avg)2 (12)

where f1 is the fsw avg for which we would like to obtain the
optimum parameter values and it is chosen arbitrary. In Fig.
6 and Fig. 7 the surfaces containing the optimum parameter
combinations show similar trends in both fitness plots. The
size of the surface containing the combinations of optimum
parameters is being reduced for Tload = 5Nm and therefore
decreasing the optimum range of the weighting factors. For
higher loads it is expected that the surface will be even smaller
with high values of λΨ and low values of λsw defining the
optimum parameter region. While on one hand the fidelity
of the cost function parameters was reduced, the optimum
cost function parameters obtained for low load needed just
a slight change for higher load conditions. However, if the
reference speed is reduced, as shown in Fig. 8, the surface
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Fig. 5: Drive speed, torque, stator flux and current waveforms
from simulation model for (11). Parameter values: λΨ =
1.6, λsw = 0 and Ψ∗

s = 0.81.

Fig. 6: Plot of the fitness function in (12) for f1 = 2.5 kHz,
ωref = 200 rad/s, Tload = 2 Nm. Obtained optimum parameter
values: λΨ = 10, λsw = 0.1 and Ψ∗

s = 0.67.

containing the combinations of optimum parameters becomes
very wide while the boundary between the low fANN and
high fANN values becomes very narrow. The fidelity of Ψ∗

s

and λΨ combinations is increased compared to other fANN
plots, offering the opportunity to obtain a good performance
for different Ψ∗

s . In Fig. 9 it can be observed that for the
nominal conditions the number of parameter combinations that
can provide the same performance as previous designs is much
lower. The use of switching frequency minimization is not
necessary to achieve the design reference f1. Moreover, the
presented fANN plots show that the parameter combinations
for the nominal conditions would not provide the same per-
formance for other operating points.

The proposed method can also be applied to design the
weighting factors of PTC with multilevel inverters. For exam-
ple in a neutral point clamped topology a new performance
metrics ∆vdc, representing the NP voltage balancing, needs
to be calculated for all sweept cost function parameters and
afterwards included in the ANN training and in fANN .

Fig. 7: Plot of the fitness function in (12) for f1 = 2.5 kHz,
ωref = 200 rad/s, Tload = 5 Nm. Obtained optimum parameter
values: λΨ = 9.64, λsw = 0.13 and Ψ∗

s = 0.65.

Fig. 8: Plot of the fitness function (12) for f1 = 2.5 kHz,
ωref = 150 rad/s, Tload = 5 Nm. Obtained optimum parameter
values: λΨ = 6.88, λsw = 0.07 and Ψ∗ = 0.66.

Fig. 9: Plot of the fitness function (12) for f1 = 2.5 kHz, ωref
= 290 rad/s, Tload = 7.5 Nm. Obtained optimum parameter
values: λΨ = 6.64, λsw = 0 and Ψ∗ = 0.96.

IV. DESIGN VALIDATION

The predicted performance metrics for the optimum cost
function parameter values are validated using the simula-
tion model. Afterwards the obtained optimum cost function
parameters are experimentally validated. Due to the space
limitations, only simulation waveforms for the Tload = 5 Nm
and nominal torque are shown in Fig. 10 - 13. The test profile
is the following: start of the drive at 2 s, reversing of the drive
at 5 s and loading at 8 s. It is observed that the parameters
can provide a good steady state performance, fast start of the
drive and successful speed reversing. The fsw avg is matching
the set point in the cost function. Fig. 11 and Fig. 13 show the
current and stator flux waveforms in the steady state. Table II
shows a comparison of obtained metrics from simulations and
predicted values by the ANN. A high accuracy of the metrics
can be observed.
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Fig. 10: Drive speed, torque, stator flux and current wave-
forms in simulation model for (12) and Tload = 5Nm,
f1 = 2.5 kHz,λΨ = 9.64, λsw = 0.13 and Ψ∗

s = 0.65.
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Fig. 11: Stator flux and current waveforms in steady state for
(12) and Tload = 5Nm, f1 = 2.5 kHz, ωref = −200Rad/s,
(THDis = 7.8%).
TABLE II: Comparison of performance metrics from ANN,
simulation model and experiments.

Metrics Tload ANN Simulation Experiments

fswavg 5 Nm 2.56 kHz 2.54 kHz 2.32 kHz

ψs error 5 Nm < 0.004 Wb < 0.004 Wb < 0.06 Wb

Terror 5 Nm 0.35 Nm 0.32 Nm 0.5 Nm

Is error 5 Nm 0.39 A 0.4 A 0.37 A

fswavg 2 Nm 2.45 kHz 2.51 kHz 2.3 kHz

ψs error 2 Nm < 0.005 Wb < 0.005 Wb < 0.06 Wb

Terror 2 Nm 0.37 Nm 0.33 Nm 0.46 Nm

Is error 2 Nm 0.33 A 0.36 A 0.37 A

A. Comparison with the conventional design method

Using the conventional branch and bound design method
presented in [9] optimum parameters of the cost function (7)
will be defined. The design process will be simplified by fixing
the Ψ∗ value to 0.67, which is the optimum value obtained for
the light load design in Section III-B. In the first design step
λsw will be fixed to 0 and the λΨ will be set to one of the
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Fig. 12: Drive speed, torque, stator flux and current wave-
forms in simulation model for (12) and Tload = 7.5Nm,
f1 = 2.5 kHz,λΨ = 6.64, λsw = 0 and Ψ∗ = 0.96.
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Fig. 13: Stator flux and current waveforms in steady state for
(12) and Tload = 5Nm, f1 = 2.5 kHz, ωref = −200Rad/s,
(THDis = 6.6%).

following values: 0.01, 0.1, 1, 10 and 100 as suggested in [9] to
find the best interval for the next step in the branch and bound
algorithm. The same performance metrics as for ANN design
method will also be used for control performance assessment.

For λΨ = 1, the metrics showed Terror = 0.19 Nm, Is error
= 0.52 A, fsw avg = 3.9 kHz, ψs error = 0.04 Wb, trise =
0.158 s, but at the same time the current analysis showed
large distortion (THD = 11%) and high spikes during the
speed reversing of the drive. The intervals with λΨ ≤ 1 were
eliminated after this step. In the second step the simulations
were repeated for λΨ = 10 and following metrics were
obtained: Terror = 0.33 Nm, Is error = 0.36 A, fsw avg = 3
kHz, ψs error = 0.005 Wb, trise = 0.168 s. These metrics
showed an improved performance compared to the previous
intervals. Simulations were also performed for λΨ = 100 but
the performance was not improved. Therefore, the interval
5 ≤ λΨ ≤ 15 was selected for the second iteration and a better
trade off was obtained for the λΨ = 15. The weighting factors
λΨ = 10 and λΨ = 15 have shown just a small difference in
the performance metrics and either of them could be chosen
for the final selection at this optimization step. In our case we
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have selected λΨ = 15 for the next step.
The next task is to select the weighting factor for the

secondary objective λsw to match the target of f1 = 2.5
kHz. The value of the λsw will be increased gradually from
0 to reduce the switching frequency. At the same time the
torque and flux performance metrics will also be monitored
as it is expected that they will degrade due to the conflicting
objectives. First simulation was performed for λsw = 0.0001
for which fsw avg was reduced to 2.3 kHz. We can conclude
that for λΨ = 15 it is not possible to obtain switching frequency
of 2.5 kHz, as even the smallest value of the weighting factor
decreased the switching frequency too much. Therefore, λΨ

was changed to value 10 and the procedure of tuning λsw
was repeated. For λsw = 0.05 the switching frequency of
2.51 kHz was obtained and the performance metrics now
match the ANN based tuning results. Thus, this proves that
if a cost function that has two equally important objectives
and a secondary objective it will need more optimization
iterations, which are necessary to perform for ANN based
method. Moreover, as we don’t explore the full range of the
weighting factor combinations, it is not certain that the selected
combination is the optimum. This is often the case when
conflicting objectives are used in the cost function.

B. Comparison with sequential PTC

One of the most trending weighting factor less solutions is
to split the PTC cost function into two cascading functions.
The problem with this structure is that if in first cost function
which evaluates the flux control only two candidate vectors
are passed to the second cost function with torque control, the
applied candidate vector can potentially lead to an unstable
system response as demonstrated in [17]. It is also problematic
if control variables have equal importance. The first problem
was solved by increasing the number of candidate vectors that
are selected in the first cost function from 2 to 3 vectors. On
the other hand, the conventional PTC algorithm used in this
paper evaluates all candidate vectors only once and it has the
flexibility to also minimize the switching frequency if required
without the risk to run out of candidate vectors. The difference
is also in the optimization flexibility, the conventional PTC can
find a good trade off in both torque and flux reference tracking.
If sequential structure is used, one must prioritize either the
torque or the flux reference tracking performance.

If performance of the generalized sequential MPC
(GSMPC) proposed in [17] is compared to the performance
obtained using the conventional PTC algorithm designed in
Section III-B we can see that both methods can provide a
stable response during start up, speed reversing and steady
state operation under nominal conditions. Both methods also
outperform the sequential MPC when flux control is used
in the first cost function. Moreover, the field weakening
method proposed in [17] could potentially also be applied to
a conventional PTC as it is only effecting the calculation of
torque and stator flux reference and not the prediction model
or the cost function. In conclusion, the biggest advantage of
GSMPC is that even without the weighting factors relatively
good performance can be achieved if either flux or torque are

given the priority to be used in the first cost function. What
could potentially be a disadvantage compared to conventional
PTC is the lack of switching frequency control, potential
problems in the implementation of cost functions with more
than 2 control objectives (there should be a guarantee that
each cost function in the cascade has sufficient number of
vector candidates) and how to treat the control objectives that
have an equal importance. It is also not shown how limitations
of e.g. stator current, that can easily be implemented in the
conventional PTC, will effect the cascaded structure.

C. Experimental validation
Two design cases were also validated on an experimental

set-up shown in Fig. 14, which includes two induction motors
with the parameters provided in the Table I, a Servostar620
inverter used to control the drive motor and a Danfoss inverter
used to drive the load machine and 1024-point incremental
encoder for obtaining the rotor position. The control algorithm
is implemented on a 1.4 GHz real time computer system.
The controller sampling frequency is set to 16 kHz and the
test profile is equivalent to the one used in the simulations.
In Fig. 15 the experiments were performed for Tload = 2
Nm and in Fig. 16 for Tload = 5 Nm. It can be observed
that both cost function parameter values obtained in Section
III-B were able to provide a fast start of the drive, a stable
speed reversing and a steady state performance under loading
conditions. In Table II it can be observed that the obtained
performance metrics in the steady state are similar for both
design cases, which confirms that the chosen cost function
parameters can give a constant performance for both load
values. The average switching frequency obtained from the
experiments was 2.3 kHz, which is only 8% lower than
the average switching frequency set in the design. Because
the simulation model was optimized for fast execution, a
detailed induction machine model was not used. Therefore we
can notice the difference compared to the simulations. For
better accuracy of the performance metrics with the ANN
predictions, the training can be performed using a detailed
model or the experimental data. It needs to be mentioned that
a detailed model will increase the simulation time in the first
stage of the training data collection. The experimental data
extraction could be done either in an automated fashion or
manually. There are several risks associated with automated
data extraction. Unfeasible combination of weighting factors
may cause a system damage. Thus, a human operator is
required to oversee this process.

D. Robustness validation
The accuracy of the motor model parameters is important

for PTC as predictions of the torque and stator flux are
calculated using the discrete system model. There are three
alternatives, which can help to improve the robustness of the
weighting factors design:

1) Experimental extraction of the training data
It would ensure a higher accuracy of the performance
metrics but also require more time and human super-
vision, as it is potentially possible that the induction
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motor or the converter gets damaged if an unfeasible
combination of weighting factors is tried.

2) Include the parameter uncertainty in the simulations
This approach will require to run additional simulations
with overestimated and underestimated parameter values
of the drive making it more time consuming. However,
compared to the first alternative it can automatized,
parallelized and performed without human supervision.
In our future work, we plan to investigate the possibilities
of the robustness inclusion in the training data.

3) Perform robustness validation after the simulation
This approach does not require any changes of the
proposed weighting factor design. After the optimum
weighting factors are obtained using the fitness function,
a robustness validation of the designed cost function can
be performed using a statistical model checking (SMC)
approach that was proposed in [28]. The approach is not
topology or application dependent and can thus be applied
also to PTC.

Experimental evaluation for parameter mismatch of stator
resistance (Rs) and mutual inductance (Lm) can be seen in
Fig. 17 and Fig. 18, where values of stator resistance were
varied from 100% - 150% Rs nom and mutual inductance
from 100% - 200% Lmnom respectively. It can be observed
that the system is more robust against mismatch of Lm while
high mismatch of Rs can lead to system instability. Using
the simulation model, we have repeated the robustness test
also for nominal torque and speed. A similar performance was
obtained, a high resistance to variation of Lm and a loss of
stability at 140% Rs nom.

E. Computation burden
The computation burden of the PTC algorithm used in

this paper is equivalent to the conventional PTC algorithm.
In each sampling period the algorithm needs to evaluate 8
vector candidates in the cost function (7). The turn-around
time of the PTC algorithm used in the manuscript on the
available experimental platform is about 25 µs. With applied
16 kHz sampling frequency, the sampling interval is sufficient
to execute the PTC algorithm without overruns. Due to the fact
that the weighting factor optimization is performed offline,
there is no additional computation burden during execution
of the algorithm. The same also applies for the algorithm
proposed in [25]. For method proposed in [22] the selection of
the weighting is performed online using the ANN whenever
the reference changes and this adds an additional computation
burden. If the use of weighting factors is avoided, the compu-
tational burden will increase as more vector candidates need
to evaluated. For example, the sequential PTC [4] requires
minimum 9 iterations, 7 in the first cost function and 2 in the
second cost function. For generalized PTC in [17] the number
of iterations is 10 because in the first cost function 3 candidates
are passed to the second cost function to avoid an unstable
response. The parallel PTC [5] evaluates the two cost functions
separately for all 7 vector candidates and then chooses between
2 to 4 vector candidates from each cost function minimization
to find one that provides the best compromise for both cost
functions.

Fig. 14: Experimental setup used for validation of the de-
signed cost function parameters.

(a) Drive speed (200 rad/s/div) and torque (5 Nm/div)

(b) Stator flux (1 Wb/div)

(c) Stator currents (10 A/div)

Fig. 15: Experimental waveforms for (12) and Tload = 2Nm,
f1 = 2.5 kHz (λΨ = 9.64, λsw = 0.13 and Ψ∗

s = 0.65).

V. CONCLUSION

An ANN based weighting factor design method is applied
to select the optimal parameters of the cost function in
the PTC algorithm controlling a motor drive. Different load
conditions and reference set-points presented new sets of
optimal parameters that have analytical guarantee to keep the
defined performance metrics in the fitness function. For the
larger load torque values, it was observed that the set of
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(a) Drive speed (200 rad/s/div) and torque (5 Nm/div)

(b) Stator flux (2 Wb/div)

(c) Stator currents (10 A/div)

Fig. 16: Experimental waveforms for (12) and Tload = 5Nm,
f1 = 2.5 kHz (λΨ = 10, λsw = 0.1 and Ψ∗

s = 0.67).

optimal cost function parameters is narrowing. Moreover, by
including the flux reference as one of the design parameters,
it was also observed that for one reference value not only one
pair of weighting factors can provide the desired performance
metrics. If the procedure is repeated for more load torque and
reference speed values, the full operating region of the drive
can be optimized. Experimental results have confirmed that
the selected optimum cost function parameters can provide a
good performance during the drive operation.

A comparison with the traditional branch and bound design
method showed that the design process needs to be iteratively
repeated, while for the ANN method the whole range of
the cost function parameters is covered in one design step.
In addition the selection of the optimal parameters is much
simpler using the fitness function since the design for differ-
ent performance factors can just be changed by defining a
new fitness function. In the conventional method the whole
procedure of performing the simulations with the branch and
bound algorithm would need to be repeated many times.
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(a) Drive speed (200 rad/s/div), torque (5 Nm/div) and
stator resistance (2 Ω/div).

(b) Stator flux (1 Wb/div)

(c) Stator currents (2 A/div)

Fig. 17: Experimental waveforms for Rs = 2.65 − 4 Ω and
Tload = 2Nm. (λΨ = 9.64, λsw = 0.13 and Ψ∗

s = 0.65).
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