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 
 

Abstract—This paper proposes a machine learning (ML) 
based emulation of model predictive control (MPC) for 
modular multilevel converters (MMCs). In particular, the 
artificial neural network model, trained offline by the data 
collected from the traditional fast MPC method, is used to 
control the MMCs with high accuracy. With this offline 
training, the majority of computational burden is 
transferred from online to offline. Therefore, the proposed 
ML MPC can replace the role of the traditional MPC. The 
experimental results show that the proposed ML based 
MPC has the same performance as the conventional MPC 
but a significantly computationally efficient structure. The 
finding from the letter provides ground for many other 
applications for ML based emulation of complex controllers 
in power electronic systems.  
 

Index Terms — Modular multilevel converter, machine 
learning, model predictive control, computational burden. 

I. INTRODUCTION 

ITH the large-scale development of renewable power 
transmission, Modular Multilevel Converter (MMC) is 

the most dominant topology in voltage source - high voltage 
direct current (VSC-HVDC) application. Because of the 
modular nature of MMC, MMC has good expandability and 
redundancy fault tolerance. And the MMC output current 
harmonics are very small, making it possible to use a small (or 
even no) filter [1]. However, the complicated structure of 
series-connected submodules needs to be controlled properly. 

Traditional proportional-integral (PI) /proportional 
resonance (PR) based controllers rely heavily on the careful 
design of individual controller parameters (output current 
controller and circulating current controller), and the 
bandwidths of controllers need to be carefully designed 

 
 

according to the actual situations. Model predictive control is a 
mathematical model-based multi-input-multi-output (MIMO) 
control algorithm, which was proved to have a good dynamic 
response even under significant parameter variations [2]. Paper 
[3] first proposed the MPC controller in the MMC system, from 
the results, the output currents and the circulating current are 
well controlled by the MPC controller. However, since each 
bridge arm of the MMC has many sub-modules, the MPC 
imposes a high computational cost in order to balance the 
capacitive voltages of these sub-modules, which is a major 
disadvantage of the MPC MMC. Many papers proposed 
computational efficient methods for MPC based MMC [5]–[7]. 
However, those solutions cannot change the MPC’s key trait: 
The model predict controller evaluates all possible switching 
signals at each control cycle and selects the best set of control 
signals to minimize the cost function. This online exhaustive 
approach can lead to a heavy controller computational cost.  

In this letter, a machine learning emulation of the model 
predictive control is proposed to significantly reduce the 
computational cost but while maintaining excellent dynamic 
response. ML technology is widely applied in power 
electronics applications, for example, a short-term memory 
recurrent neural network based power fluctuations 
identification method is proposed to maintain the power system 
frequency in [10]. In [9], an artificial neural network (ANN) 
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Fig. 1. Three-phase MMC circuit diagram. 
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based power electronics design method by including the 
reliability is proposed to achieve a better comprehensive 
performance of power electronics systems.  

The machine learning models can be trained by data get non-
parameter models to represent the real-world input-input 
relationships [8], [9]. The ANN is a subset of machine learning 
technology which is applied in this letter. The machine learning 
network can be trained offline and then the trained network can 
be applied in the offline simulation or implemented in a real-
time microprocessor system such as DSP and dSPACE 
controller. And also, this letter shows the computational cost of 
the proposed method is significantly lower than the MPC 
controller and also perfectly emulates the MPC controller. 

II. MPC FOR MMCS 

To train the ML MPC controller, the traditional MPC need to 
be established first to collect the input/output data. 

A.  The model predictive control for MMCs 

Fig. 2(a) presents the MPC based MMC system, and the 
controller structure comparison between MPC and the proposed 
ML based controller is also shown. The implementation of the 
MPC in MMC is described step by step. The comprehensive 
introduction of the MPC MMC implementation is in [7].  
1) The MMC sensors measure the variables: upper/lower arm 

currents, upper/lower arm voltages, output current, and 
internal circulating current; 

2) The MPC algorithms predict the all the possible output 
variable values in next sampling interval for all the possible 
switching signals; 

3) The MPC algorithms create the MPC cost function 
regarding the output/circulating current. 

4) The MPC algorithms selected the optimized switching 
signal which can track the control references, i.e. achieve 

the lowest cost function; 
5) The optimized switching signals are used to control the 

MMC.  
The discrete-domain dynamics of output variables are [8]: 
( 1) A[( ( ) ( 1) ( ) ( 1)) / ] B ( )

       A 2 / ( 2 ), B 1 2 / ( 2 )         (1)
s l cl u cu s

s arm s s s arm s
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where ,cu clv v / ,u li i  are upper/lower arm voltages/currents 

respectively, ,u ln n  are upper/lower submodule inserted 

numbers, respectively, sT  is digital sampling interval, armL  is 

arm inductance, ,s sL R  are load inductance and resistance, 

respectively, dV  is DC voltage, SMC  is the capacitance of the 

submodule capacitor, ( 1),  ( )x k x k  are the values of the 

variables at sampling moment k+1 and k. 
The cost function (CF) for the MMC control is: 

1 2| ( ) ( 1) | | ( ) ( 1) |s s c cg w i k i k w i k i k       ★ ★      (5) 

where 1w is the output current weighting factor 2w is the 

circulating current weighing factor. 
si★  is the output current 

reference and 
ci
★ is the circulating current reference. In this 

letter, 1 2 1w w  . 

In the real-time experiment, the delay of the digital controller 
is compensated by the method which in introduced in [11]. This 
letter applied this delay compensation approach.  

B. Deterministic input-output relationship of MPC 

The deterministic relationship between input variables and 
output variables of MPC is the key feature that allows the ML 

 
Fig. 2. (a). Traditional MPC for MMCs; (b) The proposed ML 

based controller for MMCs. 

 
Fig. 3. The training and implementation procedures of ML MPC 
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based controller to accurately emulate the behavior of the MPC 
controller. This deterministic relationship is: all the possible 
output currents and circulating currents are predicted by the 
MPC controller by considering all possible switching 
configurations with a set of measured input variables. Then the 
best switching signal is selected to minimize the cost function. 
That is to say, the output variables (inserted number of MMC 
arm) will always be unchanged when the cost function and the 
measured input variables are unchanged. However, MPC has a 
heavy computational burden because the MPC controller has to 
search exhaustively for all the possible switching signals to find 
the suitable switching signal in every controller time interval. 
On the other hand, when this deterministic feature is 
represented by a more computationally light structure (i.e. 
neural network in our paper), an essentially the same control 
effect is achieved, but with a far lower online computational 
cost. In the next sections, a ML based controller is used to 
represent this deterministic feature of MPC.   

II. MACHINE LEARNING BASED MODEL PREDICTIVE 

CONTROLLER FOR MMCS 

A.  Machine learning based MPC for MMCs 

Fig. 2 illustrates the comparison of the traditional MPC 
method and the proposed ML based MPC method. The only 
difference of these two methods is that ANN model replaces the 
MPC block. In next section, we will introduce the data 
collection steps for training the ANN model.  

B.  Data Acquisition and Model Training 

The following describes how to get data from the MPC 
controller and use this data to train a machine learning model. 
The general steps are presented in Fig. 3. 
1) The Training Data Sampling: To train the ML controller, 

the training data should be collected from the MPC 
controller first. The data collection algorithm will sample 
the variables within a certain range. The arm voltages 

,cu clv v  are sampled from a range [0,350], with a 10V step, 

then 36 values are sampled from upper/lower arm voltage. 
We use [0:10:350] to represent this sample operation. 
Similarly, upper/lower arm currents , the output 

current reference
si★ , and the circulating current reference

ci
★  are sampled as follows respectively: [-6:1:6], [-6:1:6], 

and [0:0.2:2]. It only takes 76 seconds to collect this data. 
In order to make sure the training performance is good, we 

recommend each input variable should be sampled at least 
10 points for the whole variable range. What is more, it is 
important to consider the whole range of the input variable, 
otherwise the tracking performance is worse compared to 
traditional controller.  

2) ML Network Structure Selection: Firstly, the ANN is 
selected because it is extremely simple. Although ANN is 
simple, it is still useful to deal with the problem that the 
data may consist of a completely different set of features, 
such as table data [13]. Secondly, we selected the hidden 
layer number of the network, the universal approximation 
theorem [14] states that an ANN with a single hidden layer, 
containing a finite number of neurons, can approximate 
any continuous function with mild assumptions on the 
activation function [15]. In this letter, one hidden layer 
structure is applied. The neuron number selection is based 
on a rule of thumb. To achieve a better training 
performance, a high neuron number is recommended to 
select within the range of the min/max neuron numbers 
Minimum neuron number: 

0.5( ) 4    ( 6, 2)i o i oN N N N            (6) 

Maximum neuron number:  
2 12iN                                   (7) 

where iN  is the input unit number 6iN  , outN is the 

output unit number 2outN  .  

In this letter, we select the neuron number as 9.  
3) ML Model Training: The data was used to train the 

proposed ML MPC network, i.e. a feedforward neural 
network, which represents the relationship between input 
variables and output variables. The trained ML model is 
used to calculate the upper and lower arm inserted number 
of MMC. With the changing of the insert numbers, the 
output variables can be controlled to track their references. 
The ANN contains three layers: input layer, hidden layer, 
and output layer. The hidden layer contains 9 neurons. The 
network training is implemented in MATLAB. 

III. EXPERIMENTAL RESULTS 

The proposed ML MPC controller is verified in the lab 
prototype. A 24-submodule, three-phase MMC experimental 
platform is used to verify the proposed method. The digital 

,u li i

 
Fig. 4. The picture of the experimental prototype 

TABLE I 
MMC PARAMETERS IN EXPERIMENT 

 Experiment 
Number of SMs per arm (N) 4 

Rated DC voltage (
d

v ) 200 V 

Nominal SM capacitance ( SMC ) 2000 µF 

Nominal SM capacitor voltage (
c

v ) 50 V 

Rated frequency (f) 50 Hz 

Arm inductance ( armL ) 10 mH 

Sample frequency 10 kHz 

Load inductance ( sL )  1.8mH 

Load resistance ( sR ) 10.8Ω 
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controller is based on the dSPACE real-time control platform, 
the controller model is DS1006. The parameter of the 
experimental platform is presented in Table. I. The prototype 
picture is presented in Fig. 4.  

A.  Steady State Performance 

Fig. 5 presents the steady state performance of proposed ML 
MPC and the traditional MPC. From Fig. 5 (a1) and (b1), the 
output currents of the MMC are controlled to the references: 
AC currents with 4A amplitudes. The total harmonic distortion 
(THD) of the ML control output current is 0.023%. The THD 
of the MPC control output current is 0.021%. The circulating 
currents are suppressed by both control methods which are 
shown in Fig. 5 (a2) and (b2). The capacitor voltages are shown 
in Fig. 5 (a3) and (b3), the capacitors are sorted and balanced 
by the sort & select algorithm [12]. 

B.  Dynamic Performance 

Fig. 6 shows the dynamic performance when the reference 

amplitudes are suddenly increased and decreased. In Fig. 6 (a1), 
the output current references are suddenly stepped from 2A to 
4A, the proposed ML controller can accurately follow the 
changed references in a short period of time. The output 
currents are suddenly decreased from 4A to 2A, which is shown 
in Fig. 6 (a2). 

Fig. 7 shows the dynamic performance when the frequency 
of output current is changed. In Fig. 7 (a1), the frequency of 
output current is suddenly decreased from 50Hz to 20Hz. In 
Fig. 7 (a2), the frequency is increased from 20Hz to 40Hz. The 
results verify that the proposed controller can control the output 
current in different frequencies, which is an advantage 
comparing to traditional PI/PR controller because PI/PR 
controller need to set a specific working frequency or to extract 
the dq components from PLL [16], [17].  

C.  Performance with different neuron numbers. 

The influence of the neuron numbers of the trained networks 
is introduced in this subsection. Table II shows the training 
performance of the trained networks with different neuron 
numbers. MSE is the mean squared error, a lower MSE means 
a better training performance. When the neuron number is 9, the 

TABLE II 
TRAINING PERFORMANCE 

Number of Neurons Training Time MSE 

4 2:15:56 0.302 

6 2:52:58 0.199 

9 3:26:54 0.177 

 
Fig. 5. The experimental results of ML MPC and traditional MPC 

 
Fig. 6. Output Current dynamic. 

 
Fig. 7. Output Current frequency dynamic. 

TABLE III 
COMPUTATIONAL BURDEN  

 ML Fast MPC MPC 

Mean Turnaround Time (μs) 1.123 1.615 9.790 
Max Turnaround Time (μs) 1.252 1.788 9.690 
Min Turnaround Time (μs) 1.070 1.561 9.947 
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best performance is achieved (lowest MSE). 
Fig. 8 shows the experimental results of the trained networks 

with different neuron numbers. Those three networks all can 
achieve good performance, the experimental results show that 
this ML controller is not under a specific structure that a good 
control effect can be achieved  

D.  Performance with different data size 

The size of the training data influences the control 
performance of the proposed controller. Fig. 9 shows the output 
current results and the tracking errors of the trained networks. 
The definition of the testing error is as below: 

(1 ) 100%ispp

isrefpp

V
TrackingError

V
                 (8) 

 
where isppV is the peak to peak value of the output current, 

isrefppV  is the peak to peak value of the output current reference. 

In Fig. 9, when the data size is low (4860 and 22500), the 
tracking errors are unacceptable (11.18% and 13.46% 
respectively). When the data size is increased to 249018, the 
tracking error is reduced to 2.61%. When the data size is further 
increased to 4889808, the tracking error is further reduced to 
1.97%. Finally, when the data number is 31320432, the tracking 
error is below 1%. So in this letter, we recommend each input 
variable should be sampled at least 10 points for the whole 
variable range, and the recommended training error should 
below 1%. 

E.  Computational Burden 

The computational burden can be estimated by the 
calculation number of the controllers [19]. The calculation 
number of traditional MPC in [18] is 4

8C  = 70 because the this 

MPC algorithm will select 4 out of 8 submodules to be inserted. 
All those insertion conditions need to be calculated and 

predicted by the MPC [4]. The calculation number of the fast 
MPC with experimental delay compensation algorithm in [7] is 
42 = 16 because it has 2 loops, each loop has 4 vectors to predict. 
And the calculation number of the proposed ML based 
controller is 9 because it has 9 neurons in the hidden layer [19]. 
Thus, the traditional MPC’s calculation number is almost 8 
times the ML based controller’s calculation number, and the 
calculation number of MPC controller is 43.75% higher than 
the ML controller’ s calculation number.  

The computational cost of the proposed ML based controller 
is very small because the pre-trained ANN structure. Thus this 
method can be easily implemented in DSP or dSPACE 
controller. The computation cost of the MMC controllers can 
be measured by the dSPACE Profiler. Table III shows the 
computational burden in dSPACE platform of the proposed ML 
controller, the fast MPC method in [7], and the traditional MPC 
method in [18]. From Table III, the mean turnaround time of 
the traditional MPC is 9.790 μs which is almost 8 times the 
mean turnaround time of the proposed ML controller (1.123μs). 
And also, the mean turnaround time of the computational 
efficient MPC is 1.615μs which is still 49.2% higher than the 
proposed ML-based controller. 

F. ML Based Method VS Lookup Table 

Since the ANN is to emulate the deterministic relationship of 
MPC, lookup table is another opinion to represent this 
deterministic relationship. In this section, we discuss the 
advantages of ML based compare to lookup table method.  

Once the network with suitable structure is trained, its 
evaluation is computationally light as it takes only around 1.1 
μsec to generate the output signals. Interestingly, if the same 
amount of data as in the ANN training set is used to try and 
create a look-up table, the system runs out of memory. For 
instance, the data size we used as a training set is 31320432, 
and the system was not able compile such a huge amount data. 

 
Fig. 8. Experimental Results of ML controller with different neuron numbers. 
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Therefore, it can be concluded that due to large data size, ML 
methods are suitable for use for fast real time applications as 
opposed to lookup tables. 

G. Performance of Unseen Input data 

The ML network is trained by the data with a given range. 
In this subsection, the performance of the unseen input data 
performance is discussed. In this letter, the training range of 
the output current reference is [-6A, 6A]. When the output 
current reference exceeds [-6A, 6A], this reference is unseen 
data. We tested 2 unseen output current references: 7A and 
9A amplitudes of the output current. The results are shown in 
Fig. 10.  

From Fig. 10, two unseen output current references results 
are shown. In Fig. 10(a), the output current reference 
amplitude is 7A, which is 1A above the training range [-6A, 
6A]. Both the MPC and ML based controller can track the 
reference precisely. These results prove the ML network has 
the ability to work properly even under the unseen data, 
which is slightly beyond the training range.  

However, when the unseen output reference is 9A, which 
is 50% above the training range, Fig. 10 (b) shows the ML 
based controller cannot track the reference precisely. To 
prevent this problem, we suggest the original range should be 
at least 30% higher than the rated condition. 

IV. CONCLUSION 

This paper proposes a machine learning based MPC 
controller for MMCs. The artificial neural network is offline 
trained by the data extracted from the traditional MPC 
algorithm. The experimental results show that this artificial 
neural network can control the MMCs with a good steady 
state and fast dynamic performance, but at the same time with 
a low computational burden. In future, this method can 
simulate more complex model predictive control algorithms 

 
Fig. 9. Results of ML controller with different size of data 

 
Fig. 10 The results when the output current references exceed the training range. 
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and reduce further the computational burden.  
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